Damping and Negative Feedback in Infinite-Dimensional Systems

Lassi Paunonen

Tampere University, Finland

July 2025

Funded by the Research Council of Finland grant 349002

Damping in Abstract Infinite-Dimensional Systems

Consider an abstract Cauchy problem

$$\dot{x}(t) = (A - BB^*)x(t), \qquad x(0) = x_0$$

on a Hilbert space X.

- A generates a contraction semigroup T(t) (often $A^* = -A$)
- $-BB^*$ represents damping

Problem

Find conditions on A and B such that $||x(t)|| \to 0$ as $t \to \infty$ for all x_0 , and investigate the rates of convergence.

Examples Stability Analysis

Plan of the talk

- Introduction and examples
- Main results on sufficient conditions for stability
- Nonlinear dampings

Disclaimer: The presentation contains over-simplifications and some technical assumptions are hidden. Details can be found in the articles.

Damping and Feedback Examples Nonlinear Dampings Stability Analysis

Primary Motivation: Damped Wave Equations Consider the wave equation on a "nice" domain $\Omega \subset \mathbb{R}^2$,

$$\begin{split} \ddot{w}(\xi,t) - \Delta w(\xi,t) + d(\xi)\dot{w}(\xi,t) &= 0, \qquad \xi \in \Omega, \quad t > 0 \\ w(\xi,t) &= 0 \qquad \qquad \xi \in \partial \Omega \end{split}$$

Then the stability of the wave equation depends on geometry of Ω and $\omega := \{ \xi \in \Omega \mid d(\xi) > 0 \}$:

Primary Motivation: Damped Wave Equations

The wave equation on $\Omega \subset \mathbb{R}^2$,

$$\begin{split} \ddot{w}(\xi,t) - \Delta w(\xi,t) + d(\xi)\dot{w}(\xi,t) &= 0, \qquad \xi \in \Omega, \quad t > 0 \\ w(\xi,t) &= 0 \qquad \qquad \xi \in \partial \Omega \end{split}$$

has the form $\dot{x}(t) = (A - BB^*)x(t)$ on $X = H_0^1(\Omega) \times L^2(\Omega)$ with $x(t) = (w(\cdot, t), \dot{w}(\cdot, t))^\top$,

$$A = \begin{bmatrix} 0 & I \\ -\Delta & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ \sqrt{d(\cdot)} \end{bmatrix},$$

and $D(A) = (H^2(\Omega) \cap H^1_0(\Omega)) \times H^1_0(\Omega)$. Here $A^* = -A$ and $B \in \mathcal{L}(L^2(\Omega), X)$.

Wave Equations with Boundary Damping

Consider the wave equation on a domain $\Omega \subset \mathbb{R}^2$, with boundary Γ ,

$$\ddot{w}(\xi, t) - \Delta w(\xi, t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0 \qquad \qquad \xi \in \Gamma$$

Then the stability of the wave equation again depends on Ω and now on $\omega := \{ \xi \in \Gamma \mid d(\xi) > 0 \}$ [Bardos, Lebeau, Rauch '92]:

Examples Stability Analysis

A (Very) Practical Example

Examples Stability Analysis

A (Very) Practical Example

Examples Stability Analysis

A (Very) Practical Example

Well-posedness

Does the equation

$$\dot{x}(t) = (A - BB^*)x(t), \qquad x(0) = x_0$$

have solutions?

- When $B \in \mathcal{L}(U, X)$ (i.e., B is "bounded"), then $A BB^*$ generates a contraction semigroup.
- Boundary dampings lead to situations where Ran(B) ⊄ X, and the semigroup property of A – BB* is more delicate.

Damping and Feedback Examples Nonlinear Dampings Stability Analys

Connection to Systems with Feedback

Consider the **linear system** (A, B, B^*)

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = B^*x(t)$$

Connection to Systems with Feedback

Consider the linear system (A, B, B^*)

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = B^*x(t)$$

Defining u(t) = -y(t) + v(t), we (formally) obtain

$$\dot{x}(t) = (A - BB^*)x(t) + Bv(t),$$

$$y(t) = B^*x(t)$$

This is known as negative feedback.

