Robust Regulation for Port-Hamiltonian Systems

Jukka-Pekka Humaloja, Lassi Paunonen and Seppo Pohjolainen

Tampere University of Technology

July 12th, 2016

Outline

Robust Output Regulation and the Internal Model Principle

Background on Port-Hamiltonian Systems

Robust Tracking for a 1D Schrödinger Equation

Conclusions

Consider an infinite-dimensional linear system with *input* u(t), output y(t).

In particular, we may consider

- Systems with bounded input and output operators
- Regular linear systems
- Boundary control systems
- Port–Hamiltonian systems

Port–Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme The Internal Model Principle

Goals and Main Results

- Consider robust output tracking for port–Hamiltonian systems of first, second and even order
- Introduce a simple controller structure for impedance energy preserving port–Hamiltonian systems.
 - The systems in our class are unstable, and existing controllers would require observer design.

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme The Internal Model Principle

Port-Hamiltonian Systems in Brief

- The class of port-Hamiltonian systems covers Hamiltonian PDEs with 1 spatial dimension. Interacting with the environment via the boundaries of the spatial domain.
- Examples of port-Hamiltonian systems are, i.a., wave equation, Timoshenko beam (first order systems), Euler–Bernoulli beam and Schrödinger equation (second order systems).
- Enables a natural expressions for energy and change of energy of the system in terms of inputs and outputs.

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme The Internal Model Principle

An Example: A Schrödinger Equation

A Schrödinger equation on the spatial interval $\zeta \in [0, 1]$:

$$rac{\partial}{\partial t}w(\zeta,t)=irac{\partial^2}{\partial\zeta^2}w(\zeta,t),\quad t\geq 0$$

is a (second-order) port-Hamiltonian system

We can consider inputs and outputs (more precise conditions later)

$$u(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = \begin{bmatrix} x'(0,t) \\ x(1,t) \end{bmatrix},$$
$$y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} ix(0,t) \\ ix'(1,t) \end{bmatrix}.$$

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme The Internal Model Principle

Another Example: A 1D Wave Equation

A model for a vibrating string on the spatial interval $\zeta \in [0,1]$

$$\frac{\partial^2}{\partial t^2} p(\zeta, t) = \frac{\partial^2}{\partial \zeta^2} p(\zeta, t),$$

can be written as a first-order port-Hamiltonian system

$$\frac{\partial}{\partial t} \left[\begin{array}{c} x_1(\zeta,t) \\ x_2(\zeta,t) \end{array} \right] = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \frac{\partial}{\partial \zeta} \left[\begin{array}{c} x_1(\zeta,t) \\ x_2(\zeta,t) \end{array} \right],$$

where $x_1(\zeta, t) = \partial_t p(\zeta, t)$ and $x_2(\zeta, t) = \partial_\zeta p(\zeta, t)$.

We can consider inputs and outputs

$$u(t) = \begin{bmatrix} x_2(1,t) \\ x_1(0,t) \end{bmatrix}, \qquad y(t) = \begin{bmatrix} x_1(1,t) \\ -x_2(0,t) \end{bmatrix}$$

Port–Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme The Internal Model Principle

The Control Problem

Problem (Robust Output Regulation)

Choose a control law in such a way that

The output y(t) tracks a given reference signal y_{ref}(t) asymptotically, i.e.

$$\lim_{t\to\infty}\|y(t)-y_{ref}(t)\|=0$$

The above property is robust with respect to small perturbations in the parameters of the plant.

Port–Hamiltonian Systems Robust Output Regulation **The Feedback Control Scheme** The Internal Model Principle

The Control Scheme

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme **The Internal Model Principle**

The Internal Model Principle

Theorem (Francis & Wonham, 1970's, LP & SP 2010)

A stabilizing feedback controller solves the robust output regulation problem if and only if it contains p copies of the dynamics of the exosystem.

Here $p = \dim Y$, the number of outputs.

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme **The Internal Model Principle**

The Internal Model Principle

Theorem (Francis & Wonham, 1970's, LP & SP 2010)

A stabilizing feedback controller solves the robust output regulation problem if and only if it contains p copies of the dynamics of the exosystem.

Here $p = \dim Y$, the number of outputs.

The p-copy for bounded $y_{ref}(t) = \sum_{k=1}^{N} a_k e^{i\omega_k t}$:

Any frequency $i\omega_k$ of the reference signal must be an eigenvalue of the controller with p linearly independent eigenvectors associated to it.

