Non-uniform Stability of Coupled PDEs: A Systems Theory Approach

Lassi Paunonen

Tampere University of Technology, Finland

October 1st, 2018

Funded by Academy of Finland grants 298182 (2016-2019) and 310489 (2017-2021)

Main Objectives

Problem

Consider different types of **coupled PDE systems** from the point of view of **control theory**.

Our focus is on systems exhibiting non-uniform stability.

Main Objectives

Problem

Consider different types of **coupled PDE systems** from the point of view of **control theory**.

Our focus is on systems exhibiting non-uniform stability.

Motivation:

• Coupling of stable and unstable PDEs and ODEs often leads to rational decay of energy, i.e., polynomial stability.

Main results:

- Discussion and a (hopefully new) viewpoint.
- New stability results for coupled PDEs.
- Disclaimer: Will not solve all your problems!

Outline

- (1) "Passive feedback structures" in coupled PDE systems
 - Highlight parallels in coupled PDEs and linear systems
- (2) Conversion from coupled PDEs to coupled systems
 - Examples on "how to set it up".
- (3) What do we get?
 - General conditions for polynomial and nonuniform stability of coupled PDEs and systems.

IntroductionIntroductionDiscussionA Typical CaseMain ResultsPassive Systems

Coupled PDE-PDE and PDE-ODE systems appear in models of

- Fluid-structure interactions
- Thermo-elasticity
- Mechanical systems, e.g., beams with tip masses
- Magnetohydrodynamics
- Acoustics

IntroductionIntroductionDiscussionA Typical CaseMain ResultsPassive Systems

Coupled PDE-PDE and PDE-ODE systems appear in models of

- Fluid-structure interactions
- Thermo-elasticity
- Mechanical systems, e.g., beams with tip masses
- Magnetohydrodynamics
- Acoustics

Couplings may either be

- Through the **boundary** (Fluid-structure, acoustics), or
- inside a shared domain (Thermo-elasticity, MHD)

We will focus on couplings that are **passive** (details later).

Introduction Introduction Discussion A Typical Case Main Results Passive System

Example: Coupled Wave–Heat Systems

Models for fluid-structure and heat-structure interactions:

References: Avalos & Triggiani, Duyckaerts, Mercier, Nicaise, Ammari, Zuazua, Guo, and many others.

Introduction A Typical Case Passive Systems

Coupled Wave–Heat Systems

Introduction A Typical Case Passive Systems

Coupled Wave–Heat Systems

Introduction A Typical Case Passive Systems

Coupled Wave–Heat Systems

Introduction Introduc Discussion A Typic Main Results Passive

Inputs and Outputs

IntroductionIntroductionDiscussionA Typical CaseMain ResultsPassive Systems

Problem

Use the properties of the two systems to deduce stability of the coupled PDE.

Introduction A Typical Case Passive Systems

Linear Control Systems

Consider the linear control system:

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0 \in X$$
$$y(t) = Cx(t) + Du(t)$$

where X is Hilbert, A generates a semigroup, and B and C are either bounded or unbounded.

"Passive" Systems

To keep things simple, we only focus on systems

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0 \in X$$
$$y(t) = B^*x(t)$$

where X is Hilbert, A generates a **contraction semigroup**, and $B \in \mathcal{L}(U, V^*)$ for some suitable spaces U and $V^* \supseteq X$.

"Passive" Systems

To keep things simple, we only focus on systems

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0 \in X$$
$$y(t) = B^*x(t)$$

where X is Hilbert, A generates a **contraction semigroup**, and $B \in \mathcal{L}(U, V^*)$ for some suitable spaces U and $V^* \supseteq X$.

Such systems are "**impedance passive**", which in particular means they have "**no internal sources of energy**",

$$\frac{d}{dt} \|x(t)\|^2 \le 2 \operatorname{Re} \langle u(t), y(t) \rangle_Y$$

Examples:

• Many mechanical systems, RLC circuits, ...

 Introduction
 Introduction

 Discussion
 A Typical Case

 Main Results
 Passive Systems

Feedback Theory of Passive Systems

Property: "Power-preserving interconnection" preserves passivity!

