# Robustness of Strong and Polynomial Stability of Semigroups

Lassi Paunonen

#### Tampere University of Technology, Finland

October 8th, 2013

#### Introduction

- Robustness of Polynomial Stability
- O Robustness of Strong Stability
- Omparison of Results

# Stability of Semigroups

- X is Hilbert,  $A: \mathcal{D}(A) \subset X \to X$
- A generates a uniformly bounded semigroup T(t)

Exponential:



 $\|T(t)\| \le M e^{-\omega t}$ 

#### Introduction Main Results Example

### Stability of Semigroups

- X is Hilbert,  $A:\mathcal{D}(A)\subset X\to X$
- A generates a uniformly bounded semigroup T(t)

Exponential:





$$\|T(t)\| \le M e^{-\omega t}$$



 $\|T(t)x\| \longrightarrow 0$ 

Polynomial Stability Inter Strong Stability Ma Discussion Exa

#### Introduction Main Results Example

### Stability of Semigroups

- X is Hilbert,  $A:\mathcal{D}(A)\subset X\to X$
- A generates a uniformly bounded semigroup T(t)



$$\|T(t)\| \le M e^{-\omega t}$$

 $\|T(t)x\| \longrightarrow 0$ 

#### Introduction Main Results Example

### Polynomial Stability



#### Definition

T(t) is called *polynomially stable* if

• T(t) is uniformly bounded,

$$\bullet \ i\mathbb{R}\subset \rho(A),$$

• There exist  $\alpha > 0$  and M > 0 s.t.

$$||T(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}} \qquad \forall t > 0.$$

Polynomial Stability Intr Strong Stability Mai Discussion Exa

Introduction Main Results Example

### Polynomial Stability



#### Definition

T(t) is called *polynomially stable* if

• T(t) is uniformly bounded,

$$\bullet \ i\mathbb{R}\subset \rho(A),$$

• There exist  $\alpha > 0$  and M > 0 s.t.

$$\|T(t)A^{-1}\| \le \frac{M_A}{t^{1/\alpha}} \qquad \forall t > 0.$$

Since uniform boundedness is required, a polynomially stable semigroup is also strongly stable.

#### Characterization on a Hilbert Space

#### Theorem

If T(t) is a uniformly bounded semigroup and  $i\mathbb{R} \subset \rho(A)$ . For a fixed  $\alpha > 0$  the following are equivalent.

(a) 
$$||T_A(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}}, \quad \forall t > 0$$

(b) 
$$||R(i\omega, A)|| \le M(1 + |\omega|^{\alpha})$$

Borichev & Tomilov (2010), and Batty & Duyckaerts (2008).

#### Characterization on a Hilbert Space

#### Theorem

If T(t) is a uniformly bounded semigroup and  $i\mathbb{R} \subset \rho(A)$ . For a fixed  $\alpha > 0$  the following are equivalent.

(a) 
$$||T_A(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}}, \quad \forall t > 0$$

(b) 
$$||R(i\omega, A)|| \le M(1 + |\omega|^{\alpha})$$

(c) 
$$\sup_{\operatorname{Re}\lambda\geq 0} \|R(\lambda,A)(-A)^{-\alpha}\| < \infty.$$

Borichev & Tomilov (2010), and Batty & Duyckaerts (2008).

# Introduction

#### Robustness of Polynomial Stability

Assume T(t) and  $\alpha > 0$  are such that

$$||T(t)x|| \le \frac{M_A}{t^{1/\alpha}} ||Ax|| \qquad \forall x \in \mathcal{D}(A).$$

#### Problem

Consider stability of the semigroup generated by

A + BC.

where  $B \in \mathcal{L}(\mathbb{C}^p, X)$  and  $C \in \mathcal{L}(X, \mathbb{C}^p)$ .

