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Main Objectives

Problem
Study the robust output regulation problem in the case where
robustness is not required with respect to all perturbations.

Main results:
A test to determine robustness with respect to a given set of
perturbations.
Refine the Internal Model Principle: A “full” internal model is
not always necessary if the class of perturbations is restricted.
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Consider a plant

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)

where
u(t) ∈ Cm is the control input
y(t) ∈ Cp is the measured output.

The transfer function is denoted by

P(λ) = CR(λ,A)B + D.
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The Control Problem

Problem (Robust Output Regulation)
Choose a control law in such a way that

The output y(t) tracks a given reference signal yref(t)
asymptotically, i.e.

lim
t→∞

‖y(t)− yref(t)‖ = 0

The above property is robust with respect to small
perturbations in the operators (A,B,C ,D) of the plant.
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The Exosystem and the Control Scheme
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The Exosystem

S
yref (t)

v̇(t) = Sv(t), v0 ∈ Cq

yref (t) = Fv(t)

S is a diagonal matrix

S =

 iω1
iω2

. . .
iωq



The eigenvalues iωk ∈ iR of S determine the frequencies ωk in the
reference signals yref (t).
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The Dynamic Error Feedback Controller

We consider an error feedback controller (G1,G2,K ) of the form

ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0 ∈ Z
u(t) = Kz(t)

Feedback controllers are known to be essential in achieving
robustness.
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The Closed-Loop System
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Closed-loop system

“Closed-loop stability” means that without input, the states of the
plant and the controller decay to zero asymptotically.
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The Internal Model Principle

Theorem (Francis & Wonham, 1970’s, LP & SP 2010)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the signal generator.

Here p = dim Y , the number of outputs.
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The Internal Model Principle

Theorem (Francis & Wonham, 1970’s, LP & SP 2010)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the signal generator.

Here p = dim Y , the number of outputs.

The p-copy for an exosystem with S = diag(iω1, . . . , iωq):
Any eigenvalue iωk of S must be an eigenvalue of G1 with
p linearly independent eigenvectors associated to it, i.e.,

dimN (iωk − G1) ≥ p.
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The p-Copy Internal Model Principle
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Remarks on the Internal Model Principle

Remark
The proof of the Internal Model Principle is largely based on
requiring robustness with respect to perturbations to the output
operators of the exosystem.

Allowing such perturbations is often unnecessary (in particular, if
reference signals are known accurately).

Motivates the study of robustness with respect to “smaller” classes
of perturbations, and for individual perturbations.
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Basic Assumptions on the Perturbations

Denote by O the class of all admissible perturbations of the plant:

(A,B,C ,D) −→ (Ã, B̃, C̃ , D̃) ∈ O.

The perturbations in O are assumed be “small” so that

The perturbed closed-loop system is exponentially stable
The eigenvalues {iωk} of the exosystem satisfy iωk ∈ ρ(Ã).

Denote

P̃(λ) = C̃R(λ, Ã)B̃ + D̃.
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Aim
Problem (Robust Output Regulation)
The controller (G1,G2,K ) is such that

The output y(t) tracks the reference signal yref(t), i.e.

lim
t→∞

‖y(t)− yref(t)‖ = 0 (1)

If the operators of the plant are changed s.t.

(A,B,C ,D) −→ (Ã, B̃, C̃ , D̃) ∈ O,

the property (1) is still true.

If the second part is true for some (Ã, B̃, C̃ , D̃), we say that the
controller is robust w.r.t. to these perturbations.

L. Paunonen Reduced Order Internal Models



Introduction
Robust Output Regulation and the Internal Model Principle

Reduced Order Internal Models
Conclusion

Classes of Perturbations
Testing for Robustness
Refining the Internal Model Principle
Example

Testing Robustness for Perturbations in O

Theorem

A stabilizing controller (G1,G2,K ) is robust with respect to given
perturbations (Ã, B̃, C̃ , D̃) ∈ O if and only if the equations

P̃(iωk)Kzk = −Fek

(iωk − G1)zk = 0

have a solution zk ∈ D(G1) for all k ∈ {1, . . . , q}.
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Testing Robustness for Perturbations in O

Theorem

A stabilizing controller (G1,G2,K ) is robust with respect to given
perturbations (Ã, B̃, C̃ , D̃) ∈ O if and only if the equations

P̃(iωk)Kzk = −Fek

(iωk − G1)zk = 0

have a solution zk ∈ D(G1) for all k ∈ {1, . . . , q}.