 \rightsquigarrow This explains how feedback theory can be used to investigate the well-posedness of the damped equation!

Result

Under very mild assumptions $(A - BB^*, B, B^*)$ is "well-posed" and $A - BB^*$ generates a semigroup $T_B(t)$.

When $A - BB^*$ generates a contraction semigroup, the asymptotic behaviour of solutions of

$$\dot{x}(t) = (A - BB^*)x(t), \qquad x(0) = x_0$$

can be studied in terms of the resolvent $(\lambda - A + BB^*)^{-1}$ on $i\mathbb{R}$:

Result (Exponential and polynomial stability)

If $||(is - A + BB^*)^{-1}|| \le M_R$, then $||x(t)|| \le Me^{-\alpha t} ||x_0||$ for all $x_0 \in X$ with $\alpha > 0$.

When $A - BB^*$ generates a contraction semigroup, the asymptotic behaviour of solutions of

$$\dot{x}(t) = (A - BB^*)x(t), \qquad x(0) = x_0$$

can be studied in terms of the resolvent $(\lambda - A + BB^*)^{-1}$ on $i\mathbb{R}$:

Result (Exponential and polynomial stability) If $||(is - A + BB^*)^{-1}|| \le M_R$, then $||x(t)|| \le Me^{-\alpha t} ||x_0||$ for all $x_0 \in X$ with $\alpha > 0$. If $||(is - A + BB^*)^{-1}|| \le M(1 + |s|^{\alpha})$, then $||x(t)|| = o(t^{-1/\alpha})$ for

If $||(is - A + BB^*)^{-1}|| \le M(1 + |s|^{\alpha})$, then $||x(t)|| = o(t^{-1/\alpha})$ for all $x_0 \in D(A - BB^*)$.

- Our feedback structure is also useful in stability analysis
- Roughly: "Equation $\dot{x}(t) = (A BB^*)x(t)$ is stable if the system (A, B, B^*) is **observable**"
- **Observability** measures how easy it is to reconstruct the state x(t) of the system

$$\dot{x}(t) = Ax(t)$$
$$y(t) = B^*x(t)$$

based only on the "observation" $\boldsymbol{y}(t)$ over some time interval.

- This way observability is related to how well B^* "can see" (especially the unstable) modes of A.
 - \sim can measure how effectively $-BB^*$ can damp these modes!

Deriving Decay Rates

Deriving Decay Rates

- "Observability estimates" aim to reduce the derivation of resolvent estimates to a simpler problem.
- Instead of the damped problem, these involve the undamped equation with an output $y(t) = B^* x(t)$.
- For polynomial stability: Ammari–Tucsnak 2001, Ammari et. al., Anantharaman–Léautaud 2014, Joly–Laurent 2019, ...

Main Results

Observability-Type Conditions for Stability

A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

$$||x||^2 \le M(|s|)||(is - A)x||^2 + m(|s|)||B^*x||^2, \quad x \in D(A), s \in \mathbb{R},$$

for some non-decreasing $M, m \colon [0, \infty) \to [r_0, \infty)$.

A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

$$||x||^2 \le M(|s|)||(is - A)x||^2 + m(|s|)||B^*x||^2, \quad x \in D(A), s \in \mathbb{R},$$

for some non-decreasing $M, m \colon [0, \infty) \to [r_0, \infty)$.

Theorem (Chill–P–Seifert–Stahn–Tomilov '23)

If the above condition holds, then $i\mathbb{R}\subset \rho(A-BB^*)$ and

$$\|(is - A + BB^*)^{-1}\| \lesssim (m(|s|) + M(|s|))(1 + |s|^{\eta})$$

where $\eta \ge 0$ is such that $||B^*(1 + is - A)^{-1}B||^2 \lesssim 1 + |s|^{\eta}$.

- η measures the "level of unboundedness" of B, and $\eta \leq 4$.
- If $m(s) + M(s) \leq 1 + s^{\beta}$, then $||x(t)|| = o(t^{-1/(\beta+\eta)})$ for all $x_0 \in D(A BB^*)$.