# Introduction

### Robustness of Polynomial Stability

Assume T(t) and  $\alpha > 0$  are such that

$$||T(t)x|| \le \frac{M_A}{t^{1/\alpha}} ||Ax|| \qquad \forall x \in \mathcal{D}(A).$$

#### Problem

Consider stability of the semigroup generated by

A + BC.

where  $B \in \mathcal{L}(\mathbb{C}^p, X)$  and  $C \in \mathcal{L}(X, \mathbb{C}^p)$ .

Challenge: There exist B, C with arbitrarily small ||B||, ||C|| s.t. A + BC is unstable.

Polynomial Stability Strong Stability

## Main Results

### Main Results on Polynomial Stability

Assume perturbation A + BC satisfies

$$\mathcal{R}(B) \subset \mathcal{D}((-A)^{\beta})$$
 and  $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^{\gamma})$  (1)

for some  $\beta, \gamma \geq 0$  such that  $\beta + \gamma \geq \alpha$ .

#### Main Results on Polynomial Stability

Assume perturbation A + BC satisfies

 $\mathcal{R}(B) \subset \mathcal{D}((-A)^{\beta})$  and  $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^{\gamma})$  (1)

for some  $\beta, \gamma \geq 0$  such that  $\beta + \gamma \geq \alpha$ .

The operators B and C are "more than bounded".

### Main Results on Polynomial Stability

Assume perturbation A + BC satisfies

 $\mathcal{R}(B) \subset \mathcal{D}((-A)^{\beta})$  and  $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^{\gamma})$  (1)

for some  $\beta, \gamma \geq 0$  such that  $\beta + \gamma \geq \alpha$ .

The operators B and C are "more than bounded".

Theorem (LP 2012, 2013)

Assume  $\beta + \gamma \geq \alpha$ . There exists  $\delta > 0$  such that if B and C satisfy (1) and

 $\|(-A)^{\beta}B\| < \delta, \qquad \text{and} \qquad \|(-A^*)^{\gamma}C^*\| < \delta,$ 

then the semigroup generated by A + BC is strongly and polynomially stable (with the same exponent  $\alpha > 0$ ).

Example

#### Example: 1D Wave Equation



L. Paunonen Robustness of Strong and Polynomial Stability

where  $\mathcal{A}^* = -\mathcal{A}$ .

#### For the Wave Equation

In the original wave equation on  $\left[0,1\right]$ 

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + d_0(z)u(t) + b_0\left(\langle w, c_1 \rangle_{L^2} + \langle \frac{\partial w}{\partial t}, c_2 \rangle_{L^2}\right)$$

#### For the Wave Equation

In the original wave equation on  $\left[0,1\right]$ 

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + d_0(z)u(t) + b_0\left(\langle w, c_1 \rangle_{L^2} + \langle \frac{\partial w}{\partial t}, c_2 \rangle_{L^2}\right)$$

the polynomial stability is preserved if

$$b_0, c_2 \in \mathcal{D}\left(rac{\partial^2}{\partial z^2}
ight)$$
 and  $c_1 \in L^2(0, 1),$ 

and if the  $L^2\mbox{-norms}$ 

 $\|b_0\|_{L^2}, \|b'_0\|_{L^2}, \|c_1\|_{L^2}, \|c_2\|_{L^2}, \|c'_2\|_{L^2}$ 

are sufficiently small.

# Part II: Preservation of Strong Stability

Main Problem Main Results Example

### Finite Spectral Points on $i\mathbb{R}$



#### Restriction:

Polynomial stability implies  $\sigma(A) \cap i\mathbb{R} = \emptyset$ 

#### Problem

How to handle spectrum on  $i\mathbb{R}$ ?

### Solution

Study the situation where T(t) is strongly stable,  $\sigma(A) \cap i\mathbb{R}$  is finite, and the resolvent growth is suitably bounded on  $i\mathbb{R}$ .



### Solution

Study the situation where T(t) is strongly stable,  $\sigma(A) \cap i\mathbb{R}$  is finite, and the resolvent growth is suitably bounded on  $i\mathbb{R}$ .



