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Introduction Introduction
A Typical Case

Non-Uniform Stability

Main Objectives

Problem

Consider the stability of different types of coupled systems and
PDEs.

The focus is on couplings leading to non-uniform stability.

L. Paunonen Non-uniform Stability of Coupled Systems



Introduction Introduction
A Typical Case

Non-Uniform Stability

Main Objectives

Problem

Consider the stability of different types of coupled systems and
PDEs.

The focus is on couplings leading to non-uniform stability.

Motivation:
@ Coupling of stable and unstable PDEs and ODEs often leads
to rational decay of energy, i.e., polynomial stability.
@ Situation also appears in control applications.

Main results:
@ New stability results for coupled PDEs.
o Disclaimer: Will not solve all your problems!
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Introduction Introduction
A Typical Case

Non-Uniform Stability

Outline

(1) Discussion: Passive systems and feedback in coupled PDEs
(2) Introduction to polynomial and non-uniform stability

(3) Main stability results.

e General conditions for polynomial and nonuniform stability of
coupled PDEs and systems.
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Introduction Introduction
A Typical Case

Non-Uniform Stability

Coupled PDE-PDE and PDE-ODE systems appear in models of

Fluid-structure interactions

Thermo-elasticity
Mechanical systems, e.g., beams with tip masses

Magnetohydrodynamics

Acoustics
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Introduction Introduction
A Typical Case

Non-Uniform Stability

Coupled PDE-PDE and PDE-ODE systems appear in models of
o Fluid-structure interactions
@ Thermo-elasticity
o Mechanical systems, e.g., beams with tip masses
o Magnetohydrodynamics

@ Acoustics

Couplings may either be
@ Through the boundary (Fluid-structure, acoustics), or

e inside a shared domain (Thermo-elasticity, MHD)
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Introduction Introduction
A Typical Case
Non-Uniform Stability

Motivation 1: Coupled Wave—Heat Systems

Models for fluid—structure and heat—structure interactions:

9%u

ﬁ(x, t) = Au(x,t)

!

coupling BCs
!

(z,t) = Aw(z,t)

heat equation

dw
ot

References: Avalos & Triggiani, Duyckaerts, Zhang & Zuazua, Mercier,
Nicaise, Ammari, Guo, and many others.
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Coupled Wave—Heat Systems

(g

feedback
structure

heat equation
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Coupled Wave—Heat Systems

' —» System 1

T feedback l

structure

heat equation System 2
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Non-Uniform Stability

Coupled Wave—Heat Systems

‘ Unstable
—» System 1

feedback l
structure

heat equation System 2

Stable
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Non-Uniform Stability

Inputs and Outputs

—» Systeml1l >

inputs/outputs

heat equation <€— System 2 [€—

inputs/outputs

L. Paunonen Non-uniform Stability of Coupled Systems



Introduction Introduction
A Typical Case
Non-Uniform Stability

Motivation 2: Internal Model Based Control

Problem

Closed-loop stabilization in Robust Output Tracking and
Disturbance Rejection for stable systems.

—»{ Control system

Internal model
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Introduction Introduction
A Typical Case
Non-Uniform Stability

Motivation 2: Internal Model Based Control

Problem

Closed-loop stabilization in Robust Output Tracking and
Disturbance Rejection for stable systems.

Stable

—»{ Control system

Internal model

Unstable
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Introduction Introduction
A Typical Case
Non-Uniform Stability

Problem

Use the properties of the two systems to deduce stability of the
coupled system.

Unstable

»{ System 1

System 2 |[€«—O

Stable
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Non-Uniform Stability

Polynomial and Non-Uniform Stability

Theorem (Borichev & Tomilov '10)

Let T'(t) be a uniformly bounded Cy-semigroup on a Hilbert space
X. Let A be the generator of T(t) and o(A) NiR = (.

For any constant o > 0, the following are equivalent:

M
T (t)zo| < W”Ax()” for some M > 0
(s — A)7Y| < Mp(1 + |s]?), for some Mp > 0

Application: E(t) ~ ||T(t)xol||* for many PDE systems.
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Introduction Introduction
A Typical Case

Non-Uniform Stability

Polynomial and Non-Uniform Stability

Theorem (Rozendaal, Seifert & Stahn 2017, on Hilbert X)
Assume T'(t) bounded, iR C p(A). Define an increasing M (-) by

M(s) = sup||(ir — A)7Y|, s>0.

