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Goal of the Talk
Introduce general conditions for non-uniform stability

of damped hyperbolic Cauchy problems (and PDEs).

{
ẋ(t) = (A−BB∗)x(t)
x(0) = x0

and {
ẅ(t) +A0w(t) +B0B

∗
0ẇ(t) = 0

w(0) = w0, ẇ(0) = w1

Problem
Formulate conditions on (A,B) and (A0, B0) such that

‖x(t)‖ → 0, or ‖w(t)‖ → 0 as t→∞

and especially study the rate of the convergence.
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Goal of the Talk
Introduce general conditions for non-uniform stability

of damped hyperbolic Cauchy problems and PDEs.

Damped systems of the form

ẋ(t) = (A−BB∗)x(t) and ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0

Motivation:
So-called “polynomial” and “non-uniform” stability often arise
in wave/beam/plate equations with weak or partial dampings
Most of the current literature based on case-by-case analysis

Main results:
General observability-type sufficient conditions for stability
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(B∗, A) exactly observable ⇔ A−BB∗ exponentially stable
‖x(t)‖ ≤Me−ωt‖x0‖ ∀x0

(B∗, A) non-uniformly obs. ⇔ A−BB∗ non-uniformly stable

(B∗, A) approx. observable ⇔∗ A−BB∗ strongly/weakly stable
x(t)→ 0 ∀x0

[Slemrod, Levan, Russell, Benchimol, Guo–Luo, Lasiecka–Triggiani,
Curtain–Weiss . . . ]

Earlier work: Ammari–Tucsnak 2001, Ammari et. al.
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Main Assumptions (roughly, to keep things simple)
A generates a contraction semigroup eAt on X Hilbert, i.e.,
t 7→ eAt is strongly continuous and ‖eAt‖ ≤ 1.
Either B ∈ L(U,X), or (A,B,B∗) is a “well-posed system”.
⇒ A−BB∗ generates a contraction semigroup e(A−BB∗)t

Main case:

ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0, on X0

where A0 > 0, B0 ∈ L(U,D(A1/2
0 )∗) leads to

A =
[

0 I
A0 0

]
, B =

[
0
B0

]
, on X = D(A1/2

0 )×X0.

“Well-posedness” ⇔ λ 7→ λB∗0(λ2 +A0)−1B0 bounded for λ = 1 + is
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Polynomial and Non-Uniform Stability
Definition
e(A−BB∗)t generated by A−BB∗ is non-uniformly stable if there
exist an increasing MT : [t0,∞)→ R+ and C > 0 such that

‖e(A−BB∗)tx0‖ ≤
C

MT (t)‖(A−BB
∗)x0‖ x0 ∈ D(A−BB∗)

[. . . , Liu–Rao ’05, Batty–Duyckaerts ’08, Borichev–Tomilov ’10,
Rozendaal–Seifert–Stahn ’19]

Application: E(t) ∼ ‖e(A−BB∗)tx0‖2 for many PDE systems.
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Polynomial and Non-Uniform Stability
Definition
e(A−BB∗)t generated by A−BB∗ is non-uniformly stable if there
exist an increasing MT : [t0,∞)→ R+ and C > 0 such that

‖e(A−BB∗)tx0‖ ≤
C

MT (t)‖(A−BB
∗)x0‖ x0 ∈ D(A−BB∗)

[. . . , Liu–Rao ’05, Batty–Duyckaerts ’08, Borichev–Tomilov ’10,
Rozendaal–Seifert–Stahn ’19]

Theorem (BT’10, RSS’19)
Assume e(A−BB∗)t is contractive, iR ⊂ ρ(A−BB∗), and

‖(is−A+BB∗)−1‖ ≤M(|s|), M non-decreasing.

If M(s) . 1 + sα, then MT (t) = t1/α

If M has “positive increase”, then MT (t) = M−1(t).
L. Paunonen Non-Uniform Stability of Damped Contraction Semigroups
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Main Problem

Damped systems of the form

ẋ(t) = (A−BB∗)x(t) and ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0

Problem
How do (A,B) or (A0, B0) determine the stability of the system?

Main results:

Conditions based on observability-type
properties of (B∗, A) and (B∗0 , iA0).
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A “Non-uniform Hautus test”

Consider the Hautus-type condition [Miller 2012]

‖x‖2 ≤Mo(|s|)‖(is−A)x‖2 +mo(|s|)‖B∗x‖2, x ∈ D(A), s ∈ R,

for some non-decreasing Mo,mo : [0,∞)→ [r0,∞).

