The Internal Model Principle for Regular Linear Systems

Lassi Paunonen

Tampere University of Technology, Finland

May 23rd, 2016 TUT Workshop on Control Tampere

Main Objectives

Problem

Introduce new results on robust output regulation for regular linear systems.

Main results:

- Characterization of controllers achieving output regulation via the *regulator equations*
- Characterization of robust controllers via the Internal Model Principle. In addition:
 - A test to determine robustness with respect to a given set of perturbations.
 - Theory of Reduced Order Internal Models
- Robust controllers for regular linear systems

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Infinite-Dimensional Plant

Consider a plant

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0 \in X$$
$$y(t) = Cx(t) + Du(t)$$

where

- $u(t) \in U = \mathbb{C}^m$ is the control input
- $y(t) \in Y = \mathbb{C}^p$ is the measured output.

For simplicity, we assume:

- $\bullet\,$ No disturbance signals to the state of the plant, i.e., E=0
- Diagonal signal generator, i.e., only bounded reference signals.

The Infinite-Dimensional Plant

Consider a plant

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0 \in X$$
$$y(t) = Cx(t) + Du(t)$$

One option for more general assumptions on ${\cal B}$ and ${\cal C}$:

- $B \in \mathcal{L}(\mathbb{C}^m, X_{-1})$ and $C \in \mathcal{L}(X_1, \mathbb{C}^p)$ are admissible
- Define $C_{\Lambda}x = \lim_{\lambda \to \infty} \lambda CR(\lambda, A)x$ in $\mathcal{D}(C_{\Lambda}) = \{ x \mid \text{lim exists} \}$
- (A,B,C,D) is regular, i.e., for one/all $\lambda\in\rho(A)$

$$P(\lambda) = C_{\Lambda} R(\lambda, A_{-1})B + D$$

is well-defined and $P(\cdot) \in H^{\infty}(\mathbb{C}_{\beta}^{+})$ for some $\beta \in \mathbb{R}$.

The Infinite-Dimensional Plant

Consider a plant

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0 \in X$$
$$y(t) = Cx(t) + Du(t)$$

Properties: For any $\beta > \omega_0(T(t))$ we have

$$P(\cdot) \in H^{\infty}(\mathbb{C}^{+}_{\beta}, \mathcal{L}(U, Y)),$$

$$C_{\Lambda}R(\cdot, A) \in H^{\infty}(\mathbb{C}^{+}_{\beta}, \mathcal{L}(X, Y)),$$

$$R(\cdot, A_{-1})B \in H^{\infty}(\mathbb{C}^{+}_{\beta}, \mathcal{L}(U, X)),$$

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

Example: Controlled Heat Equation

A 2D heat equation on Ω with Dirichlet BC's:

$$u_t = \Delta u, \quad u(\xi, 0) = u_0(\xi)$$
$$u(t, \xi)|_{\partial \Omega} = 0.$$

The system on $X = L^2(\Omega)$ with

$$A = \Delta : \mathcal{D}(A) \subset X \to X$$
$$\mathcal{D}(A) = H^2(\Omega) \cap H^1_0(\Omega)$$

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

Example: Controlled Heat Equation

The system on $X = L^2(\Omega)$ with

$$A = \Delta : \mathcal{D}(A) \subset X \to X$$
$$\mathcal{D}(A) = H^2(\Omega) \cap H^1_0(\Omega)$$

Distributed control and obs.:

$$Cx(t) = \int_{\Omega_C} x(\xi, t) d\xi \in \mathbb{C}$$
$$Bu(t) = \chi_{\Omega_B}(\cdot)u(t), \quad u(t) \in \mathbb{C}$$

Here B and C are bounded.

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

Example: Heat Equation with Boundary Control

 Γ_C

The system on $X = L^2(\Omega)$ with

$$A = \Delta : \mathcal{D}(A) \subset X \to X$$
$$\mathcal{D}(A) = H^2(\Omega) \cap H^1_0(\Omega)$$

Control and observation also possible through the boundary (Dirichlet/Neumann/Robin)

Here B and C are unbounded, and the plant is regular under suitable assumptions.