Port–Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme The Internal Model Principle

Feedback Controller

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme **The Internal Model Principle**

The p-Copy Internal Model Principle

Port-Hamiltonian Systems Robust Output Regulation The Feedback Control Scheme **The Internal Model Principle**

The p-Copy Internal Model Principle

The internal model principle for classes of systems:

- Bounded input and output operators (2010)
- Regular linear system with distributed disturbances (2014)
- ▶ Regular linear systems with boundary disturbance (2016)
- Boundary control systems (2016, (2002))

Port–Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Port-Hamiltonian Systems

A linear port-Hamiltonian system of order N = 1 or $N \in 2\mathbb{N}$ on the spatial interval $\zeta \in [a, b]$ is given by

$$\begin{split} \frac{\partial}{\partial t} x(\zeta, t) &= \mathcal{A} x(\zeta, t), \quad x(0) = x_0, \\ u(t) &= \mathcal{B} x(\cdot, t), \\ y(t) &= \mathcal{C} x(\cdot, t), \end{split}$$

where the operator ${\mathcal A}$ is defined by

$$\mathcal{A}x(\zeta,t) := \sum_{k=0}^{N} P_k \frac{\partial^k (\mathcal{H}(\zeta)x(t,\zeta))}{\partial \zeta^k},$$

where $P_k \in \mathbb{C}^{n imes n}$, $P_k^* = (-1)^{k+1} P_k$ for $k \ge 0$, and P_N invertible.

Port-Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Port-Hamiltonian Systems

- The matrix function H: [a, b] → C^{n×n} is measurable, and there exists 0 < m ≤ M such that m|ζ|² ≤ ζ*H(ζ)ζ ≤ M|ζ|² and H(ζ) = H(ζ)* for ζ ∈ Cⁿ.
- ▶ We choose state space $X = L^2([a, b]; \mathbb{C}^n)$ with inner product

$$\langle f,g\rangle_X = \frac{1}{2}\int\limits_a^b g(\zeta)^*\mathcal{H}(\zeta)f(\zeta)d\zeta.$$

• The domain of the operator \mathcal{A} is given by

$$\mathcal{D}(\mathcal{A}) = \{ x \in X \mid \mathcal{H}x \in H^N([a, b]; \mathbb{C}^n) \}$$

The Hamiltonian of the port-Hamiltonian system is

$$E(t) = \langle x(t), x(t) \rangle_X = ||x(t)||_X^2.$$

Port-Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Port-Hamiltonian Systems

Let

$$\begin{split} \Phi &: H^N([a,b];\mathbb{C}^n) \to \mathbb{C}^{2nN}, \\ \Phi(x) &:= (x(b), \dots, x^{(N-1)}(b), x(a), \dots, x^{(N-1)}(a))^T. \end{split}$$

• Define the boundary port variables f_{∂} , e_{∂} by

$$\begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} := \frac{1}{\sqrt{2}} \begin{bmatrix} Q & -Q \\ I & I \end{bmatrix} \Phi(\mathcal{H}x),$$

where Q is a block matrix given by

$$egin{aligned} Q_{ij} := egin{cases} (-1)^{j-1} P_{i+j-1}, & i+j \leq N+1 \ 0, & ext{else} \end{aligned}$$

Port–Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Port-Hamiltonian Systems

▶ Define inputs and outputs B: H⁻¹(H^N([a, b], Cⁿ)) → Cⁿ and C: H⁻¹(H^N([a, b], Cⁿ)) → Cⁿ by

$$u(t) = \mathcal{B}x(t) := W_B \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix},$$
$$y(t) = \mathcal{C}x(t) := W_C \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix},$$

where $W_B, W_C \in \mathbb{C}^{nN \times 2nN}$.

- Main idea: e_∂(t) and f_∂(t) are linear combinations of (Hx)(·) and its N − 1 derivatives evaluated at the boundaries ζ = a and ζ = b.
- ▶ Port–Hamiltonian system are in particular boundary control systems whenever $W_B \begin{pmatrix} 0 & l \\ l & 0 \end{pmatrix} W_B^* \ge 0$ (Le Gorrec et al. 2005)

Port–Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Background on Controller Design

- Simple internal model based controllers available for stable boundary control systems (Hämäläinen & Pohjolainen, 2002)
- Many interesting port-Hamiltonian system are unstable, but can be stabilized with negative output feedback (and the closed-loop systems are port-Hamiltonian).

The general approach is to combine the feedback stabilization and simple controller design.

