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Main Objectives
Problem
Consider the stability of different types of coupled systems and
PDEs.

The focus is on couplings leading to non-uniform stability.

Motivation:
Coupling of stable and unstable PDEs and ODEs often leads
to rational decay of energy, i.e., polynomial stability.
Situation also appears in control applications.

Main results:
New stability results for coupled PDEs.
Disclaimer: Will not solve all your problems!
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Outline

(1) Discussion: Passive systems and feedback in coupled PDEs

(2) Introduction to polynomial and non-uniform stability

(3) Main stability results.

General conditions for polynomial and nonuniform stability of
coupled PDEs and systems.
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Coupled PDE-PDE and PDE-ODE systems appear in models of
Fluid-structure interactions
Thermo-elasticity
Mechanical systems, e.g., beams with tip masses
Magnetohydrodynamics
Acoustics

Couplings may either be
Through the boundary (Fluid-structure, acoustics), or
inside a shared domain (Thermo-elasticity, MHD)
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Motivation 1: Coupled Wave–Heat Systems

Models for fluid–structure and heat–structure interactions:

∂2u

∂t2
(x, t) = ∆u(x, t)

l
coupling BCs
l

∂w

∂t
(x, t) = ∆w(x, t)

heat equation

wave eqn

References: Avalos & Triggiani, Duyckaerts, Zhang & Zuazua, Mercier,
Nicaise, Ammari, Guo, and many others.
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback
structure
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback
structure

System 1

System 2
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback
structure

System 1

System 2

Unstable

Stable
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Inputs and Outputs

inputs/outputs

wave equation

heat equation

inputs/outputs

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)
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Motivation 2: Internal Model Based Control

Problem
Closed-loop stabilization in Robust Output Tracking and
Disturbance Rejection for stable systems.

Control system

Internal model
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Problem
Use the properties of the two systems to deduce stability of the
coupled system.

System 1

System 2

Unstable

Stable
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Polynomial and Non-Uniform Stability

Theorem (Borichev & Tomilov ’10)
Let T (t) be a uniformly bounded C0-semigroup on a Hilbert space
X. Let A be the generator of T (t) and σ(A) ∩ iR = ∅.

For any constant α > 0, the following are equivalent:

‖T (t)x0‖ ≤
M

t1/α
‖Ax0‖ for some M > 0

‖(is−A)−1‖ ≤MR(1 + |s|α), for some MR > 0

Application: E(t) ∼ ‖T (t)x0‖2 for many PDE systems.
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Polynomial and Non-Uniform Stability

Theorem (Rozendaal, Seifert & Stahn 2017, on Hilbert X)
Assume T (t) bounded, iR ⊂ ρ(A). Define an increasing M(·) by

M(s) = sup
|r|≤s
‖(ir −A)−1‖, s > 0.

If M(·) “positive increase”, then for some c, C > 0

c

M−1(t)‖Ax0‖ ≤ ‖T (t)x0‖ ≤
C

M−1(t)‖Ax0‖, x0 ∈ D(A)
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Polynomial and Non-Uniform Stability

Theorem (Batty & Duyackerts 2008, on Banach X)
Assume T (t) bounded, iR ⊂ ρ(A). Define an increasing M(·) by

M(s) = sup
|r|≤s
‖(ir −A)−1‖, s > 0.

Then for some c, C > 0

‖T (t)x0‖ ≤
C

M−1
log (ct)

‖Ax0‖, x0 ∈ D(A)

where Mlog(s) = M(s)(log(1 +M(s)) + log(1 + s)).

This is optimal for general Banach X (Borichev & Tomilov ’10).
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Take-Home Message

If your system is contractive or bounded, then

“Non-uniform stability only requires a resolvent estimate on iR”
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Polynomial and Non-Uniform Stability Appear in . . .

Multidimensional damped wave equations (non-GCC)
Wave equations on exterior domains
Platoon-type systems
Here: Coupled PDE and PDE-ODE systems
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Problem
Use the properties of the two systems to deduce stability of the
coupled system.

System 1

System 2

Unstable

Stable
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Impedance Passive Systems
Consider (regular) linear systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = B∗x(t)

where X is Hilbert, A generates a contraction semigroup, and
B ∈ L(U, V ∗) for some suitable spaces U and V ∗ ⊇ X.

Such systems are “impedance passive”, which in particular means
they have “no internal sources of energy”,

d

dt
‖x(t)‖2 ≤ 2 Re〈u(t), y(t)〉Y

Examples:
Many mechanical systems, RLC circuits, . . .
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Feedback Theory of Passive Systems
Property: “Power-preserving interconnection” preserves passivity.

−

y1u1

u2y2

S1

S2

⇒ Closed-loop semigroup contractive on Hilbert X1 ×X2.

