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Mathematical Systems Theory and Control

P
u(t) y(t)

Mathematical control theory studies di�erential equations

d

dt

x(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)

where
u(t) œ C is the control input
y(t) œ C is the measured output.
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Key Focus Areas:

Control of temperature and fluid flows

Control of vibrating and flexible systems

Dynamics of large-scale systems

Modern mathematical techniques in control
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Example: Robust Trajectory Tracking for Heat Equations

Objective: Control the system in such a way that the temperature
measurements converge to reference trajectories.
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Figure: Controlled heat profile
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Figure: Measurements
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Example: Optimal Disturbance Rejection

Objective: Choose locations of active dampers so that the
structural vibrations are suppressed as e�ciently as possible.
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Damper locations

≠æ

L. Paunonen



Mathematical Systems Theory

Example: Dynamics of Large Vehicle Formations

a stability approach for strings of infinite length, and finally
a performance-oriented frequency-domain approach.

The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m � N interconnected vehicles. This system is string-
stable if and only if

�zi(t)�Lp � �zi�1(t)�Lp , � t � 0, 2 � i � m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) � Lp is a
given input signal, and zi(0) = 0 for 2 � i � m.

� · �Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that �zi(t)�Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.

III. CONTROL DESIGN

An elegant method to arrive at a suitable controller for
CACC is based on formulation of the error dynamics, as

di di–1di+1

vi+1

i+1

vi vi–1

wireless
communication

radar

i–1i

Fig. 2. CACC-equipped string of vehicles.

shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i � 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 � i � m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) � dr,i(t)

= (si�1(t) � si(t) � Li) � (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
is adopted:

�

�
ḋi

v̇i

ȧi

�

� =

�

�
vi�1 � vi

ai

� 1
� ai + 1

� ui

�

� , 2 � i � m, (3)

where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and � a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant � is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).

The control law can now be designed by formulating the
error dynamics. Define to this end the error states

�

�
e1,i

e2,i

e3,i

�

� =

�

�
ei

ėi

ëi

�

� , 2 � i � m. (4)
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Source: Ploeg et. al., ’11.

Source: TED/R. D’Andrea

L. Paunonen



Mathematical Systems Theory

Research Group at TUT

Lassi Paunonen Assistant Professor
Dmytro Baidiuk Postdoctoral Researcher
Duy Phan-Duc Postdoctoral Researcher
Jukka-Pekka Humaloja PhD Student
Konsta Huhtala PhD Student
Petteri Laakkonen University Teacher

Find out more!
sysgrouptampere.wordpress.com

lassipaunonen.wordpress.com

Youtube: Sysgroup Tampere

L. Paunonen

sysgrouptampere.wordpress.com
lassipaunonen.wordpress.com
https://www.youtube.com/channel/UC7N5h7sdZ64JNxv6A-5qlWQ


Mathematical Systems Theory

Research Group at TUT

L. Paunonen