 \Rightarrow Closed-loop semigroup contractive on Hilbert $X_1 \times X_2$.

 Introduction
 Introduction

 Discussion
 A Typical Case

 Main Results
 Passive Systems

Feedback Theory of Passive Systems

Property: "Power-preserving interconnection" preserves passivity!

 \Rightarrow Closed-loop semigroup contractive on Hilbert $X_1 \times X_2$.

Some results exist on exponential stability, here we focus on non-uniform stability \rightarrow decay rates for total energy.

Introduction A Typical Case Passive Systems

Coupled Passive Systems

If for k=1,2 we let

$$\dot{x}_k(t) = A_k x_k(t) + B_k u_k(t), \qquad x_k(0) \in X_k$$
$$y_k(t) = B_k^* x_k(t),$$

then the "power-preserving interconnection" leads to

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} A_1 & B_1 B_2^* \\ -B_2 B_1^* & A_2 \end{bmatrix}}_{=:A} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Question

How to choose U, B_1 , and B_2 ?

How to Set It Up? Introduction Discussion Main Results

Example: 1D Wave–Heat Model

 $\begin{cases} v_{tt}(\xi, t) = v_{\xi\xi}(\xi, t), \\ w_t(\xi, t) = w_{\xi\xi}(\xi, t), \end{cases}$ $\xi \in (-1,0), t > 0,$

$$w_t(\xi, t) = w_{\xi\xi}(\xi, t),$$
 $\xi \in (0, 1), \ t > 0,$

$$v_{\xi}(0,t) = w_{\xi}(0,t), \quad v_t(0,t) = w(0,t), \qquad t > 0,$$

- [Xu Zhang & Zuazua, Batty, Paunonen & Seifert, (2D version: • Avalos, Triggiani & Lasiecka)]
- Known: Non-uniform stability with $\alpha = 1/2$.

IntroductionHow to Set It Up?DiscussionHeat-Wave Systemsain Results2D Situations

Example: 1D Wave–Heat Model

$$v_{tt}(\xi, t) = v_{\xi\xi}(\xi, t), \qquad \xi \in (-1, 0), \ t > 0,$$

$$w_t(\xi, t) = w_{\xi\xi}(\xi, t), \qquad \xi \in (0, 1), \ t > 0,$$

$$v_{\xi}(0,t) = w_{\xi}(0,t), \quad v_t(0,t) = w(0,t),$$

$$t > 0$$
,

IntroductionHow to Set It Up?DiscussionHeat-Wave SystemsMain Results2D Situations

Example: 1D Wave-Heat — Open-Loop Splitting

 Wave system on (-1,0):
 Heat system on (0,1):

 $v_{tt}(\xi,t) = v_{\xi\xi}(\xi,t)$ $w_t(\xi,t) = w_{\xi\xi}(\xi,t)$
 $y_1(t) = v_{\xi}(0,t)$ $y_2(t) = w(0,t)$
 $u_1(t) = v_t(0,t)$ $u_2(t) = -w_{\xi}(0,t)$

 Unstable
 Stable

The systems **are** impedance passive. We have $U = \mathbb{C}$ and B_1 and B_2 are unbounded.

Introduction How to Set It Discussion Heat-Wave Sy Main Results 2D Situations

Inputs and Outputs

2D systems are a bit more complicated to set up.

For boundary couplings U is a function space on Γ_0 .

 $\begin{array}{ll} \mbox{In in-domain couplings,} \\ \mbox{space on } \Omega \mbox{ or } \Omega_0 \subset \Omega. \end{array}$

Introduction Non-Uniform Stability Discussion Main Results Main Results Example Cases

Polynomial and Non-Uniform Stability

Theorem (Borichev & Tomilov '10)

Let T(t) be a uniformly bounded C_0 -semigroup on a Hilbert space X. Let A be the generator of T(t) and $\sigma(A) \cap i\mathbb{R} = \emptyset$.

For any constant $\alpha > 0$, the following are equivalent:

$$\|T(t)x_0\| \le \frac{M}{t^{1/\alpha}} \|Ax_0\| \qquad \text{for some } M > 0$$
$$(i\omega - A)^{-1}\| \le M_R (1 + |s|^{\alpha}), \qquad \text{for some } M_R > 0$$

General: Batty & Duyckaerts '08, Rozendaal, Seifert & Stahn '17.