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Control Problem

Problem (Robust Output Regulation)

Choose a control law in such a way that

• The output y(t) tracks a given reference signal $y_{\rm ref}(t)$ asymptotically, i.e.

$$\lim_{t \to \infty} \|y(t) - y_{ref}(t)\| = 0$$

• The above property is robust with respect to small perturbations in the operators (A, B, C, D) of the plant.

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Exosystem and the Control Scheme

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Exosystem

The reference signals can be trigonometric polynomials

$$y_{\rm ref}(t) = \sum_{k=1}^{q} c_k e^{i\omega_k t}$$

The signal $y_{ref}(t)$ contains the frequencies $(i\omega_k)_{k=1}^q \in i\mathbb{R}$.

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Exosystem

Alternatively, we can consider nonsmooth periodic or almost periodic functions

$$y_{ref}(t) = \sum_{k \in \mathbb{Z}} c_k e^{i\omega_k t}$$

The signal $y_{ref}(t)$ contains the frequencies $(i\omega_k)_{k\in\mathbb{Z}} \in i\mathbb{R}$.

Introduction The Plant and The Exosystem Robust Output Regulation and the Internal Model Principle Various Internal Models The Internal Model Principle

The Exosystem

The references y_{ref} are obtained as outputs of the *exosystem*

$$\dot{v}(t) = Sv(t), \qquad v_0 \in W$$

 $y_{ref}(t) = Fv(t)$

where S is an unbounded diagonal operator

$$S = \operatorname{diag}(i\omega_k)_{k \in \mathbb{Z}}, \qquad \mathcal{D}(S) = \left\{ (v_k) \in W \mid (\omega_k v_k) \in \ell^2(\mathbb{C}) \right\}$$

on the Hilbert space $W = \ell^2(\mathbb{C})$ and $F \in \mathcal{L}(W, Y)$. The eigenvalues $i\omega_k \in i\mathbb{R}$ of S are the frequencies in $y_{ref}(t)$.

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Exosystem and the Control Scheme

The Dynamic Error Feedback Controller

We consider an error feedback controller $(\mathcal{G}_1, \mathcal{G}_2, K)$ of the form

$$\dot{z}(t) = \mathcal{G}_1 z(t) + \mathcal{G}_2(y(t) - y_{ref}(t)), \qquad z(0) = z_0 \in Z$$

 $u(t) = K z(t),$

where \mathcal{G}_1 generates a semigroup on a Banach space Z, $\mathcal{G}_2 \in \mathcal{L}(Y, Z)$ and $K \in \mathcal{L}(Z_1, U)$ is admissible.

The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

The Closed-Loop System

Closed-loop system

Theorem

The closed-loop system (A_e, B_e, C_e, D_e) consisting of the plant and the controller is a regular linear system.

Proof.

Theory of feedback for regular linear systems, by Weiss (1994).

The Control Problem

The Robust Output Regulation Problem

Choose a controller $(\mathcal{G}_1, \mathcal{G}_2, K)$ in such a way that

- The closed-loop system is strongly/polynomially/exponentially stable.
- The output y(t) tracks a given reference signal $y_{ref}(t)$ asymptotically, i.e.

$$\int_t^{t+1} \|y(s) - y_{\text{ref}}(s)\|_Y ds \to 0 \qquad \text{as} \quad t \to \infty$$

for all initial states $x_{e0} = (x_0, z_0) \in X_e$ and $v_0 \in W$

 The above property is robust with respect to small perturbations in the operators (A, B, C, D) of the plant.

The Plant and The Exosystem The Controller and the Closed-Loop System **The Internal Model Principle**

The Internal Model Principle

Theorem (Francis & Wonham, 1970's, LP & SP 2010)

A stabilizing feedback controller solves the robust output regulation problem if and only if it contains *p* copies of the dynamics of the signal generator.

Here $p = \dim Y$, the number of outputs.

The Internal Model Principle

Theorem (Francis & Wonham, 1970's, LP & SP 2010)

A stabilizing feedback controller solves the robust output regulation problem if and only if it contains p copies of the dynamics of the signal generator.

Here $p = \dim Y$, the number of outputs.

