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Damping in Abstract Infinite-Dimensional Systems

Consider an abstract Cauchy problem

ẋ(t) = (A − BB∗)x(t), x(0) = x0

on a Hilbert space X.
A generates a contraction semigroup T (t) (often A∗ = −A)
−BB∗ represents damping

Problem
Find conditions on A and B such that ∥x(t)∥ → 0 as t → ∞ for
all x0, and investigate the rates of convergence.
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Plan of the talk

Introduction and examples
Main results on sufficient conditions for stability
Nonlinear dampings

Disclaimer: The presentation contains over-simplifications and some
technical assumptions are hidden. Details can be found in the articles.
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Primary Motivation: Damped Wave Equations
Consider the wave equation on a “nice” domain Ω ⊂ R2,

ẅ(ξ, t) − ∆w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Ω, t > 0
w(ξ, t) = 0 ξ ∈ ∂Ω

Then the stability of the wave equation depends on geometry of Ω
and ω := { ξ ∈ Ω | d(ξ) > 0 }:

d(ξ) > 0

Exponential stability

d(ξ) > 0

Non-uniform stability

d(ξ) > 0

Geometric Control
Condition
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Primary Motivation: Damped Wave Equations

The wave equation on Ω ⊂ R2,

ẅ(ξ, t) − ∆w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Ω, t > 0
w(ξ, t) = 0 ξ ∈ ∂Ω

has the form ẋ(t) = (A − BB∗)x(t) on X = H1
0 (Ω) × L2(Ω) with

x(t) = (w(·, t), ẇ(·, t))⊤,

A =
[

0 I
−∆ 0

]
, B =

[
0√
d(·)

]
,

and D(A) = (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω). Here A∗ = −A and
B ∈ L(L2(Ω), X).
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Wave Equations with Boundary Damping
Consider the wave equation on a domain Ω ⊂ R2, with boundary Γ,

ẅ(ξ, t) − ∆w(ξ, t) = 0, ξ ∈ Ω, t > 0

ν · ∇w(ξ, t) + d(ξ)ẇ(ξ, t) = 0 ξ ∈ Γ

Then the stability of the wave equation again depends on Ω and
now on ω := { ξ ∈ Γ | d(ξ) > 0 } [Bardos, Lebeau, Rauch ’92]:

d(ξ) > 0

d(ξ) > 0

Exponential stability

d(ξ) > 0

Non-uniform stability GCC
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A (Very) Practical Example
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Well-posedness

Does the equation

ẋ(t) = (A − BB∗)x(t), x(0) = x0

have solutions?
When B ∈ L(U, X) (i.e., B is “bounded”), then A − BB∗

generates a contraction semigroup.
Boundary dampings lead to situations where Ran(B) ̸⊂ X,
and the semigroup property of A − BB∗ is more delicate.
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Connection to Systems with Feedback
Consider the linear system (A, B, B∗)

ẋ(t) = Ax(t) + Bu(t),
y(t) = B∗x(t)

A
u(t) y(t)

Defining u(t) = −y(t)+v(t), we (formally) obtain
ẋ(t) = (A − BB∗)x(t)+Bv(t),
y(t)= B∗x(t)

A − BB∗

This is known as negative feedback.
; This explains how feedback theory can be used to investigate
the well-posedness of the damped equation!

Result
Under very mild assumptions (A − BB∗, B, B∗) is “well-posed”
and A − BB∗ generates a semigroup TB(t).

L. Paunonen Damping and Negative Feedback



Damping and Feedback
Nonlinear Dampings

Examples
Stability Analysis

Connection to Systems with Feedback
Consider the linear system (A, B, B∗)
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Stability Analysis

When A − BB∗ generates a contraction semigroup, the asymptotic
behaviour of solutions of

ẋ(t) = (A − BB∗)x(t), x(0) = x0

can be studied in terms of the resolvent (λ − A + BB∗)−1 on iR:

Result (Exponential and polynomial stability)
If ∥(is − A + BB∗)−1∥ ≤ MR, then ∥x(t)∥ ≤ Me−αt∥x0∥ for all
x0 ∈ X with α > 0.