Other Observability Conditions

Other results in [Chill-P-Seifert-Stahn-Tomilov '23]:

- Resolvent estimate based on a "wavepacket condition" with variable parameters
- Hautus test for the "Schrödinger group" for second order systems
- A time-domain weighted observability condition

Result (Chill-P-Seifert-Stahn-Tomilov '23)

The above conditions imply resolvent bounds for $A - BB^*$.

Wave Equations with Boundary Damping

Wave equation with boundary damping:

 $\ddot{w}(\xi, t) - \Delta w(\xi, t) = 0,$ $\xi \in \Omega$

$$\nu\cdot\nabla w(\xi,t)+d(\xi)\dot{w}(\xi,t)=0,\quad \xi\in\Gamma$$

- Lack of exponential stability understood in the non-GCC case
- Concrete decay rates in the non-GCC have not been investigated much (unlike for in-domain dampings!)

Damping and Feedback Examples Nonlinear Dampings Stability Analysis

The Wave Equation with Boundary Damping

The wave equation on $\Omega \subset \mathbb{R}^2$ with boundary Γ , $d \in L^{\infty}$, $d \ge 0$

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0 \qquad \quad \xi \in \Gamma.$$

Plan:

- Verify an observability condition
- $\label{eq:alpha} \textbf{ Sind } \eta \geq 0 \text{ such that } \|B^*(1+is-A)^{-1}B\|^2 \lesssim 1+|s|^\eta.$

Damping and Feedback Examples Nonlinear Dampings Stability Analysis

The Wave Equation with Boundary Damping

The wave equation on $\Omega \subset \mathbb{R}^2$ with boundary $\Gamma, \, d \in L^\infty, \, d \geq 0$

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0 \qquad \quad \xi \in \Gamma.$$

Plan:

- Verify an observability condition
- $\textbf{ Sind } \eta \geq 0 \text{ such that } \|B^*(1+is-A)^{-1}B\|^2 \lesssim 1+|s|^\eta.$

Proposition (LP, D. Seifert, N. Vanspranghe, '24)

We have $||B^*(1+is-A)^{-1}B||^2 \lesssim 1+|s|^{\eta}$ in the following cases:

$\eta = 1 + \varepsilon$	for Ω rectangle
$\eta = 1$	when Γ is smooth and flat
$\eta = 2/3$	when Γ is smooth and concave
$\eta = 4/3$	when Γ is smooth

Wave Equation on a Rectangle

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \xi \in \Omega$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0, \quad \xi \in \Gamma$$

Proposition

Assume that Ω is a rectangle and there exists $\omega \subset \Gamma$ such that $\operatorname{ess\,sup}_{\xi \in \omega} d(\xi) > 0$. Then for any $\varepsilon > 0$ we have

$$\|\nabla w(\cdot,t)\|_{L^2} + \|\dot{w}(\cdot,t)\|_{L^2} = o\left(\frac{1}{t^{1/\alpha}}\right)$$

with $\alpha = 3 + \varepsilon$ for all classical solutions.

Previous [Abbas–Nicaise '15]: $\alpha = 2$ if damping on single full edge

Wave Equation on a Rectangle

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \qquad \xi \in \Omega$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0, \quad \xi \in \Gamma$$

Proposition

Assume that Ω is a rectangle and $\exists \omega \subset \Gamma$ s.t. $\operatorname{ess\,sup}_{\xi \in \omega} d(\xi) > 0$. Then for any $\varepsilon > 0$ we have $\|\nabla w(\cdot, t)\|_{L^2} + \|\dot{w}(\cdot, t)\|_{L^2} = o(t^{-1/\alpha})$ with $\alpha = 3 + \varepsilon$ for all classical solutions.

Proof.

An observability condition contributes to a term $1+s^2$ in the resolvent growth rate, and $\eta=1+\varepsilon$ for the rectangle. In total, $\|(is-A+BB^*)^{-1}\| \lesssim 1+|s|^{2+1+\varepsilon}.$

Comments on (Sub-)Optimality

- The optimal rate in the rectangle case is most likely $\alpha = 2$.
- In our results, the actual observability estimate and the measure η of unboundedness are **decoupled**.
- This explains suboptimality in several cases:
 - The observability conditions need to prepare for the worst.
 - In reality, the "observability" and "unboundedness" aspects interact, and they may compensate for each other beneficially.

