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Main Objectives

Problem
Introduce new results on robust output regulation for regular linear
systems.

Main results:
Characterization of controllers achieving output regulation via
the regulator equations
Characterization of robust controllers via the Internal Model
Principle. In addition:

A test to determine robustness with respect to a given set of
perturbations.
Theory of Reduced Order Internal Models

Robust controllers for regular linear systems
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The Infinite-Dimensional Plant

Consider a plant

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

where
u(t) ∈ U = Cm is the control input
y(t) ∈ Y = Cp is the measured output.

For simplicity, we assume:
No disturbance signals to the state of the plant, i.e., E = 0
Diagonal signal generator, i.e., only bounded reference signals.
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The Infinite-Dimensional Plant
Consider a plant

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

One option for more general assumptions on B and C:

B ∈ L(Cm, X−1) and C ∈ L(X1,Cp) are admissible
Define CΛx = lim

λ→∞
λCR(λ,A)x in D(CΛ) =

{
x
∣∣ lim exists

}
(A,B,C,D) is regular, i.e., for one/all λ ∈ ρ(A)

P (λ) = CΛR(λ,A−1)B +D

is well-defined and P (·) ∈ H∞(C+
β ) for some β ∈ R.
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The Infinite-Dimensional Plant

Consider a plant

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

Properties: For any β > ω0(T (t)) we have

P (·) ∈ H∞(C+
β ,L(U, Y )),

CΛR(·, A) ∈ H∞(C+
β ,L(X,Y )),

R(·, A−1)B ∈ H∞(C+
β ,L(U,X)),
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Example: Controlled Heat Equation

Ω
A 2D heat equation on Ω with
Dirichlet BC’s:

ut = ∆u, u(ξ, 0) = u0(ξ)
u(t, ξ)|∂Ω = 0.

The system on X = L2(Ω) with

A = ∆ : D(A) ⊂ X → X

D(A) = H2(Ω) ∩H1
0 (Ω)
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Example: Controlled Heat Equation

Ω
ΩB

ΩC

The system on X = L2(Ω) with

A = ∆ : D(A) ⊂ X → X

D(A) = H2(Ω) ∩H1
0 (Ω)

Distributed control and obs.:

Cx(t) =
∫

ΩC

x(ξ, t)dξ ∈ C

Bu(t) = χΩB
(·)u(t), u(t) ∈ C

Here B and C are bounded.
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Example: Heat Equation with Boundary Control

Ω

ΓB

ΓC

The system on X = L2(Ω) with

A = ∆ : D(A) ⊂ X → X

D(A) = H2(Ω) ∩H1
0 (Ω)

Control and observation also
possible through the boundary
(Dirichlet/Neumann/Robin)

Here B and C are unbounded,
and the plant is regular under
suitable assumptions.
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The Control Problem

Problem (Robust Output Regulation)
Choose a control law in such a way that

The output y(t) tracks a given reference signal yref(t)
asymptotically, i.e.

lim
t→∞
‖y(t)− yref(t)‖ = 0

The above property is robust with respect to small
perturbations in the operators (A,B,C,D) of the plant.
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The Exosystem

S
yref (t)

The reference signals can be trigonometric polynomials

yref (t) =
q∑

k=1
cke

iωkt

The signal yref (t) contains the frequencies (iωk)qk=1 ∈ iR.
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The Exosystem

S
yref (t)

Alternatively, we can consider nonsmooth periodic or almost
periodic functions

yref (t) =
∑
k∈Z

cke
iωkt

The signal yref (t) contains the frequencies (iωk)k∈Z ∈ iR.
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The Exosystem

S
yref (t)

The references yref are obtained as outputs of the exosystem

v̇(t) = Sv(t), v0 ∈W
yref (t) = Fv(t)

where S is an unbounded diagonal operator

S = diag(iωk)k∈Z, D(S) =
{

(vk) ∈W
∣∣ (ωkvk) ∈ `2(C)

}
on the Hilbert space W = `2(C) and F ∈ L(W,Y ). The
eigenvalues iωk ∈ iR of S are the frequencies in yref (t).
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The Dynamic Error Feedback Controller

We consider an error feedback controller (G1,G2,K) of the form

ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0 ∈ Z
u(t) = Kz(t),

where G1 generates a semigroup on a Banach space Z,
G2 ∈ L(Y,Z) and K ∈ L(Z1, U) is admissible.
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The Closed-Loop System
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Closed-loop system

Theorem
The closed-loop system (Ae, Be, Ce, De) consisting of the plant
and the controller is a regular linear system.

Proof.
Theory of feedback for regular linear systems, by Weiss (1994).
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The Control Problem

The Robust Output Regulation Problem
Choose a controller (G1,G2,K) in such a way that

The closed-loop system is strongly/polynomially/exponentially
stable.
The output y(t) tracks a given reference signal yref (t)
asymptotically, i.e.∫ t+1

t
‖y(s)− yref (s)‖Y ds→ 0 as t→∞

for all initial states xe0 = (x0, z0) ∈ Xe and v0 ∈W
The above property is robust with respect to small
perturbations in the operators (A,B,C,D) of the plant.
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Theorem (Francis & Wonham, 1970’s, LP & SP 2010)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the signal generator.

Here p = dimY , the number of outputs.
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Theorem (Francis & Wonham, 1970’s, LP & SP 2010)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the signal generator.

Here p = dimY , the number of outputs.

The p-copy for an exosystem with S = diag(iωk)k∈Z:
Any eigenvalue iωk of S must be an eigenvalue of G1 with
p linearly independent eigenvectors associated to it, i.e.,

dimN (iωk − G1) ≥ dimY = p.
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Various Forms of the Internal Model

Definition
The controller has a p-copy internal model if for every k ∈ Z

dimN (iωk − G1) ≥ dimY = p.

Definition
The controller satisfies the G-conditions if for every k ∈ Z

R(iωk − G1) ∩R(G2) = {0}
N (G2) = {0}.
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Various Forms of the Internal Model

Definition
The controller has the PK-property if for every k ∈ Z

(P (iωk)K)|N (iωk−G1) ∈ L(N (iωk − G1), Y ) is surjective.

Note that if P (iωk) is assumed to be surjective (as is usually done
here) and U = Y = Cp, then the PK-property is equivalent to

K|N (iωk−G1) ∈ L(N (iωk − G1), U) is surjective.

Also the PK-property clearly implies the p-copy internal model.
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Alternate Form of the PK-Conditions

Denote by (Ã, B̃, C̃, D̃, F̃ ) and (Ãe, B̃e, C̃e, D̃e) the perturbed
plant and closed-loop system, and P̃ (λ) = C̃ΛR(λ, Ã)B̃ + D̃.

Theorem (Roughly)
The controller has the PK-property if and only if for all
perturbations of the plant

P̃ (iωk)Kzk = −F̃ ek

(iωk − G1)zk = 0

have a solution zk ∈ D(G1) for all k ∈ Z.
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Proof of the Internal Model Principle for bounded B and C

Robust Regulation

G-Conditions

PK-property

p-Copy Internal Model

m

m

m

σ(A) ∩ σ(S) = ∅

σ(Ae) ∩ σ(S) = ∅

σ(Ae) ∩ σ(S) = ∅
dimY <∞
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G-Conditions vs. Robust Regulation

Robust Regulation

G-Conditions

⇑ no assumptions required
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Extensions

The results in this presentation are also valid for
Also for disturbance rejection
Non-diagonal exosystems (i.e., S has Jordan blocks)
Infinite-dimensional exosystems (nonsmooth reference signals)
Infinite-dimensional plants with unbounded control and
observation.
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