Theorem
If the above condition holds, then iR ⊂ ρ(A−BB∗). If
M(s) := Mo(s) +mo(s) has positive increase, then

‖e(A−BB∗)tx0‖ ≤
C

M−1(t)‖(A−BB
∗)x0‖, x0 ∈ D(A−BB∗)
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Observability of the Schrödinger Group
For

ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0, on X0

and MS ,mS : [0,∞)→ [r0,∞) consider (s ≥ 0)

‖w‖2 ≤MS(s)‖(s2 −A0)w‖2 +mS(s)‖B∗0w‖2, w ∈ D(A0)

This is observability of the “Schrödinger group” (B∗0 , iA0)
(generalises Anantharaman–Leataud 2014, Joly–Laurent 2019)

Theorem
A similar result, decay rate determined by M−1(t), where

M(s) := MS(s)mS(s)(1 + s2).
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A “Wavepacket Condition”
For A skew-adjoint with spectral projection P(a,b) (for i(a, b) ⊂ iR)

‖B∗x‖ ≥ γ(|s|)‖x‖, x ∈ Ran(P(s−δ(|s|),s+δ(|s|))), s ∈ R

for some non-increasing δ, γ : [0,∞)→ (0, r0].

Such x are often called “wavepackets” of A.
(Used for exact observability, e.g., in Ramdani et.
al. 2005, Miller 2012, Tucsnak–Weiss 2009.)

Theorem
If A∗ = −A and if M(s) := δ(s)−2γ(s)−2 has
positive increase, then

‖e(A−BB∗)tx0‖ ≤
C

M−1(t)‖(A−BB
∗)x0‖.

σ(A)

δ(|s|)
is

iR
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Time-Domain Non-Uniform Observability
Time-domain observability conditions:
If 0 ∈ ρ(A), τ, cτ , β > 0:

cτ‖(−A)−βx0‖2 ≤
∫ τ

0
‖B∗eAtx0‖2dt, x0 ∈ D(A).

(cf. generalised observability conditions by Ammari–Tuscnak 2001,
Ammari–Bchatnia–El Mufti 2017)

Theorem
Assume A∗ = −A, 0 ∈ ρ(A), B ∈ L(U,X) and 0 < β ≤ 1. If the
above condition holds, then iR ⊂ ρ(A−BB∗), and

‖e(A−BB∗)tx0‖ ≤
C

t1/(2β) ‖Ax0‖, x0 ∈ D(A)
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Examples: 2D Wave Equations
A wave equation with viscous damping on a convex Ω ⊂ R2 with
Lipschitz boundary, b ∈ L∞(Ω)

wtt(ξ, t)−∆w(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ Ω, t > 0,
w(ξ, t) = 0, ξ ∈ ∂Ω, t > 0,
w(·, 0) = w0(·) ∈ H2(Ω) ∩H1

0 (Ω), wt(·, 0) = w1(·) ∈ H1
0 (Ω).

Several results exist for the exact observability of the
Schrödinger group (b, i∆) (Jaffard ’90, Burq–Zworski ’19) for
rectangles/tori. Leads to polynomial decay 1/

√
t.

Precise lower bounds on b lead to generalised observability of
the Schrödinger group via Burq–Zuily 2016.
In general our results are sub-optimal, since conditions do not
take into account the smoothness of b! (Burq–Hitrik ’07)
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1D Wave Equations

Consider a wave equation with weak damping (and Dirichlet BC)

wtt(ξ, t)− wξξ(ξ, t) + b(ξ)
∫ 1

0
b(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0,

The wavepacket condition characterises (optimal) stability via
lower bounds of the sine Fourier coefficients, e.g., (c, α > 0)∣∣∣∣∫ 1

0
b(ξ) sin(nπξ)dξ

∣∣∣∣ ≥ c

nα

Pointwise damping possible (formally b(ξ) = δ(ξ − ξ0)).
Analogous results for Euler–Bernoulli / Timoshenko beams
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Application: Water Waves System
In the reference

Su–Tucsnak–Weiss “Stabilizability properties of a linearized
water waves system,” Systems & Control Letters, 2020.

the results were applied to prove polynomial stabilizability of a
“water waves system” in a 2D rectangular domain.

Models small amplitude gravity water waves
A has discrete spectrum ⊂ iR, but no uniform
gap, λk ≈ i

√
k

Decay rate derived using the “Wavepacket
condition”
δ(s)→ 0 so that (s− δ(|s|), s+ δ(|s|)) ∩ σ(A)
are singleton sets for all s ∈ R.
Optimality possible (..?)

σ(A)

δ(|s|)
is

iR
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Conclusions

In this presentation:
General sufficient conditions for non-uniform stability of the
semigroup generated by A−BB∗.
Discussion of PDE examples and optimality of the results

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, “Non-Uniform
Stability of Damped Contraction Semiroups,” in review
(https://arxiv.org/abs/1911.04804)

Contact: lassi.paunonen@tuni.fi
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