Port–Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Assumptions

Consider a port-Hamiltonian system

$$\begin{split} \dot{x}(t) &= \mathcal{A}x(t), \qquad x(0) = x_0, \\ \mathcal{B}x(t) &= u(t), \\ \mathcal{C}x(t) &= y(t), \end{split}$$

that is impedance energy-preserving, meaning that

$$\frac{1}{2}\frac{d}{dt}||x(t)||_X^2 = u^*(t)y(t).$$

- ▶ Plant is a boundary control system with a unitary group.
- Characterisation via matrices W_B and W_C.
- Denote transfer function by $P(\lambda)$.

Port–Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Results on Stabilization: First Order

Theorem (Villegas et. al. 2005)

A **first order** impedance energy preserving port–Hamiltonian system can be stabilized exponentially with negative output feedback $u(t) = -\kappa y(t)$.

Port–Hamiltonian Systems General Approach to Control Design The Robust Output Regulation Problem The Controller

Results on Stabilization: Even Order

Lemma

An **even order** impedance energy preserving port–Hamiltonian system can be stabilized exponentially with negative output feedback $u(t) = -\kappa y(t)$.

Proof.

Using a result by Augner & Jacob, 2014, that the system is exponentially stable if

$$\mathsf{Re}\langle Ax, x \rangle_X \leq -\gamma \sum_{\zeta=a,b} \sum_{k=0}^{N-1} \alpha_{\zeta,k} \left\| (\mathcal{H}x)^{(k)}(\zeta) \right\|^2$$

for some $\gamma > 0$ and certain $\alpha_{\zeta,k} \ge 0$.

Port–Hamiltonian Systems General Approach to Control Design **The Robust Output Regulation Problem** The Controller

The Robust Output Regulation Problem

Problem (The Robust Output Regulation Problem)

Choose $(\mathcal{G}_1, \mathcal{G}_2, \varepsilon K_0, \kappa)$ in such a way that

- 1. The closed loop system is exponentially stable.
- 2. The controller asymptotically tracks the reference signal y_{ref},

$$\|y(t) - y_{ref}(t)\| \to 0, \qquad \text{as} \quad t \to \infty$$
 (1)

at an exponential rate.

3. If $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ are perturbed to $(\tilde{\mathcal{A}}, \tilde{\mathcal{B}}, \tilde{\mathcal{C}})$ in such a way that the closed-loop stability is preserved, then (1) continues to hold.

$$y_{ref}(t) = \sum_{k=1}^{q} a_k e^{i\omega_k t}, \qquad a_k \in \mathbb{C}^p.$$

 Robust Output Regulation and the Internal Model Principle
 Port–Hamiltonian Systems

 Background on Port-Hamiltonian Systems
 General Approach to Control Design

 Robust Tracking for a 1D Schrödinger Equations
 Conclusions

 The Controller
 The Controller

Stabilizing Output Feedback + Robust Controller

Consider a a dynamic error feedback controller of the form

$$\dot{z}(t) = \mathcal{G}_1 z(t) + \mathcal{G}_2(y(t) - y_{ref}(t)), \qquad z(0) = z_0,$$

 $u(t) = \varepsilon K_0 z(t) - \kappa y(t),$

 Robust Output Regulation and the Internal Model Principle
 Port–Hamiltonian Systems

 Background on Port-Hamiltonian Systems
 General Approach to Control Design

 Robust Tracking for a 1D Schrödinger Equation
 Conclusions

 The Controller
 The Controller

Stabilizing Output Feedback + Robust Controller

Consider a a dynamic error feedback controller of the form

$$\begin{aligned} \dot{z}(t) &= \mathcal{G}_1 z(t) + \mathcal{G}_2(y(t) - y_{ref}(t)), \qquad z(0) = z_0, \\ u(t) &= \varepsilon K_0 z(t) - \kappa y(t), \end{aligned}$$

$$\mathcal{G}_{1} = \begin{bmatrix} i\omega_{1}I_{p\times p} & & \\ & \ddots & \\ & & i\omega_{q}I_{p\times p} \end{bmatrix}, \qquad \mathcal{K}_{0} = \begin{bmatrix} \mathcal{K}_{0}^{1}, \mathcal{K}_{0}^{2}, \dots, \mathcal{K}_{0}^{q} \end{bmatrix}, \qquad \mathcal{G}_{2} = -\begin{bmatrix} (\mathcal{P}_{\kappa}(i\omega_{k})\mathcal{K}_{0}^{k})^{*} \end{bmatrix}_{k=1}^{q}$$

 $P_{\kappa}(i\omega_k) = P(i\omega_k)(I + \kappa P(i\omega_k))^{-1}$, $P(i\omega_k)K_0^k$ invertible, $\varepsilon, \kappa > 0$.

