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The Classes of Systems

P
u(t) y(t)

Consider an infinite-dimensional linear system with input u(t),
output y(t).

In particular, we may consider
I Systems with bounded input and output operators
I Regular linear systems
I Boundary control systems
I Port–Hamiltonian systems
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Goals and Main Results

I Consider robust output tracking for port–Hamiltonian systems
of first, second and even order

I Introduce a simple controller structure for impedance energy
preserving port–Hamiltonian systems.

I The systems in our class are unstable, and existing controllers
would require observer design.
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Port–Hamiltonian Systems in Brief

I The class of port-Hamiltonian systems covers Hamiltonian
PDEs with 1 spatial dimension. Interacting with the
environment via the boundaries of the spatial domain.

I Examples of port-Hamiltonian systems are, i.a., wave
equation, Timoshenko beam (first order systems),
Euler–Bernoulli beam and Schrödinger equation (second order
systems).

I Enables a natural expressions for energy and change of energy
of the system in terms of inputs and outputs.
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An Example: A Schrödinger Equation
A Schrödinger equation on the spatial interval ζ ∈ [0, 1]:

∂

∂t w(ζ, t) = i ∂
2

∂ζ2
w(ζ, t), t ≥ 0

is a (second-order) port-Hamiltonian system

We can consider inputs and outputs (more precise conditions later)

u(t) =
[
u1(t)
u2(t)

]
=
[
x ′(0, t)
x(1, t)

]
,

y(t) =
[
y1(t)
y2(t)

]
=
[

ix(0, t)
ix ′(1, t)

]
.
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Another Example: A 1D Wave Equation
A model for a vibrating string on the spatial interval ζ ∈ [0, 1]

∂2

∂t2 p(ζ, t) = ∂2

∂ζ2
p(ζ, t),

can be written as a first-order port-Hamiltonian system

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=
[
0 1
1 0

]
∂

∂ζ

[
x1(ζ, t)
x2(ζ, t)

]
,

where x1(ζ, t) = ∂tp(ζ, t) and x2(ζ, t) = ∂ζp(ζ, t).

We can consider inputs and outputs

u(t) =
[
x2(1, t)
x1(0, t)

]
, y(t) =

[
x1(1, t)
−x2(0, t)

]
.
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The Control Problem

Problem (Robust Output Regulation)
Choose a control law in such a way that

I The output y(t) tracks a given reference signal yref(t)
asymptotically, i.e.

lim
t→∞

‖y(t)− yref(t)‖ = 0

I The above property is robust with respect to small
perturbations in the parameters of the plant.
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The Control Scheme

PCS
yyref ue

−

“exosystem” controller plant
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The Internal Model Principle

Theorem (Francis & Wonham, 1970’s, LP & SP 2010)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the exosystem.

Here p = dimY , the number of outputs.
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The Internal Model Principle

Theorem (Francis & Wonham, 1970’s, LP & SP 2010)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the exosystem.

Here p = dimY , the number of outputs.

The p-copy for bounded yref (t) =
∑N

k=1 akeiωk t :
Any frequency iωk of the reference signal must be an
eigenvalue of the controller with p linearly independent
eigenvectors associated to it.
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Feedback Controller

PCS
yyref ue

−
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The p-Copy Internal Model Principle

PS S S
yyref ue

−

The internal model principle for classes of systems:
I Bounded input and output operators (2010)
I Regular linear system with distributed disturbances (2014)
I Regular linear systems with boundary disturbance (2016)
I Boundary control systems (2016, (2002))
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The p-Copy Internal Model Principle
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The internal model principle for classes of systems:
I Bounded input and output operators (2010)
I Regular linear system with distributed disturbances (2014)
I Regular linear systems with boundary disturbance (2016)
I Boundary control systems (2016, (2002))
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Port-Hamiltonian Systems
A linear port-Hamiltonian system of order N = 1 or N ∈ 2N on the
spatial interval ζ ∈ [a, b] is given by

∂

∂t x(ζ, t) = Ax(ζ, t), x(0) = x0,

u(t) = Bx(·, t),
y(t) = Cx(·, t),

where the operator A is defined by

Ax(ζ, t) :=
N∑

k=0
Pk
∂k(H(ζ)x(t, ζ))

∂ζk ,

where Pk ∈ Cn×n, P∗k = (−1)k+1Pk for k ≥ 0, and PN invertible.

Lassi Paunonen Robust Regulation for Port-Hamiltonian Systems



Robust Output Regulation and the Internal Model Principle
Background on Port-Hamiltonian Systems

Robust Tracking for a 1D Schrödinger Equation
Conclusions

Port–Hamiltonian Systems
General Approach to Control Design
The Robust Output Regulation Problem
The Controller

Port-Hamiltonian Systems
I The matrix function H : [a, b]→ Cn×n is measurable, and

there exists 0 < m ≤ M such that m|ζ|2 ≤ ζ∗H(ζ)ζ ≤ M|ζ|2
and H(ζ) = H(ζ)∗ for ζ ∈ Cn.

I We choose state space X = L2([a, b];Cn) with inner product

〈f , g〉X = 1
2

b∫
a

g(ζ)∗H(ζ)f (ζ)dζ.

I The domain of the operator A is given by

D(A) = {x ∈ X | Hx ∈ HN([a, b];Cn)}

I The Hamiltonian of the port-Hamiltonian system is

E (t) = 〈x(t), x(t)〉X = ||x(t)||2X .
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Port-Hamiltonian Systems
I Let

Φ : HN([a, b];Cn)→ C2nN ,

Φ(x) := (x(b), . . . , x (N−1)(b), x(a), . . . , x (N−1)(a))T .