Application: $E(t) \sim ||T(t)x_0||^2$ for many PDE systems.

Non-Uniform Stability Main Results Example Cases

Polynomial and Non-Uniform Stability

Since our coupled systems are contractive by default,

"Non-uniform stability only requires a resolvent estimate"

Introduction	Non-Uniform Stability
Discussion	
Main Results	

Problem

Derive a resolvent estimate for

$$A := \begin{bmatrix} A_1 & B_1 B_2^* \\ -B_2 B_1^* & A_2 \end{bmatrix}$$

in terms of the properties of

- (A_1, B_1, B_1^*) [Unstable]
- (A_2, B_2, B_2^*) [Stable]

Assumption

- A_1 is diagonalizable and skew-adjoint, $A_1 = \sum_{k \in \mathbb{Z}} i\omega_k \langle \cdot, \phi_k \rangle \phi_k$
- Uniform gap: $\inf_{k \neq l} |\omega_k \omega_l| > 0$ (for simplicity).
- $T_2(t)$ gen. by A_2 is exponentially stable.

Conditions for Non-Uniform Stability

Assumption

- A_1 is diagonalizable and skew-adjoint, $A_1 = \sum i \omega_k \langle \cdot, \phi_k \rangle \phi_k$
- Uniform gap: $\inf_{k\neq l} |\omega_k \omega_l| > 0.$
- $T_2(t)$ gen. by A_2 is exponentially stable.
- $||B_1^*\phi_k|| \neq 0$ for all k (i.e., (A_1, B_1) is "approx. controllable").
- Denoting $P_2(\lambda) = B_2^*(\lambda A_2)^{-1}B_2$ ("transfer function"),

 $P_2(i\omega_k) + P_2(i\omega_k)^* > 0 \qquad \forall k \in \mathbb{Z}.$

Conditions for Non-Uniform Stability

Assumption

- A_1 is diagonalizable and skew-adjoint, $A_1 = \sum i \omega_k \langle \cdot, \phi_k \rangle \phi_k$
- Uniform gap: $\inf_{k\neq l} |\omega_k \omega_l| > 0.$
- $T_2(t)$ gen. by A_2 is exponentially stable.
- $||B_1^*\phi_k|| \neq 0$ for all k (i.e., (A_1, B_1) is "approx. controllable").
- Denoting $P_2(\lambda) = B_2^*(\lambda A_2)^{-1}B_2$ ("transfer function"),

$$P_2(i\omega_k) + P_2(i\omega_k)^* > 0 \qquad \forall k \in \mathbb{Z}.$$

Proposition

The closed-loop is strongly stable and $\sigma(A) \subset \mathbb{C}_{-}$.

Introduction	
Discussion	Main Results
Main Results	

• Denote
$$P_2(\lambda) = B_2^*(\lambda - A_2)^{-1}B_2$$
 ("transfer function")

Theorem

Let $\gamma, \eta : \mathbb{R}_+ \to (0, 1)$ be decreasing (and "nice") so that

$$\|B_1^*\phi_k\| \ge c_1\gamma(|\omega_k|) \qquad \forall k$$

$$\operatorname{Re}\langle P_2(is)u, u \rangle \ge c_2 \eta(|s|) ||u||^2 \qquad s \approx \omega_k$$

for some constants $c_1, c_2, s_0 > 0$. Then the closed-loop system is non-uniformly stable so that

$$\|(is - A)^{-1}\| \lesssim \frac{M_R}{\gamma(|s|)^2 \eta(|s|)}, \quad |s| \text{ large.}$$

Introduction	
Discussion	Main Results
Main Results	

Theorem

Let $\gamma,\eta:\mathbb{R}_+\to (0,1)$ be decreasing (and "nice") so that

$$||B_1^*\phi_k|| \ge c_1\gamma(|\omega_k|) \qquad \forall k$$

$$\operatorname{Re}\langle P_2(is)u,u\rangle \ge c_2\eta(|s|)\|u\|^2 \qquad s\approx \omega_k$$

for some constants $c_1, c_2, s_0 > 0$. Then the closed-loop system is non-uniformly stable so that

$$\|(is - A)^{-1}\| \lesssim \frac{M_R}{\gamma(|s|)^2 \eta(|s|)}, \quad |s| \text{ large.}$$