If ∥(is − A + BB∗)−1∥ ≤ M(1 + |s|α), then ∥x(t)∥ = o(t−1/α) for
all x0 ∈ D(A − BB∗).
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Stability Analysis
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Stability Analysis

Our feedback structure is also useful in stability analysis
Roughly: “Equation ẋ(t) = (A − BB∗)x(t) is stable if the
system (A, B, B∗) is observable”
Observability measures how easy it is to reconstruct the state
x(t) of the system

ẋ(t) = Ax(t)
y(t) = B∗x(t)

based only on the “observation” y(t) over some time interval.
This way observability is related to how well B∗ “can see”
(especially the unstable) modes of A.
; can measure how effectively −BB∗ can damp these modes!
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Deriving Decay Rates

PDE Resolvent
estimates

Energy
decay

BorTom10

RozSei19

PDE Resolvent
estimates

Energy
decay

BorTom10

RozSei19

Observability
estimates

Multiplier methods, microlocal analysis, ...

Estimates

PDE Resolvent
estimates

Energy
decay

BorTom10

RozSei19

PDE Resolvent
estimates

Energy
decay

BorTom10

RozSei19

Observability
estimates

Multiplier methods, microlocal analysis, ...

Estimates

“Observability estimates” aim to reduce the derivation of
resolvent estimates to a simpler problem.
Instead of the damped problem, these involve the undamped
equation with an output y(t) = B∗x(t).
For polynomial stability: Ammari–Tucsnak 2001, Ammari et.
al., Anantharaman–Léautaud 2014, Joly–Laurent 2019, . . .
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Main Results
Observability-Type Conditions for Stability
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A Non-Uniform Hautus Test
Consider the Hautus-type condition [Miller 2012]

∥x∥2 ≤ M(|s|)∥(is − A)x∥2 + m(|s|)∥B∗x∥2, x ∈ D(A), s ∈ R,

for some non-decreasing M, m : [0, ∞) → [r0, ∞).

Theorem (Chill–P–Seifert–Stahn–Tomilov ’23)
If the above condition holds, then iR ⊂ ρ(A − BB∗) and

∥(is − A + BB∗)−1∥ ≲ (m(|s|) + M(|s|))(1 + |s|η)

where η ≥ 0 is such that ∥B∗(1 + is − A)−1B∥2 ≲ 1 + |s|η.

η measures the “level of unboundedness” of B, and η ≤ 4.
If m(s) + M(s) ≲ 1 + sβ, then ∥x(t)∥ = o(t−1/(β+η)) for all
x0 ∈ D(A − BB∗).
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Other Observability Conditions

Other results in [Chill–P–Seifert–Stahn–Tomilov ’23]:
Resolvent estimate based on a “wavepacket condition” with
variable parameters
Hautus test for the “Schrödinger group” for second order
systems
A time-domain weighted observability condition

Result (Chill–P–Seifert–Stahn–Tomilov ’23)
The above conditions imply resolvent bounds for A − BB∗.
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Wave Equations with Boundary Damping

Wave equation with boundary damping:
ẅ(ξ, t) − ∆w(ξ, t) = 0, ξ ∈ Ω
ν · ∇w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Γ

no GCC

Lack of exponential stability understood in the non-GCC case
Concrete decay rates in the non-GCC have not been
investigated much (unlike for in-domain dampings!)
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The Wave Equation with Boundary Damping
The wave equation on Ω ⊂ R2 with boundary Γ, d ∈ L∞, d ≥ 0

ẅ(ξ, t) − ∆w(ξ, t) = 0, ξ ∈ Ω, t > 0

ν · ∇w(ξ, t) + d(ξ)ẇ(ξ, t) = 0 ξ ∈ Γ.