Despite these comments, the take-home message could be:

Observability estimates combined with accurate analysis of η can lead to reasonably sharp energy decay rates in the 2D boundary damped wave equations.

Damping and Feedback Existence of Solutions Nonlinear Dampings Stability

Nonlinear Dampings

Nonlinear Dampings

Consider a model with nonlinear damping,

$$\dot{x}(t) = Ax(t) + B\phi(-B^*x(t)), \qquad x(0) = x_0$$

where A generates a contraction semigroup and $\phi:U\to U$ is a continuous and monotone function.

• ϕ is monotone if

$$\operatorname{Re}\langle \phi(u_2) - \phi(u_1), u_2 - u_1 \rangle \ge 0, \qquad u_1, u_2 \in U.$$

- Ensures that the damping "acts in the right direction"
- Typical example is the saturation function

$$\phi(u) = \begin{cases} u & \text{if } \|u\| \leq 1 \\ \frac{1}{\|u\|}u & \text{if } \|u\| > 1 \end{cases}$$

Nonlinear Dampings

Consider a model with nonlinear damping,

$$\dot{x}(t) = Ax(t) + B\phi(-B^*x(t)), \qquad x(0) = x_0$$

where $\phi:U\rightarrow U$ is a continuous and monotone function.

- When $B \in \mathcal{L}(U, X)$ and ϕ is locally Lipschitz, the equation is "semilinear" and existence of solutions follows easily.
- Solutions determined by a **nonlinear** semigroup of contractions.
- Again: boundary dampings lead to Ran(B) ⊄ X, and the well-posedness is much more challenging!
- Results on well-posedness: Seidman–Li '01, Berrahmoune '12, Tucsnak–Weiss '14, Augner '19, Guiver et. al. '19, Hastir et. al. '19, Marx–Weiss '25 (in addition, several PDE results).

Damping and Feedback Existence of Solutions Nonlinear Dampings Stability

Feedback Approach To Well-Posedness

Consider

$$\begin{split} \dot{x}(t) &= Ax(t) + B\phi(u(t)), \\ y(t) &= B^*x(t) \end{split}$$

Feedback Approach To Well-Posedness

Consider

$$\dot{x}(t) = Ax(t) + B\phi(u(t)), \qquad \qquad \underbrace{u(t)}_{A} \qquad \underbrace{y(t)}_{A}$$

$$y(t) = B^*x(t)$$

Defining
$$u(t) = -y(t)+v(t)$$
, we (formally) obtain
 $\dot{x}(t) = Ax(t) + B\phi(-B^*x(t)+v(t)),$
 $y(t) = B^*x(t)$

 \sim Again **feedback theory** can be used to investigate the well-posedness (and stability) of the damped equation!

Well-Posedness Result

Theorem (Hastir-P '25)

Let $\phi: U \to U$ be a continuous monotone function. Under mild additional assumptions

$$\dot{x}(t) = Ax(t) + B\phi(-B^*x(t)), \qquad x(0) = x_0$$

has a well-defined generalised solution for every $x_0 \in X$. If x_1, x_2 are two solutions, then

$$||x_2(t) - x_1(t)|| \le ||x_2(0) - x_1(0)||, \quad t \ge 0.$$

Well-Posedness Result

Theorem (Hastir-P '25)

Let $\phi: U \to U$ be a continuous monotone function. Under mild additional assumptions

 $\dot{x}(t) = Ax(t) + B\phi(-B^*x(t)), \qquad x(0) = x_0$

has a well-defined generalised solution for every $x_0 \in X$. If x_1, x_2 are two solutions, then

$$||x_2(t) - x_1(t)|| \le ||x_2(0) - x_1(0)||, \quad t \ge 0.$$

- Also existence of classical solutions.
- The result is also applicable when (A, B, B^*) is replaced with a **impedance passive well-posed system** or a **system node**.