Ir|<s

If M (-) “positive increase”, then for some ¢,C > 0

C
[Azo| < IT@)zoll < =75 1Azoll, 20 € D(4)

e ML(t)

L. Paunonen Non-uniform Stability of Coupled Systems



Introduction Introduction
A Typical Case
Non-Uniform Stability

Polynomial and Non-Uniform Stability
Theorem (Batty & Duyackerts 2008, on Banach X)
Assume T'(t) bounded, iR C p(A). Define an increasing M (-) by

M (s) = sup]||(ir — A)_lH, s> 0.

Ir|<s

Then for some ¢,C > 0

1T (#)zol| < [Azoll,  zo € D(A)

Ml;; (ct)

where Mioq(s) = M (s)(log(1 + M(s)) + log(1 + s)).

This is optimal for general Banach X (Borichev & Tomilov '10).
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Non-Uniform Stability

Take-Home Message

If your system is contractive or bounded, then

“Non-uniform stability only requires a resolvent estimate on iR "
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Introduction Introduction
A Typical Case
Non-Uniform Stability

Polynomial and Non-Uniform Stability Appear in ...

e Multidimensional damped wave equations (non-GCC)
o Wave equations on exterior domains

@ Platoon-type systems

@ Here: Coupled PDE and PDE-ODE systems
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Problem

Use the properties of the two systems to deduce stability of the
coupled system.

Unstable

»{ System 1

System 2 |[€«—O

Stable
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Impedance Passive Systems

Consider (regular) linear systems of the form

#(t) = Az(t) + Bu(t), z(0) =29 € X

where X is Hilbert, A generates a contraction semigroup, and
B € L(U,V*) for some suitable spaces U and V* D X
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Impedance Passive Systems

Consider (regular) linear systems of the form

#(t) = Az(t) + Bu(t), z(0) =29 € X
y(t) = Bx(t)

where X is Hilbert, A generates a contraction semigroup, and
B € L(U,V*) for some suitable spaces U and V* D X

Such systems are “impedance passive”, which in particular means
they have “no internal sources of energy”,

%Hx(t)llz < 2Re(u(t), y(t))y

Examples:

@ Many mechanical systems, RLC circuits, ...
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Feedback Theory of Passive Systems

Property: “Power-preserving interconnection” preserves passivity.

Uy n
— 5

S

Y2 Ug

= Closed-loop semigroup contractive on Hilbert X; x Xo.
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Feedback Theory of Passive Systems

Property: “Power-preserving interconnection” preserves passivity.

Uy n
— 5

S

Y2 Ug

= Closed-loop semigroup contractive on Hilbert X; x Xo.

Exponential and strong stability results:

@ Rebarber-Weiss '03, Ramirez-Le Gorrec-Macchelli-Zwart '14,
Guiver-Logemann-Opmeer '17, Zhao-Weiss '17, ...
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Coupled Passive Systems

If for k =1,2 we let

T (t) = Agxp(t) + Brug(t), zr(0) € Xi
yk(t) = Brak(t),

then the “power-preserving interconnection” leads to

i :L’l(t) . A1 BlB§< a:l(t)
dt |za(t)|  |—B2Bf  Ag | |x2(t)

= A
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Example: 1D Wave—Heat Model

Utt(fat) = vff(é?ﬂa 6 € (_170)7 t> 07
wi(§,t) = wee (€, 1), €e(0,1), t>0,
UE(Oat) = ’U)g(o,t), Ut(oat) = w(o>t)7 t>0,

@ [Xu Zhang & Zuazua, Batty, Paunonen & Seifert, (2D version:
Avalos, Triggiani & Lasiecka)]

@ Known: Closed-loop polynomially stable, ||R(is, A)|| = O(+/|s]).
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Example: 1D Wave—Heat Model

Utt(&vt) = ’l)g&({,t), g € (_170)7 t> 07
wt(£7t) = wgf(fat)v 5 € (07 1)7 t> 07
ve(0,t) = we(0,¢), v(0,t) = w(0,1), t >0,

U
Ut
heat e 4

77X 1

The wave equation The heat equation

wave {:
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Example: 1D Wave-Heat — Open-Loop Splitting

Wave system on (—1,0): Heat system on (0, 1):
’Utt(g’ t) = Ug&(ga t) wt(fa t) = wf§(£7 t)
y1(t) = v (0, 1) y2(t) = w(0,t)
up (t) = vi(0,2) ug(t) = —we(0,1)
Unstable Stable

The systems are impedance passive. We have U = C and B; and
By are unbounded.
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Passive Systems
Coupled Systems Heat-Wave Systems
2D Situations

Inputs and Outputs

Ty
2D systems are more compli-

inputs/outputs cated to set up.