I Define the boundary port variables f∂ , e∂ by[
f∂
e∂

]
:= 1√

2

[
Q −Q
I I

]
Φ(Hx),

where Q is a block matrix given by

Qij :=
{

(−1)j−1Pi+j−1, i + j ≤ N + 1
0, else

.
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Port-Hamiltonian Systems
I Define inputs and outputs B : H−1(HN([a, b],Cn))→ Cn and
C : H−1(HN([a, b],Cn))→ Cn by

u(t) = Bx(t) := WB

[
f∂(t)
e∂(t)

]
,

y(t) = Cx(t) := WC

[
f∂(t)
e∂(t)

]
,

where WB,WC ∈ CnN×2nN .
I Main idea: e∂(t) and f∂(t) are linear combinations of (Hx)(·)

and its N − 1 derivatives evaluated at the boundaries ζ = a
and ζ = b.

I Port–Hamiltonian system are in particular boundary control
systems whenever WB

(
0
I

I
0

)
W ∗

B ≥ 0 (Le Gorrec et al. 2005)
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Background on Controller Design

I Simple internal model based controllers available for stable
boundary control systems (Hämäläinen & Pohjolainen, 2002)

I Many interesting port-Hamiltonian system are unstable, but
can be stabilized with negative output feedback (and the
closed-loop systems are port–Hamiltonian).

The general approach is to combine the feedback stabilization and
simple controller design.
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Assumptions
Consider a port–Hamiltonian system

ẋ(t) = Ax(t), x(0) = x0,
Bx(t) = u(t),
Cx(t) = y(t),

that is impedance energy-preserving, meaning that

1
2
d
dt ||x(t)||2X = u∗(t)y(t).

I Plant is a boundary control system with a unitary group.
I Characterisation via matrices WB and WC .
I Denote transfer function by P(λ).
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Results on Stabilization: First Order

Theorem (Villegas et. al. 2005)
A first order impedance energy preserving port–Hamiltonian
system can be stabilized exponentially with negative output
feedback u(t) = −κy(t).
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Results on Stabilization: Even Order
Lemma
An even order impedance energy preserving port–Hamiltonian
system can be stabilized exponentially with negative output
feedback u(t) = −κy(t).

Proof.
Using a result by Augner & Jacob, 2014, that the system is
exponentially stable if

Re〈Ax , x〉X ≤ −γ
∑
ζ=a,b

N−1∑
k=0

αζ,k
∣∣∣∣∣∣(Hx)(k)(ζ)

∣∣∣∣∣∣2
for some γ > 0 and certain αζ,k ≥ 0.
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The Robust Output Regulation Problem
Problem (The Robust Output Regulation Problem)
Choose (G1,G2, εK0, κ) in such a way that
1. The closed loop system is exponentially stable.
2. The controller asymptotically tracks the reference signal yref ,

‖y(t)− yref(t)‖ → 0, as t →∞ (1)

at an exponential rate.
3. If (A,B, C) are perturbed to (Ã, B̃, C̃) in such a way that the

closed-loop stability is preserved, then (1) continues to hold.

yref (t) =
q∑

k=1
akeiωk t , ak ∈ Cp.
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Stabilizing Output Feedback + Robust Controller
Consider a a dynamic error feedback controller of the form

ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0,
u(t) = εK0z(t)− κy(t),

G1 =

iω1Ip×p
. . .

iωqIp×p

 , K0 =
[
K 1
0 ,K 2

0 , . . . ,K
q
0
]

G2 = −
[
(Pκ(iωk)K k

0 )∗
]q

k=1

Pκ(iωk) = P(iωk)(I + κP(iωk))−1, P(iωk)K k
0 invertible, ε, κ > 0.

Theorem
For every κ > 0 there exists εκ > 0 such that for all 0 < ε ≤ εκ
the controller solves the robust output regulation problem.
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The Plant
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An Example: A Schrödinger Equation

I The Schrödinger equation on the interval ζ ∈ [0, 1]:

∂

∂t w(ζ, t) = i ∂
2

∂ζ2
w(ζ, t), t ≥ 0

is a second-order impedance energy preserving
port-Hamiltonian system for inputs and outputs

u(t) =
[
u1(t)
u2(t)

]
=
[
x ′(0, t)
x(1, t)

]
,

y(t) =
[
y1(t)
y2(t)

]
=
[

ix(0, t)
ix ′(1, t)

]
.
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Example: Schrödinger Equation

Consider reference signals of the form

yref (t) =
N∑

k=−N
akeikt , ak ∈ C2, 2π-periodic.

Then the controller parameters (G1,G2,K , κ) are chosen as

G1 =


−iN

−iN
. . .

iN
iN

 K = ε
[
Pκ(−iN)−1, . . .Pκ(iN)−1

]
G2 = −

[
I2×2

]q
k=1

where Pκ(ik) can be computed explicitly, or measured from the
system’s response.
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Conclusions

I We presented a simple robust regulating controller for an
unstable, impedance energy-preserving port-Hamiltonian
system of even order.

I Output feedback was added to the usual controller structure
in order to exponentially stabilize the plant.

I When the plant was exponentially stabilized, we could utilize
the robust output regulation results for exponentially stable
systems in choosing the controller parameters.
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