The p-copy for an exosystem with $S = \operatorname{diag}(i\omega_k)_{k \in \mathbb{Z}}$:

Any eigenvalue $i\omega_k$ of S must be an eigenvalue of \mathcal{G}_1 with p linearly independent eigenvectors associated to it, i.e.,

$$\dim \mathcal{N}(i\omega_k - \mathcal{G}_1) \ge \dim Y = p.$$

Introduction Robust Output Regulation and the Internal Model Principle Various Internal Models The Plant and The Exosystem The Controller and the Closed-Loop System The Internal Model Principle

Feedback Controller

The Plant and The Exosystem The Controller and the Closed-Loop System **The Internal Model Principle**

The p-Copy Internal Model Principle

The p-Copy and *G*-Conditions The PK-Property Conclusion

Various Forms of the Internal Model

Definition

The controller has a *p*-copy internal model if for every $k \in \mathbb{Z}$

 $\dim \mathcal{N}(i\omega_k - \mathcal{G}_1) \ge \dim Y = p.$

Various Forms of the Internal Model

Definition

The controller has a *p*-copy internal model if for every $k \in \mathbb{Z}$

$$\dim \mathcal{N}(i\omega_k - \mathcal{G}_1) \ge \dim Y = p.$$

Definition

The controller satisfies the *G*-conditions if for every $k \in \mathbb{Z}$

$$\mathcal{R}(i\omega_k - \mathcal{G}_1) \cap \mathcal{R}(\mathcal{G}_2) = \{0\}$$
$$\mathcal{N}(\mathcal{G}_2) = \{0\}.$$

Various Forms of the Internal Model

Definition

The controller has the PK-property if for every $k \in \mathbb{Z}$

 $(P(i\omega_k)K)|_{\mathcal{N}(i\omega_k-\mathcal{G}_1)}\in\mathcal{L}(\mathcal{N}(i\omega_k-\mathcal{G}_1),Y) \qquad \text{is surjective}.$

Various Forms of the Internal Model

Definition

The controller has the PK-property if for every $k \in \mathbb{Z}$

 $(P(i\omega_k)K)|_{\mathcal{N}(i\omega_k-\mathcal{G}_1)}\in\mathcal{L}(\mathcal{N}(i\omega_k-\mathcal{G}_1),Y) \qquad \text{is surjective}.$

Note that if $P(i\omega_k)$ is assumed to be surjective (as is usually done here) and $U = Y = \mathbb{C}^p$, then the PK-property is equivalent to

$$K|_{\mathcal{N}(i\omega_k-\mathcal{G}_1)}\in\mathcal{L}(\mathcal{N}(i\omega_k-\mathcal{G}_1),U) \qquad \text{is surjective}.$$

Also the PK-property clearly implies the p-copy internal model.

The p-Copy and *G*-Conditions **The PK-Property** Conclusion

Alternate Form of the PK-Conditions

Denote by $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{F})$ and $(\tilde{A}_e, \tilde{B}_e, \tilde{C}_e, \tilde{D}_e)$ the perturbed plant and closed-loop system, and $\tilde{P}(\lambda) = \tilde{C}_{\Lambda}R(\lambda, \tilde{A})\tilde{B} + \tilde{D}$.

Theorem (Roughly)

The controller has the PK-property if and only if for all perturbations of the plant

$$\tilde{P}(i\omega_k)Kz^k = -\tilde{F}e_k$$
$$(i\omega_k - \mathcal{G}_1)z^k = 0$$

have a solution $z^k \in \mathcal{D}(\mathcal{G}_1)$ for all $k \in \mathbb{Z}$.

The p-Copy and *G*-Conditions **The PK-Property** Conclusion

Proof of the Internal Model Principle for bounded B and C

The p-Copy and *G*-Conditions **The PK-Property** Conclusion

$\mathcal G\text{-}\mathsf{Conditions}$ vs. Robust Regulation

no assumptions required

 $\mathcal{G}\text{-}\mathsf{Conditions}$

Extensions

The results in this presentation are also valid for

- Also for disturbance rejection
- Non-diagonal exosystems (i.e., S has Jordan blocks)
- Infinite-dimensional exosystems (nonsmooth reference signals)
- Infinite-dimensional plants with unbounded control and observation.