For boundary couplings U is
a function space on I'.

heat equation
In  in-domain  couplings,

space on €2 or )y C Q.
inputs/outputs
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Stability Results
Example
Main Results Application to Robust Tracking

Problem
Derive a resolvent estimate for

A A4 BB
T |=ByBf  Aj

in terms of the properties of
e (A1, B1, BY) [Unstable]
o (AQ, Bs, B;) [Stable]

Assumption

o A; is diagonalizable and skew-adjoint, A1 = Z iwg (-, dr) Pk
kEZ

e Uniform gap: Ilgr?léfl |w, — wi| > 0 (for simplicity).
o T5(t) gen. by Agy is exponentially stable.
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Stability Results
Example
Main Results Application to Robust Tracking

Conditions for Non-Uniform Stability

Assumption

Ay is diagonalizable and skew-adjoint, A1 = Z iwg (-, Or) Ok
> 0.

WE — Wy

Unife inf
niform gap gﬂ

T(t) gen. by As is exponentially stable.
| Bf x|l # 0 for all k (i.e., (A1, B1) is “approx. controllable”).
Denoting Py()\) = B3(\ — A3) ™' By (transfer function),

Pg(iwk) -+ Pg(iwk)* >0 Vk € 7.
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Stability Results
Example
Main Results Application to Robust Tracking

Conditions for Non-Uniform Stability

Assumption
@ A, is diagonalizable and skew-adjoint, A1 = Z iwg (-, Or) Ok
> 0.

e Unifc Sinf |wp — w
niform gap 11;[\ k !

@ T5(t) gen. by Ay is exponentially stable.
o |Biorll # 0 for all k (i.e., (A1, By) is “approx. controllable”).
o Denoting Py(\) = B3 (\ — As) "By (transfer function),

Py(iwg) + Paiwg)* >0  Vk € Z.

Proposition

The closed-loop is strongly stable and o(A) C C_.
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Stability Results
Example
Main Results Application to Robust Tracking

o Denote Py()\) = Bj(\ — Ay) !By (transfer function)

Theorem
Let v,n: Ry — (0,1) be decreasing (and “nice”) so that

| B ol > cry(wsl) vk
Re(Po(is)u,u) > czn(\s\)||u||2 5 R Wy

for some constants ¢y, ca, sg > 0.
Then the closed-loop system is non-uniformly stable so that

. 1 MR
G =N S S snenasy”

|s| large.
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Stability Results
Example
Main Results Application to Robust Tracking

Theorem
Let v,nm: Ry — (0,1) be decreasing (and “nice”) so that

1B ¢kll = c1y(lwr]) vk
Re(Py(is)u,u) > con(ls])l|ull® s ~ wi

for some constants cy, ca, sg > 0.
Then the closed-loop system is non-uniformly stable so that

M
IGis — A)7Y S K |s| large.
Y

(IsD)?n(ls))’
Thus

M
1T(t)z| < SllAzl, 2 eD(4)

M=1(t)
where M (s) ~ ~v(s)"2?n(s)~L.
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Stability Results
Example

Main Results Application to Robust Tracking
Theorem
Let 5,y > 0 such that
IBYll > 1 |wi| ™" vk
Re(Py(is)u, u) > ca|s| ™7 ||ul? S & wg

for some constants cy, ca, sg > 0.
Then the closed-loop system is non-uniformly stable so that

I(is — A~ < Mg(1+ |s]2P*),  |s| large.
Thus
Mr
1Tzl < FllAzl, @ e D(A)

fora=28+~v>0.



Stability Results
Example
Main Results Application to Robust Tracking

Comments:
@ Theorem requires some admissiblity and well-posedness
assumptions (swept under the carpet here). Limits 2D-nD BC.

o Lack of spectral gap and repeated eigenvalues are allowed in a
more general version (affects the rate).

Optimality
o Obtained rate is not always optimal, especially if

o A; has no spectral gap (2D, nD waves) or
o eigenvalues diverge as |wy| — 0o (beams and plates).

@ A nice way of getting (possibly) suboptimal rates easily.
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Stability Results
Example
Main Results Application to Robust Tracking

Comments:

@ Theorem requires some admissiblity and well-posedness
assumptions (swept under the carpet here). Limits 2D-nD BC.

o Lack of spectral gap and repeated eigenvalues are allowed in a
more general version (affects the rate).

Optimality
o Obtained rate is not always optimal, especially if

o A; has no spectral gap (2D, nD waves) or
o eigenvalues diverge as |wy| — 0o (beams and plates).

