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a stability approach for strings of infinite length, and finally
a performance-oriented frequency-domain approach.

The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m ∈ N interconnected vehicles. This system is string-
stable if and only if

‖zi(t)‖Lp ≤ ‖zi−1(t)‖Lp , ∀ t ≥ 0, 2 ≤ i ≤ m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) ∈ Lp is a
given input signal, and zi(0) = 0 for 2 ≤ i ≤ m.

‖ · ‖Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that ‖zi(t)‖Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.

III. CONTROL DESIGN

An elegant method to arrive at a suitable controller for
CACC is based on formulation of the error dynamics, as
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Fig. 2. CACC-equipped string of vehicles.

shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i − 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 ≤ i ≤ m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) − dr,i(t)

= (si−1(t) − si(t) − Li) − (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
is adopted:




ḋi

v̇i

ȧi


 =




vi−1 − vi

ai

− 1
τ ai + 1

τ ui


 , 2 ≤ i ≤ m, (3)

where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and τ a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant τ is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).

The control law can now be designed by formulating the
error dynamics. Define to this end the error states




e1,i

e2,i

e3,i


 =




ei

ėi

ëi


 , 2 ≤ i ≤ m. (4)
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Figure: Source: Ploeg et. al., IEEE, 2011.

 ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−α0 −α1 −α2


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1



L. Paunonen Asymptotic Behaviour of Platoon Systems



Introduction
Stability of Platoon Systems
Modified Control Objectives

Conclusions

An Infinite Vehicle Platoon
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The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m ∈ N interconnected vehicles. This system is string-
stable if and only if

‖zi(t)‖Lp ≤ ‖zi−1(t)‖Lp , ∀ t ≥ 0, 2 ≤ i ≤ m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) ∈ Lp is a
given input signal, and zi(0) = 0 for 2 ≤ i ≤ m.

‖ · ‖Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that ‖zi(t)‖Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.
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shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i − 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 ≤ i ≤ m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) − dr,i(t)

= (si−1(t) − si(t) − Li) − (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
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ḋi

v̇i

ȧi
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where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and τ a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant τ is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).
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 ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−α0 −α1 −α2


︸ ︷︷ ︸

= A0

ykwk
ak

+

0 −1 0
0 0 0
0 0 0


︸ ︷︷ ︸

= A1

yk−1
wk−1
ak−1



yk(t) = displacement from ideal distance between k and k− 1
wk(t) = velocity of kth vehicle (displacement from ideal)
ak(t) = acceleration of kth vehicle

Objective: Choose α0, α1, α2 ∈ R so that sup
k∈Z
|yk| → 0 as t→∞.
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a stability approach for strings of infinite length, and finally
a performance-oriented frequency-domain approach.

The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m ∈ N interconnected vehicles. This system is string-
stable if and only if

‖zi(t)‖Lp ≤ ‖zi−1(t)‖Lp , ∀ t ≥ 0, 2 ≤ i ≤ m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) ∈ Lp is a
given input signal, and zi(0) = 0 for 2 ≤ i ≤ m.

‖ · ‖Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that ‖zi(t)‖Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.

III. CONTROL DESIGN

An elegant method to arrive at a suitable controller for
CACC is based on formulation of the error dynamics, as
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shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i − 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 ≤ i ≤ m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) − dr,i(t)

= (si−1(t) − si(t) − Li) − (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
is adopted:


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
 =




vi−1 − vi

ai

− 1
τ ai + 1

τ ui


 , 2 ≤ i ≤ m, (3)

where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and τ a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant τ is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).

The control law can now be designed by formulating the
error dynamics. Define to this end the error states


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
 =


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
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Figure: Source: Ploeg et. al., IEEE, 2011.

We analyze convergence of the displacements to ideal distances in
three different scenarios:
(1) Control employs state feedback (original situation).
(2) Control of vehicles require observer design.
(3) “Constant headway time” spacing, where ideal distance

depends on velocity.
L. Paunonen Asymptotic Behaviour of Platoon Systems
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Structure

Part I: Platoon Systems with State Feedback
Strong asymptotic convergence
“Nonuniform” subexponential rates of convergence

Part II: Infinite Systems with Observers
Demonstrate that stability is unachievable

Part III: Constant Headway Spacing Policy
Improved stability properties and simplified analysis
Subexponential rates of convergence

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Part I:
Platoon Systems with State Feedback
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Main Problem

Study asymptotics of infinite systems of the form

ẋk(t) = A0xk(t) +A1xk−1(t), k ∈ Z, t ≥ 0,

where A0, A1 ∈ Cm×m do not depend on k ∈ Z.