Plan:
1 Verify an observability condition
2 Find η ≥ 0 such that ∥B∗(1 + is − A)−1B∥2 ≲ 1 + |s|η.

Proposition (LP, D. Seifert, N. Vanspranghe, ’24)
We have ∥B∗(1 + is − A)−1B∥2 ≲ 1 + |s|η in the following cases:

η = 1 + ε for Ω rectangle
η = 1 when Γ is smooth and flat
η = 2/3 when Γ is smooth and concave
η = 4/3 when Γ is smooth
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Wave Equation on a Rectangle

ẅ(ξ, t) − ∆w(ξ, t) = 0, ξ ∈ Ω
ν · ∇w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Γ

no GCC

Proposition
Assume that Ω is a rectangle and there exists ω ⊂ Γ such that
ess supξ∈ω d(ξ) > 0. Then for any ε > 0 we have

∥∇w(·, t)∥L2 + ∥ẇ(·, t)∥L2 = o

( 1
t1/α

)
with α = 3 + ε for all classical solutions.

Previous [Abbas–Nicaise ’15]: α = 2 if damping on single full edge
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Wave Equation on a Rectangle

ẅ(ξ, t) − ∆w(ξ, t) = 0, ξ ∈ Ω
ν · ∇w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Γ

no GCC

Proposition
Assume that Ω is a rectangle and ∃ω ⊂ Γ s.t. ess supξ∈ω d(ξ) > 0.
Then for any ε > 0 we have ∥∇w(·, t)∥L2 + ∥ẇ(·, t)∥L2 = o(t−1/α)
with α = 3 + ε for all classical solutions.

Proof.
An observability condition contributes to a term 1 + s2 in the
resolvent growth rate, and η = 1 + ε for the rectangle. In total,
∥(is − A + BB∗)−1∥ ≲ 1 + |s|2+1+ε.
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Comments on (Sub-)Optimality

The optimal rate in the rectangle case is most likely α = 2.
In our results, the actual observability estimate and the
measure η of unboundedness are decoupled.
This explains suboptimality in several cases:

The observability conditions need to prepare for the worst.
In reality, the “observability” and “unboundedness” aspects
interact, and they may compensate for each other beneficially.

Despite these comments, the take-home message could be:

Observability estimates combined with accurate analysis
of η can lead to reasonably sharp energy decay rates in the
2D boundary damped wave equations.

L. Paunonen Damping and Negative Feedback



Damping and Feedback
Nonlinear Dampings

Existence of Solutions
Stability

Nonlinear Dampings

L. Paunonen Damping and Negative Feedback



Damping and Feedback
Nonlinear Dampings

Existence of Solutions
Stability

Nonlinear Dampings
Consider a model with nonlinear damping,

ẋ(t) = Ax(t) + Bϕ(−B∗x(t)), x(0) = x0

where A generates a contraction semigroup and ϕ : U → U is a
continuous and monotone function.

ϕ is monotone if

Re⟨ϕ(u2) − ϕ(u1), u2 − u1⟩ ≥ 0, u1, u2 ∈ U.

Ensures that the damping “acts in the right direction”
Typical example is the saturation function

ϕ(u) =

u if ∥u∥ ≤ 1
1

∥u∥u if ∥u∥ > 1
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Nonlinear Dampings
Consider a model with nonlinear damping,

ẋ(t) = Ax(t) + Bϕ(−B∗x(t)), x(0) = x0

where ϕ : U → U is a continuous and monotone function.
When B ∈ L(U, X) and ϕ is locally Lipschitz, the equation is
“semilinear” and existence of solutions follows easily.
Solutions determined by a nonlinear semigroup of
contractions.
Again: boundary dampings lead to Ran(B) ̸⊂ X, and the
well-posedness is much more challenging!
Results on well-posedness: Seidman–Li ’01, Berrahmoune ’12,
Tucsnak–Weiss ’14, Augner ’19, Guiver et. al. ’19, Hastir et. al.
’19, Marx–Weiss ’25 (in addition, several PDE results).
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Feedback Approach To Well-Posedness