Here: ek is an Euclidean basis vector, F is the output operator of
the exosystem, G1 is the system operator and K the output
operator of the controller.
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Theorem
The controller (G1,G2,K ) is robust w.r.t (Ã, B̃, C̃ , D̃) ∈ O iff

P̃(iωk)Kzk = −Fek (2a)

(iωk − G1)zk = 0 (2b)

have a solution zk ∈ D(G1) for all k ∈ {1, . . . , q}.

The perturbations are only visible through the change of the
transfer function at the frequencies iωk

P(iωk) −→ P̃(iωk)
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Theorem
The controller (G1,G2,K ) is robust w.r.t (Ã, B̃, C̃ , D̃) ∈ O iff

P̃(iωk)Kzk = −Fek (2a)

(iωk − G1)zk = 0 (2b)

have a solution zk ∈ D(G1) for all k ∈ {1, . . . , q}.

We have robustness in particular if the perturbations do not
change the value of P(λ) at the frequencies λ = iωk .
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Robustness w.r.t. a Restricted Class of Perturbations

Problem
If we are only interested in robustness with respect to a specific
class of perturbations, we can then ask

how big an internal model do we need?

i.e., how many times must the dynamics of the exosystem be
copied in the controller.

number of copies of iωk in the controller
←→ # of lin. indep’t eigenvectors of G1 corresponding to iωk
←→ dimN (iωk − G1)
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Theorem
The controller (G1,G2,K ) is robust w.r.t (Ã, B̃, C̃ , D̃) ∈ O iff

P̃(iωk)Kzk = −Fek

(iωk − G1)zk= 0

have a solution zk ∈ D(G1) for all k ∈ {1, . . . , q}.

For a fixed k the theorem implies that

dimN (iωk − G1)

must be at least the number of linearly independent solutions zk

corresponding to different perturbations.
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Lower Bound for the Size of the Internal Model

Especially easy, if dim U = dim Y = p and P̃(iωk) are invertible:

Theorem

Define

p̃k = dim span
{

P̃(iωk)−1Fek
∣∣ (Ã, B̃, C̃ , D̃) ∈ O0

}
,

where O0 ⊂ O. Then robustness w.r.t. perturbations in O0 implies

dimN (iωk − G1) ≥ p̃k .
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Classes Requiring a Full Internal Model

A full internal model is necessary for robustness with respect to all
small perturbations in any one of the operators.

Theorem
If the control law is robust with respect to all small rank one
perturbations in any one of the operators A, B, C , or D of the
plant, then the controller necessarily incorporates a p-copy internal
model of the exosystem.
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A Quick Recap

So far in theory. . .

A method for testing robustness with respect to given
perturbations
A lower bound for the size of the internal model
Some “small” classes of perturbations that require a full
internal model
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Example: A MIMO Wave Equation
Set-point regulation (yref (t) ≡ yr ∈ Cp constant, p > 1) for

∂2w
∂t2 (z, t)−α

∂w
∂t (z, t) = ∂2w

∂z2 (z, t) + Bu(t)

y(t) = Cw(·, t).

Example
We can build a 1-dimensional controller that is robust with respect
to all sufficiently small perturbations in α.

Key: Exosystem has iω0 = 0, and for perturbations in α we have
P̃(0) = P(0). Thus one copy of the exosystem is sufficient for
robustness.
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Extensions

The results in this presentation are also valid for
Non-diagonal exosystems (i.e., S has Jordan blocks)
Infinite-dimensional exosystems (nonsmooth reference signals)
Infinite-dimensional plants with unbounded control and
observation.

L. Paunonen Reduced Order Internal Models



Introduction
Robust Output Regulation and the Internal Model Principle

Reduced Order Internal Models
Conclusion

Conclusions

In this presentation.

Robust output regulation with restricted classes of
perturbations.
A method for testing robustness with respect to given
perturbations.
Some small classes of perturbations requiring a full internal
model.
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