For a fixed  $\alpha \geq 1$ :

$$\|R(i\omega, A)\| \le \frac{M}{|\omega - \omega_2|^{\alpha}}$$

$$\|R(i\omega, A)\| \le \frac{M}{|\omega - \omega_1|^{\alpha}}$$

### Main Problem

#### Problem

For a fixed  $\alpha \geq 1$ , consider stability of the semigroup generated by

A + BC,

where  $B \in \mathcal{L}(\mathbb{C}^p, X)$  and  $C \in \mathcal{L}(X, \mathbb{C}^p)$ .

<u>General aim</u>: Define suitable graph norms to measure the sizes of B and C.

#### Properties

The operators  $i\omega_1-A$  and  $i\omega_2-A$  have unbounded sectorial inverses

$$(i\omega_1-A)^{-1}$$
 and  $(i\omega_2-A)^{-1}$ 



Use graph norms of the **inverses** in studying robustness of stability!

#### Robustness of Stability

#### Problem

For a fixed  $\alpha \geq 1$ , consider stability of the semigroup generated by

A + BC,

where  $B \in \mathcal{L}(\mathbb{C}^p, X)$  and  $C \in \mathcal{L}(X, \mathbb{C}^p)$ .

Assume perturbation satisfies

 $\mathcal{R}(B) \subset \mathcal{D}((i\omega_1 - A)^{-\beta}) \quad \text{and} \quad \mathcal{R}(C^*) \subset \mathcal{D}((-i\omega_1 - A^*)^{-\gamma})$  $\mathcal{R}(B) \subset \mathcal{D}((i\omega_2 - A)^{-\beta}) \quad \text{and} \quad \mathcal{R}(C^*) \subset \mathcal{D}((-i\omega_2 - A^*)^{-\gamma})$ 

for some  $\beta, \gamma \geq 0$  such that  $\beta + \gamma \geq \alpha$ .

### Robustness of Stability

Assume

$$\mathcal{R}(B) \subset \mathcal{D}((i\omega_k - A)^{-\beta}), \quad \mathcal{R}(C^*) \subset \mathcal{D}((-i\omega_k - A^*)^{-\gamma})$$
 (2)

for some  $\beta, \gamma \geq 0$  and k = 1, 2 such that  $\beta + \gamma \geq \alpha$ .

#### Theorem

Assume  $\beta + \gamma \geq \alpha$ . There exists  $\delta > 0$  such that if B and C satisfy (2) and

$$||B|| + ||(i\omega_k - A)^{-\beta}B|| < \delta, \quad \text{and}$$
$$||C|| + ||(-i\omega_k - A^*)^{-\gamma}C^*|| < \delta$$

for k = 1, 2, then the semigroup generated by A + BC is strongly stable.

#### Example

#### Example

Consider  $X = \ell^2(\mathbb{C})$  and  $A \in \mathcal{L}(X)$  by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and  $A + \langle \cdot, c \rangle b$  with  $b, c \in X$ .

#### Example

#### Example

Consider  $X = \ell^2(\mathbb{C})$  and  $A \in \mathcal{L}(X)$  by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and  $A + \langle \cdot, c \rangle b$  with  $b, c \in X$ .

Now  $\sigma(A) \cap i\mathbb{R} = \{0\}$  and  $\alpha = 1$ . Inverse  $(-A)^{-1}$  unbounded, self-adjoint, positive. For  $\beta \ge 0$ 

$$(-A)^{-\beta}x = \sum_{k=1}^{\infty} k^{\beta} \langle x, e_k \rangle e_k,$$

#### Example

#### Example

Consider  $X = \ell^2(\mathbb{C})$  and  $A \in \mathcal{L}(X)$  by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and  $A + \langle \cdot, c \rangle b$  with  $b, c \in X$ .

<u>Conclusion</u>:  $A + \langle \cdot, c \rangle b$  is stable for  $\beta + \gamma = 1$ , and for small norms

$$\|(-A)^{-\beta}b\|^2$$

$$\|(-A^*)^{-\gamma}c\|^2$$

#### Example

#### Example

Consider  $X = \ell^2(\mathbb{C})$  and  $A \in \mathcal{L}(X)$  by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and  $A + \langle \cdot, c \rangle b$  with  $b, c \in X$ .