Consider

ẋ(t) = Ax(t) + Bϕ(u(t)),
y(t) = B∗x(t)

A
u(t) y(t)

Defining u(t) = −y(t)+v(t), we (formally) obtain

ẋ(t) = Ax(t) + Bϕ(−B∗x(t)+v(t)),
y(t)= B∗x(t)

A+Bϕ(−B∗·)

; Again feedback theory can be used to investigate the
well-posedness (and stability) of the damped equation!
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Well-Posedness Result
Theorem (Hastir–P ’25)
Let ϕ : U → U be a continuous monotone function. Under mild
additional assumptions

ẋ(t) = Ax(t) + Bϕ(−B∗x(t)), x(0) = x0

has a well-defined generalised solution for every x0 ∈ X. If x1, x2
are two solutions, then

∥x2(t) − x1(t)∥ ≤ ∥x2(0) − x1(0)∥, t ≥ 0.

Also existence of classical solutions.
The result is also applicable when (A, B, B∗) is replaced with
a impedance passive well-posed system or a system node.
Also for y(t) = −B∗x(t) + v(t) with external input v(t).
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To investigate the stability of

ẋ(t) = Ax(t) + Bϕ(−B∗x(t)), x(0) = x0, (∗)

we assume that there exist α, β, δ > 0 such that

Re⟨ϕ(u), u⟩ ≥
{

α∥u∥2 if ∥u∥ ≤ δ

β if ∥u∥ > δ

Theorem (Hastir–P ’25)
Assume that ϕ : U → U is continuous and monotone and that
α, β, δ > 0 exist (+ mild additional assumptions). Assume further
that the semigroup generated by A − BB∗ is strongly stable.

Then 0 is a globally asymptotically stable equilibrium point of (∗),
i.e., ∥x(t)∥ → 0 as t → ∞ for all x0 ∈ X.
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Timoshenko Beam with Nonlinear Boundary Damping

Consider a Timoshenko beam model on [0, 1],

ρẅ =
(
K

(
w′ − θ

))′
Iρθ̈ =

(
EIθ′)′ + K

(
w′ − θ

)
w(0, t) = 0, θ(0, t) = 0

EI(1)θ′(1, t) = ϕsat
(
−θ̇(1, t)

)
K(1)

(
w′(1, t) − θ(1, t)

)
= ϕsat (−ẇ(1, t))

with displacement profile w(·, t) and rotation angle θ(·, t). Here
ϕsat is the scalar saturation function such that ϕsat(u) = u for
|u| ≤ 1 and ϕsat(u) = u/|u| for |u| > 1.
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Timoshenko Beam with Nonlinear Boundary Damping
Consider a Timoshenko beam model on [0, 1],

ρẅ =
(
K

(
w′ − θ

))′
Iρθ̈ =

(
EIθ′)′ + K

(
w′ − θ

)
EI(1)θ′(1, t) = ϕsat

(
−θ̇(1, t)

)
K(1)

(
w′(1, t) − θ(1, t)

)
= ϕsat (−ẇ(1, t))

Proposition
The beam model has well-defined generalised solutions for all initial
conditions w(·, 0), θ(·, 0) ∈ H1(0, 1) and ẇ(·, 0), θ̇(·, 0) ∈ L2(0, 1).

Moreover, 0 is a globally asymptotically stable equilibrium point of
the system, i.e., all generalised solutions satisfy

∥w∥H1(0,1) + ∥θ∥H1(0,1) + ∥ẇ∥L2(0,1) + ∥θ̇∥L2(0,1) → 0

as t → ∞.
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Conclusion
In this presentation:
The feedback-theoretic viewpoint to well-posedness and stability of
damped equations

New results on well-posedness and stability for nonlinear damped
models
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