• Also for
$$y(t) = -B^*x(t) + v(t)$$
 with external input $v(t)$.

To investigate the stability of

$$\dot{x}(t) = Ax(t) + B\phi(-B^*x(t)), \qquad x(0) = x_0,$$
 (*)

we assume that there exist $\alpha,\beta,\delta>0$ such that

$$\operatorname{Re}\langle \phi(u), u \rangle \geq \begin{cases} \alpha \|u\|^2 & \text{if } \|u\| \leq \delta \\ \beta & \text{if } \|u\| > \delta \end{cases}$$

Theorem (Hastir–P '25)

Assume that $\phi: U \to U$ is continuous and monotone and that $\alpha, \beta, \delta > 0$ exist (+ mild additional assumptions). Assume further that the semigroup generated by $A - BB^*$ is strongly stable.

Then 0 is a globally asymptotically stable equilibrium point of (*), i.e., $||x(t)|| \to 0$ as $t \to \infty$ for all $x_0 \in X$.

Timoshenko Beam with Nonlinear Boundary Damping

Consider a Timoshenko beam model on [0, 1],

$$\rho \ddot{w} = (K (w' - \theta))' \qquad I_{\rho} \ddot{\theta} = (EI\theta')' + K (w' - \theta)$$
$$w(0, t) = 0, \qquad \theta(0, t) = 0$$
$$EI(1)\theta'(1, t) = \phi_{\text{sat}} \left(-\dot{\theta}(1, t)\right)$$
$$K(1) (w'(1, t) - \theta(1, t)) = \phi_{\text{sat}} (-\dot{w}(1, t))$$

with displacement profile $w(\cdot, t)$ and rotation angle $\theta(\cdot, t)$. Here ϕ_{sat} is the scalar saturation function such that $\phi_{\text{sat}}(u) = u$ for $|u| \leq 1$ and $\phi_{\text{sat}}(u) = u/|u|$ for |u| > 1.

Damping and Feedback Existence of Solutions Nonlinear Dampings Stability

Timoshenko Beam with Nonlinear Boundary Damping Consider a Timoshenko beam model on [0, 1],

$$\rho \ddot{w} = \left(K \left(w' - \theta \right) \right)' \qquad I_{\rho} \ddot{\theta} = \left(EI\theta' \right)' + K \left(w' - \theta \right)$$
$$EI(1)\theta'(1,t) = \phi_{\text{sat}} \left(-\dot{\theta}(1,t) \right)$$
$$K(1) \left(w'(1,t) - \theta(1,t) \right) = \phi_{\text{sat}} \left(-\dot{w}(1,t) \right)$$

Proposition

The beam model has well-defined generalised solutions for all initial conditions $w(\cdot,0), \theta(\cdot,0) \in H^1(0,1)$ and $\dot{w}(\cdot,0), \dot{\theta}(\cdot,0) \in L^2(0,1)$.

Moreover, 0 is a globally asymptotically stable equilibrium point of the system, i.e., all generalised solutions satisfy

$$\|w\|_{H^{1}(0,1)} + \|\theta\|_{H^{1}(0,1)} + \|\dot{w}\|_{L^{2}(0,1)} + \|\dot{\theta}\|_{L^{2}(0,1)} \to 0$$

as $t \to \infty$.

Conclusion

In this presentation:

- The feedback-theoretic viewpoint to well-posedness and stability of damped equations
- New results on well-posedness and stability for nonlinear damped models
 - R. Chill, LP, D. Seifert, R. Stahn, and Y. Tomilov, "Non-Uniform Stability of Damped Contraction Semigroups," *Analysis & PDE*, 2023, https://arxiv.org/abs/1911.04804
 - LP, D. Seifert, and N. Vanspranghe, "Admissibility theory in abstract Sobolev scales and transfer function growth at high frequencies," arXiv, https://arxiv.org/abs/2412.14786
 - A. Hastir and LP, "Well-posedness and stability of infinite-dimensional systems under monotone feedback," arXiv, https://arxiv.org/abs/2503.16092

Contact: lassi.paunonen@tuni.fi, paunonenmath.com