@ A nice way of getting (possibly) suboptimal rates easily.

References:

@ Paunonen Arxiv June '17
@ Partly based on joint work with Chill, Stahn & Tomilov

L. Paunonen Non-uniform Stability of Coupled Systems



Stability Results
Example
Main Results Application to Robust Tracking

Example: 1D Wave-Heat

Wave system on (—1,0): Heat system on (0, 1):
vt (€, 1) = vee (€, 1) wi(§:1) = wee (&, 1)
Y1 (t) = UE(Oa t) yQ(t) = w(o’ t)
uy(t) = v(0,1) uz(t) = —we(0,1)

o A; diagonalizable, wy ~ km, ¢y trigonometric
® Bi¢r #0, and |Bior| 2 1 = |wi|°
o Py(is) = Bj(is — Ag)~! By satisfies | Py(is)| ~ |s| /2.

Thus the closed-loop system is polynomially stable,
: -1 1/2 M
Izs = A)= I =0(s"")  and [ TH)z] < 5[ Az]l.

Reproduces results of [Zhang-Zuazua, Batty-Paunonen-Seifert].
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Stability Results
Example

Application to Robust Tracking

Application: Robust Periodic Tracking

Main Results

Wist (1)
i
xt(é.at) = Ax(é-at)7 y(t)
Ox B ox —0 -
%(gat)‘Fl - u(t)a %(gat)‘f‘o - .
y(t) = | (& t)de, u(t)
N}
Defines a regular linear system,
P(is)] = O 1| ) forlarge |5
S
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Stability Results
Example
Main Results Application to Robust Tracking

Objective: Track a Reference Signal y,.¢(t)

Consider tracking of a nonsmooth 2-periodic reference signal

yref(t) = Z gref(k)eiﬂ-kt
keZ

where |gres (k)] = O([k|3).
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Stability Results
Example
Main Results Application to Robust Tracking

Internal Model Based Control

Theorem (Internal Model Principle, LP '10,'14)
Robust tracking is achieved if
o Controller has “an internal model” of frequencies {ik7}recz

o The closed-loop system is stable.

—> 2D Heat

Internal model

~ periodic transport/wave eqn, or a delay line
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Stability Results
Example
Main Results Application to Robust Tracking

Robust Controller Construction
Construct an internal model based controller (A, B., B})
o A, = diag(ikm)gez on £2(C), cf. periodic transport eqn.
o B, = (by)r € L(C,£3(C)), choose b, = (1 + |k|)~(1/2+e),
The controller is passive, (A., B.) approximately controllable.
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Stability Results
Example
Main Results Application to Robust Tracking

Robust Controller Construction

Construct an internal model based controller (A, B., B})
o A, = diag(ikm)gez on £2(C), cf. periodic transport eqn.
o B, = (by)r € L(C,£3(C)), choose b, = (1 + |k|)~(1/2+e),

The controller is passive, (A., B.) approximately controllable.

Proposition

The closed-loop is polynomially stable so that

M
ITa(®)zaO)] < 7z 1Aaza(O)l,  Vza(0) € D(Aa),
where a = 3/2 + 2¢.
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Stability Results
Example
Main Results Application to Robust Tracking

Robust Controller Construction

Construct an internal model based controller (A, B., B})
o A, = diag(ikm)gez on £2(C), cf. periodic transport eqn.
o B, = (by)r € L(C,£3(C)), choose b, = (1 + |k|)~(1/2+e),

The controller is passive, (A., B.) approximately controllable.

Proposition

The closed-loop is polynomially stable so that

M
[Ter(t)za(0)]] < m”x‘lcl%l(O)H, Vz4(0) € D(Ag),
where o = 3/2+2¢e. If 0 < e < 1/2, then
t+1 N
[ 1) — el = 0 (5
t tl/a

for “suitable” intial states x.(0) € X x Z (~ classical solutions).
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Stability Results

Example
Main Results Application to Robust Tracking
2 y(t)
1
0
2 4 6 8

0.2

t+1
/t lyrer(s) — (s)]ds

0.1

0 T :
0 4 8

o Finite Differences 20 x 20 grid,

@ A. truncated to a 31 x 31-matrix.
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Stability Results
Example
Main Results Application to Robust Tracking

Conclusions

In this presentation:

@ Discussion of coupled systems and PDEs

@ General conditions for non-uniform and polynomial stability of
coupled systems.

@ LP, “Stability and Robust Regulation of Passive Linear
Systems,” http://arxiv.org/abs/1706.03224
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