<u>Conclusion</u>:  $A + \langle \cdot, c \rangle b$  is stable for  $\beta + \gamma = 1$ , and for small norms

$$\|(-A)^{-\beta}b\|^{2} = \sum_{k=1}^{\infty} k^{2\beta} |\langle b, e_{k} \rangle|^{2}$$
$$\|(-A^{*})^{-\gamma}c\|^{2} = \sum_{k=1}^{\infty} k^{2\gamma} |\langle c, e_{k} \rangle|^{2}$$

Comparison of Properties

### Compare

### Polynomial stability:

 $A:\mathcal{D}(A)\subset X\to X$ 



Strong stability:

$$A \in \mathcal{L}(X)$$
, with  $\sigma(A) \cap i\mathbb{R} = \{0\}$ 



Comparison of Properties

#### Compare

### Polynomial stability:

 $A:\mathcal{D}(A)\subset X\to X$ 

Resolvent growth:

 $\|R(i\omega,A)\| \le M |\omega|^{\alpha}$ 

for  $|\omega|$  large.

Strong stability:

 $A\in \mathcal{L}(X)\text{, with }\sigma(A)\cap i\mathbb{R}=\{0\}$ 

Resolvent growth:

$$\|R(i\omega, A)\| \le \frac{M}{|\omega|^{\alpha}}$$

for  $|\omega|$  small.

Comparison of Properties

#### Compare

### Polynomial stability:

 $A:\mathcal{D}(A)\subset X\to X$ 

Resolvent growth:

 $||R(\lambda, A)(-A)^{-\alpha}|| \le M'$ 

for  $\lambda \in \mathbb{C}^+$ .

(Borichev & Tomilov '10)

Strong stability:

 $A \in \mathcal{L}(X)$ , with  $\sigma(A) \cap i\mathbb{R} = \{0\}$ 

Resolvent growth:

 $||R(\lambda, A)(-A)^{\alpha}|| \le M'$ 

for  $\lambda \in \mathbb{C}^+$ .

(Batty, Chill & Tomilov '13)

Comparison of Properties

#### Compare

### Polynomial stability:

 $A:\mathcal{D}(A)\subset X\to X$ 

Polynomial decay:

 $||T(t)(-A)^{-1}|| \le \frac{M_A}{t^{1/\alpha}}$ 

for all t > 0.

Strong stability:

 $A\in \mathcal{L}(X),$  with  $\sigma(A)\cap i\mathbb{R}=\{0\}$ 

Polynomial decay:

$$\|T(t)(-A)\| \le \frac{M_A}{t^{1/\alpha}}$$

for all t > 0.

(Batty, Chill & Tomilov '13)

Comparison of Properties

### Compare

### Polynomial stability:

 $A:\mathcal{D}(A)\subset X\to X$ 

Conditions for A + BC: Graph norms with  $\beta + \gamma = \alpha$ 

 $\|(-A)^{\beta}B\|, \|(-A^{*})^{\gamma}C^{*}\|$ 

small  $\Rightarrow$  Robustness.

Strong stability:

 $A \in \mathcal{L}(X)$ , with  $\sigma(A) \cap i\mathbb{R} = \{0\}$ 

Conditions for A + BC: Graph norms with  $\beta + \gamma = \alpha$ 

 $\|(-A)^{-\beta}B\|, \|(-A^*)^{-\gamma}C^*\|$ 

small  $\Rightarrow$  Robustness.

#### References

L. Paunonen, Robustness of strong and polynomial stability of semigroups, *Journal of Functional Analysis*, 2012.

L. Paunonen, Robustness of strong stability of semigroups, *ArXiv/Submitted*, 2013.

### Conclusions

- Conditions for the preservation of strong and polynomial stabilities of a semigroup
- Comparison of results.

Thank You!