Exponential and strong stability results:
Rebarber-Weiss ’03, Ramirez-Le Gorrec-Macchelli-Zwart ’14,
Guiver-Logemann-Opmeer ’17, Zhao-Weiss ’17, . . .
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Coupled Passive Systems

If for k = 1, 2 we let

ẋk(t) = Akxk(t) +Bkuk(t), xk(0) ∈ Xk

yk(t) = B∗kxk(t),

then the “power-preserving interconnection” leads to

d

dt

[
x1(t)
x2(t)

]
=
[

A1 B1B
∗
2

−B2B
∗
1 A2

]
︸ ︷︷ ︸

=: A

[
x1(t)
x2(t)

]
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Example: 1D Wave–Heat Model


vtt(ξ, t) = vξξ(ξ, t), ξ ∈ (−1, 0), t > 0,
wt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1), t > 0,

vξ(0, t) = wξ(0, t), vt(0, t) = w(0, t), t > 0,

[Xu Zhang & Zuazua, Batty, Paunonen & Seifert, (2D version:
Avalos, Triggiani & Lasiecka)]

Known: Closed-loop polynomially stable, ‖R(is, A)‖ = O(
√
|s|).

L. Paunonen Non-uniform Stability of Coupled Systems



Introduction
Coupled Systems

Main Results

Passive Systems
Heat-Wave Systems
2D Situations

Example: 1D Wave–Heat Model
vtt(ξ, t) = vξξ(ξ, t), ξ ∈ (−1, 0), t > 0,
wt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1), t > 0,

vξ(0, t) = wξ(0, t), vt(0, t) = w(0, t), t > 0,

wave
{

heat

u
ut

w

−1 1

The wave equation The heat equation
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Example: 1D Wave-Heat — Open-Loop Splitting

Wave system on (−1, 0):

vtt(ξ, t) = vξξ(ξ, t)
y1(t) = vξ(0, t)
u1(t) = vt(0, t)

Unstable

Heat system on (0, 1):

wt(ξ, t) = wξξ(ξ, t)
y2(t) = w(0, t)
u2(t) = −wξ(0, t)

Stable

The systems are impedance passive. We have U = C and B1 and
B2 are unbounded.
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Inputs and Outputs

inputs/outputs

wave equation

heat equation

inputs/outputs

Γ0

Γ0

2D systems are more compli-
cated to set up.

For boundary couplings U is
a function space on Γ0.

In in-domain couplings,
space on Ω or Ω0 ⊂ Ω.
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Problem
Derive a resolvent estimate for

A :=
[

A1 B1B
∗
2

−B2B
∗
1 A2

]

in terms of the properties of
(A1, B1, B

∗
1) [Unstable]

(A2, B2, B
∗
2) [Stable]

Assumption
A1 is diagonalizable and skew-adjoint, A1 =

∑
k∈Z

iωk〈·, φk〉φk

Uniform gap: inf
k 6=l
|ωk − ωl| > 0 (for simplicity).

T2(t) gen. by A2 is exponentially stable.
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Conditions for Non-Uniform Stability

Assumption
A1 is diagonalizable and skew-adjoint, A1 =

∑
iωk〈·, φk〉φk

Uniform gap: inf
k 6=l
|ωk − ωl| > 0.

T2(t) gen. by A2 is exponentially stable.
‖B∗1φk‖ 6= 0 for all k (i.e., (A1, B1) is “approx. controllable”).
Denoting P2(λ) = B∗2(λ−A2)−1B2 (transfer function),

P2(iωk) + P2(iωk)∗ > 0 ∀k ∈ Z.

Proposition
The closed-loop is strongly stable and σ(A) ⊂ C−.
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Denote P2(λ) = B∗2(λ−A2)−1B2 (transfer function)

Theorem
Let γ, η : R+ → (0, 1) be decreasing (and “nice”) so that

‖B∗1φk‖ ≥ c1γ(|ωk|) ∀k

Re〈P2(is)u, u〉 ≥ c2η(|s|)‖u‖2 s ≈ ωk

for some constants c1, c2, s0 > 0.
Then the closed-loop system is non-uniformly stable so that

‖(is−A)−1‖ . MR

γ(|s|)2η(|s|) , |s| large.
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Theorem
Let γ, η : R+ → (0, 1) be decreasing (and “nice”) so that

‖B∗1φk‖ ≥ c1γ(|ωk|) ∀k

Re〈P2(is)u, u〉 ≥ c2η(|s|)‖u‖2 s ≈ ωk

for some constants c1, c2, s0 > 0.
Then the closed-loop system is non-uniformly stable so that

‖(is−A)−1‖ . MR

γ(|s|)2η(|s|) , |s| large.

Thus

‖T (t)x‖ ≤ MT

M−1(t)‖Ax‖, x ∈ D(A)

where M(s) ∼ γ(s)−2η(s)−1.
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Theorem
Let β, γ ≥ 0 such that

‖B∗1φk‖ ≥ c1|ωk|−β ∀k

Re〈P2(is)u, u〉 ≥ c2|s|−γ‖u‖2 s ≈ ωk

for some constants c1, c2, s0 > 0.
Then the closed-loop system is non-uniformly stable so that

‖(is−A)−1‖ ≤MR(1 + |s|2β+γ), |s| large.