 Robust Output Regulation and the Internal Model Principle
 Port–Hamiltonian Systems

 Background on Port-Hamiltonian Systems
 General Approach to Control Design

 Robust Tracking for a 1D Schrödinger Equation
 Conclusions

 The Controller
 The Controller

Stabilizing Output Feedback + Robust Controller

Consider a a dynamic error feedback controller of the form

$$\begin{aligned} \dot{z}(t) &= \mathcal{G}_1 z(t) + \mathcal{G}_2(y(t) - y_{ref}(t)), \qquad z(0) = z_0, \\ u(t) &= \varepsilon K_0 z(t) - \kappa y(t), \end{aligned}$$

$$\mathcal{G}_{1} = \begin{bmatrix} i\omega_{1}I_{p\times p} & & \\ & \ddots & \\ & & i\omega_{q}I_{p\times p} \end{bmatrix}, \qquad \mathcal{K}_{0} = \begin{bmatrix} \mathcal{K}_{0}^{1}, \mathcal{K}_{0}^{2}, \dots, \mathcal{K}_{0}^{q} \end{bmatrix}, \qquad \mathcal{G}_{2} = -\begin{bmatrix} (\mathcal{P}_{\kappa}(i\omega_{k})\mathcal{K}_{0}^{k})^{*} \end{bmatrix}_{k=1}^{q}$$

 $P_{\kappa}(i\omega_k) = P(i\omega_k)(I + \kappa P(i\omega_k))^{-1}, P(i\omega_k)K_0^k$ invertible, $\varepsilon, \kappa > 0.$

Theorem

For every $\kappa > 0$ there exists $\varepsilon_{\kappa} > 0$ such that for all $0 < \varepsilon \le \varepsilon_{\kappa}$ the controller solves the robust output regulation problem.

The Plant Controller Parameters

An Example: A Schrödinger Equation

• The Schrödinger equation on the interval $\zeta \in [0, 1]$:

$$rac{\partial}{\partial t}w(\zeta,t)=irac{\partial^2}{\partial\zeta^2}w(\zeta,t),\quad t\geq 0$$

is a second-order impedance energy preserving port-Hamiltonian system for inputs and outputs

$$u(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = \begin{bmatrix} x'(0,t) \\ x(1,t) \end{bmatrix},$$
$$y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} ix(0,t) \\ ix'(1,t) \end{bmatrix}.$$

The Plant Controller Parameters

Example: Schrödinger Equation

Consider reference signals of the form

$$y_{ref}(t) = \sum_{k=-N}^{N} a_k e^{ikt}, \qquad a_k \in \mathbb{C}^2, \quad 2\pi$$
-periodic.

Then the controller parameters $(\mathcal{G}_1, \mathcal{G}_2, \mathcal{K}, \kappa)$ are chosen as

$$\mathcal{G}_{1} = \begin{bmatrix} {}^{-iN} & & \\ & {}^{-iN} & \\ & \ddots & \\ & & {}^{iN} \end{bmatrix} \qquad \begin{array}{c} \mathcal{K} = \varepsilon \left[P_{\kappa}(-iN)^{-1}, \dots P_{\kappa}(iN)^{-1} \right] \\ \mathcal{G}_{2} = - \left[I_{2 \times 2} \right]_{k=1}^{q} \end{array}$$

where $P_{\kappa}(ik)$ can be computed explicitly, or measured from the system's response.

Conclusions

- We presented a simple robust regulating controller for an unstable, impedance energy-preserving port-Hamiltonian system of even order.
- Output feedback was added to the usual controller structure in order to exponentially stabilize the plant.
- When the plant was exponentially stabilized, we could utilize the robust output regulation results for exponentially stable systems in choosing the controller parameters.

References I

- Augner, B. and Jacob, B. Stability and Stabilization of Infinite-dimensional Linear Port-Hamiltonian Systems. Evolution Equations and Control Theory, 2014.
- Le Gorrec, Y., Zwart, H. and Maschke, B. Dirac structures and boundary control systems associated with skew-symmetric differential operators, 2005.
- Hämäläinen, T. and Pohjolainen, S. Robust Regulation for Exponentially Stable Boundary Control Systems in Hilbert Space. Proc. of the 8th IEEE Int. Conf. on Methods and Models on Automation and Control, 2002.

References II

- Paunonen, L. Controller Design for Robust Output Regulation of Regular Linear Systems. IEEE Trans. Automat. Control, to appear.
- Villegas, J., Zwart, H., Le Gorrec, Y., Maschke, B. and van der Schaft, A. Stability and stabilization of a class of boundary control systems. Proc. of the 44th IEEE Conf. Decision Control and the Eur. Control Conf, 2005.