Thus

$$||T(t)x|| \le \frac{M_T}{M^{-1}(t)} ||Ax||, \qquad x \in \mathcal{D}(A)$$

where $M(s)\sim \gamma(s)^{-2}\eta(s)^{-1}.$

Introduction Non-Uniform Stability Discussion Main Results Main Results Example Cases

Theorem

Let $\beta, \gamma \geq 0$ such that

$$\|B_1^*\phi_k\| \ge c_1 |\omega_k|^{-\beta} \qquad \forall k$$

Re $\langle P_2(is)u, u \rangle \ge c_2 |s|^{-\gamma} \|u\|^2 \qquad s \approx \omega_k$

for some constants $c_1, c_2, s_0 > 0$. Then the closed-loop system is non-uniformly stable so that

$$||(is - A)^{-1}|| \le M_R(1 + |s|^{2\beta + \gamma}),$$
 |s| large.

Thus

$$||T(t)x|| \le \frac{M_T}{t^{1/\alpha}} ||Ax||, \qquad x \in \mathcal{D}(A)$$

for $\alpha = 2\beta + \gamma \ge 0$.

Comments:

- Theorem requires some admissibility and well-posedness assumptions (swept under the carpet here). Limits 2D-*n*D BC.
- Lack of spectral gap and repeated eigenvalues are allowed in a more general version (affects the rate).

Optimality

- Obtained rate is not always optimal, especially if
 - A_1 has no spectral gap (2D, nD waves) or
 - eigenvalues diverge as $|\omega_k| o \infty$ (beams and plates).
- A nice way of getting (possibly) suboptimal rates easily.

Comments:

- Theorem requires some admissibility and well-posedness assumptions (swept under the carpet here). Limits 2D-*n*D BC.
- Lack of spectral gap and repeated eigenvalues are allowed in a more general version (affects the rate).

Optimality

- Obtained rate is not always optimal, especially if
 - A_1 has no spectral gap (2D, nD waves) or
 - eigenvalues diverge as $|\omega_k| \to \infty$ (beams and plates).
- A nice way of getting (possibly) suboptimal rates easily.

References:

- Paunonen Arxiv June '17
- Partly based on joint work with Chill, Stahn & Tomilov

Introduction	
Discussion	
Main Results	Example Cases

Example: 1D Wave-Heat

Wave system on (-1, 0):

 $v_{tt}(\xi, t) = v_{\xi\xi}(\xi, t)$ $y_1(t) = v_{\xi}(0, t)$ $u_1(t) = v_t(0, t)$

Heat system on (0,1):

$$w_t(\xi, t) = w_{\xi\xi}(\xi, t)$$

$$y_2(t) = w(0, t)$$

$$u_2(t) = -w_{\xi}(0, t)$$

• A_1 diagonalizable, $\omega_k \sim k\pi$, ϕ_k trigonometric

•
$$B_1^*\phi_k
eq 0$$
, and $|B_1^*\phi_k|\gtrsim 1=|\omega_k|^0$

• $P_2(is) = B_2^*(is - A_2)^{-1}B_2$ satisfies $|P_2(is)| \sim |s|^{-1/2}$.

Thus the closed-loop system is polynomially stable,

$$||(is - A)^{-1}|| = O(|s|^{1/2})$$
 and $||T(t)x|| \le \frac{M}{t^2} ||Ax||.$

Reproduces results of [Zhang-Zuazua, Batty-Paunonen-Seifert].

Introduction Non-Uniform Stabilit Discussion Main Results Main Results Example Cases

Conclusions

In this presentation:

- Discussion of coupled PDE and PDE-ODE systems from the viewpoint of systems theory
- General conditions for non-uniform and polynomial stability of coupled systems.
- LP, "Stability and Robust Regulation of Passive Linear Systems," http://arxiv.org/abs/1706.03224