Thus

‖T (t)x‖ ≤ MT

t1/α
‖Ax‖, x ∈ D(A)

for α = 2β + γ ≥ 0.
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Comments:
Theorem requires some admissiblity and well-posedness
assumptions (swept under the carpet here). Limits 2D-nD BC.
Lack of spectral gap and repeated eigenvalues are allowed in a
more general version (affects the rate).

Optimality
Obtained rate is not always optimal, especially if

A1 has no spectral gap (2D, nD waves) or
eigenvalues diverge as |ωk| → ∞ (beams and plates).

A nice way of getting (possibly) suboptimal rates easily.

References:

Paunonen Arxiv June ’17
Partly based on joint work with Chill, Stahn & Tomilov

L. Paunonen Non-uniform Stability of Coupled Systems



Introduction
Coupled Systems

Main Results

Stability Results
Example
Application to Robust Tracking

Comments:
Theorem requires some admissiblity and well-posedness
assumptions (swept under the carpet here). Limits 2D-nD BC.
Lack of spectral gap and repeated eigenvalues are allowed in a
more general version (affects the rate).

Optimality
Obtained rate is not always optimal, especially if

A1 has no spectral gap (2D, nD waves) or
eigenvalues diverge as |ωk| → ∞ (beams and plates).

A nice way of getting (possibly) suboptimal rates easily.

References:

Paunonen Arxiv June ’17
Partly based on joint work with Chill, Stahn & Tomilov

L. Paunonen Non-uniform Stability of Coupled Systems



Introduction
Coupled Systems

Main Results

Stability Results
Example
Application to Robust Tracking

Example: 1D Wave-Heat
Wave system on (−1, 0):

vtt(ξ, t) = vξξ(ξ, t)
y1(t) = vξ(0, t)
u1(t) = vt(0, t)

Heat system on (0, 1):

wt(ξ, t) = wξξ(ξ, t)
y2(t) = w(0, t)
u2(t) = −wξ(0, t)

A1 diagonalizable, ωk ∼ kπ, φk trigonometric
B∗1φk 6= 0, and |B∗1φk| & 1 = |ωk|0

P2(is) = B∗2(is−A2)−1B2 satisfies |P2(is)| ∼ |s|−1/2.

Thus the closed-loop system is polynomially stable,

‖(is−A)−1‖ = O(|s|1/2) and ‖T (t)x‖ ≤ M

t2
‖Ax‖.

Reproduces results of [Zhang-Zuazua, Batty-Paunonen-Seifert].
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Application: Robust Periodic Tracking

xt(ξ, t) = ∆x(ξ, t),
∂x

∂n
(ξ, t)|Γ1 = u(t), ∂x

∂n
(ξ, t)|Γ0 = 0

y(t) =
∫

Γ1
x(ξ, t)dξ, u(t)

y(t)

wdist(t)

Defines a regular linear system,

|P (is)| = O( 1√
|s|

) for large |s|.
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Objective: Track a Reference Signal yref (t)

0 1 2 3 4

0

2

Consider tracking of a nonsmooth 2-periodic reference signal

yref (t) =
∑
k∈Z

ŷref (k)eiπkt

where |ŷref (k)| = O(|k|−3).
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Internal Model Based Control

Theorem (Internal Model Principle, LP ’10,’14)
Robust tracking is achieved if

Controller has “an internal model” of frequencies {ikπ}k∈Z
The closed-loop system is stable.

2D Heat

Internal model

∼ periodic transport/wave eqn, or a delay line
L. Paunonen Non-uniform Stability of Coupled Systems
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Robust Controller Construction
Construct an internal model based controller (Ac, Bc, B∗c )

Ac = diag(ikπ)k∈Z on `2(C), cf. periodic transport eqn.
Bc = (bk)k ∈ L(C, `2(C)), choose bk = (1 + |k|)−(1/2+ε).

The controller is passive, (Ac, Bc) approximately controllable.

Proposition
The closed-loop is polynomially stable so that

‖Tcl(t)xcl(0)‖ ≤ M

t1/α
‖Aclxcl(0)‖, ∀xcl(0) ∈ D(Acl),

where α = 3/2 + 2ε. If 0 < ε < 1/2, then∫ t+1

t
‖y(s)− yref(s)‖ds = O

( 1
t1/α

)
for “suitable” intial states xcl(0) ∈ X × Z (∼ classical solutions).
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2 4 6 8

0

1

2 y(t)

0 4 8
0

0.1

0.2

∫ t+1

t

‖yref (s)− y(s)‖ds

Approximations:
Finite Differences 20× 20 grid,
Ac truncated to a 31× 31-matrix.
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Conclusions

In this presentation:

Discussion of coupled systems and PDEs
General conditions for non-uniform and polynomial stability of
coupled systems.

LP, “Stability and Robust Regulation of Passive Linear
Systems,” http://arxiv.org/abs/1706.03224
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