Mathematical Analysis and Systems Theory

Lassi Paunonen

Assistant Professor, Mathematics Tampere University of Technology, Finland

27.8.2018

Funded by Academy of Finland project numbers 298182 and 310489.

L. Paunonen

Mathematical Systems Theory and Control

Mathematical control theory studies differential equations

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \qquad x(0) = x_0$$
$$y(t) = Cx(t)$$

where

- $u(t) \in \mathbb{C}$ is the control input
- $y(t) \in \mathbb{C}$ is the measured output.

Key Focus Areas:

- Control of temperature and fluid flows
- Control of vibrating and flexible systems
- Dynamics of large-scale systems
- Modern mathematical techniques in control

Example: Robust Trajectory Tracking for Heat Equations

Objective: Control the system in such a way that the temperature measurements converge to reference trajectories.

Figure: Controlled heat profile

Figure: Measurements

Example: Optimal Disturbance Rejection

Objective: Choose locations of active dampers so that the structural vibrations are suppressed as efficiently as possible.

Example: Dynamics of Large Vehicle Formations

Source: Ploeg et. al., '11.

Source: TED/R. D'Andrea

Research Group at TUT

Lassi Paunonen

Dmytro Baidiuk Duy Phan-Duc Jukka-Pekka Humaloja Konsta Huhtala Petteri Laakkonen Assistant Professor

Postdoctoral Researcher Postdoctoral Researcher PhD Student PhD Student University Teacher

Find out more!

sysgrouptampere.wordpress.com
lassipaunonen.wordpress.com
Youtube: Sysgroup Tampere

Research Group at TUT