We want to study, e.g.,

sup
k∈Z
‖xk(t)− yk‖Cm → 0, as t→∞

with rates.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Platoon Systems
Our system can be formulated as an abstract Cauchy problem

ẋ(t) = Ax(t), x(0) = x0 ∈ X

on X = `p(Cm) for 1 ≤ p ≤ ∞ by choosing x(t) = (xk(t))k∈Z and

Ax = (A0xk +A1xk−1)k∈Z.

i.e.

A =


. . . . . .

A1 A0
A1 A0

. . . . . .


Here A ∈ L(X) and our system belongs to the class of “Spatially
invariant systems” (Bamieh et. al. and others).

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Platoon Systems
Our system can be formulated as an abstract Cauchy problem

ẋ(t) = Ax(t), x(0) = x0 ∈ X

on X = `p(Cm) for 1 ≤ p ≤ ∞ by choosing x(t) = (xk(t))k∈Z and

Ax = (A0xk +A1xk−1)k∈Z.

The operator A ∈ L(X) generates a strongly continuous semigroup
T (t) (i.e., T (t) = eAt), and the solutions of the system are given by

x(t) = (xk(t))k∈Z = T (t)x0

Semigroup T (t) does not admit a simple expression, but can be
used in the analysis.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Earlier Work

Platoon systems have been studied extensively in the literature:

Jovanovic & Bamieh 2005: Exponential stability is
unachievable.
Curtain, Iftime & Zwart 2009: Strong stability possible for `2
(Fourier methods).
No analysis of convergence rates.
Also analysis of so-called string stability by Swaroop &
Hedrick (1996) and many others.

Our work: Analysis of stability and convergence rates for all `p,
1 ≤ p ≤ ∞ (with emphasis on p =∞) using semigroup methods.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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The Characteristic Function

Assumption

Assume A1 6= 0, σ(A0) ⊂ C−, and there exists φ : C→ C s.t.

A1(λ−A0)−1A1 = φ(λ)A1, λ ∈ C \ σ(A0).

φ(·) is called characteristic function of the infinite system.

Lemma
Assumption holds whenever rankA1 = 1. For the platoon system

φ(λ) = α0
p(λ) = α0

λ3 + α2λ2 + α1λ+ α0
.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Main Results

We will do the following: For solutions x(t) = T (t)x0

(i) Characterize spectrum of A
(ii) Present conditions for boundedness supt≥0‖T (t)‖ <∞
(iii) Study rates of convergence of ‖T (t)x0 − y‖ → 0 as t→∞.

For all these purposes use the characteristic function φ(·):

A1(λ−A0)−1A1 = φ(λ)A1, λ ∈ C \ σ(A0).

Main idea: Existence of φ(·) compensates for the lack of
commutativity of A0 and A1.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Spectrum of the System

Characteristic function φ(·) determines the spectrum of A:

Theorem

Let X = `p(Cm) with 1 ≤ p ≤ ∞. Then for λ ∈ C \ σ(A0)

λ ∈ σ(A) if and only if |φ(λ)| = 1.

Moreover, σ(A) \ σ(A0) is
point spectrum if and only if p =∞
continuous spectrum if and only if 1 < p <∞.

The type of spectrum depends on p, but the location does not.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Spectrum of the Platoon System ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−α0 −α1 −α2


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1



Characteristic function: φ(λ) = α0
p(λ) = α0

λ3 + α2λ2 + α1λ+ α0
.

Spectrum of the platoon system is determined by α0, α1, and α2.

|p(λ)| = |α0|

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Uniform Boundedness of the Semigroup

Theorem

Let 1 ≤ p ≤ ∞. If σ(A) ⊂ C− ∪ {0},

sup
0<λ≤1

λ

1− |φ(λ)| <∞ and sup
n∈N

sup
λ>0

λn+1

n!

∞∑
`=1

∣∣∣∣ dndλnφ(λ)`
∣∣∣∣ <∞,

then the semigroup T (t) generated by A is uniformly bounded.

Proof.
A fairly direct Hille–Yosida approach using a resolvent formula.

Property: Systems for m ≥ 2 are typically not contractive. In
particular, the platoon system is never contractive.

L. Paunonen Asymptotic Behaviour of Platoon Systems
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Uniform Boundedness for the Platoon System

Lemma
If φ(·) is such that for some ζ > 0,

φ(λ) = ζ3

(λ+ ζ)3 , λ 6= −ζ

then the semigroup T (t) is uniformly bounded.

The characteristic function of the platoon system is of this form if
parameters α0, α1, α2 are chosen so that σ(A0) = {−ζ}.

Then the platoon system is guaranteed to be uniformly bounded.
L. Paunonen Asymptotic Behaviour of Platoon Systems
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(Unquantified) Asymptotic Behaviour
Combining the results on spectrum and uniform boundedness:

Theorem
Let X = `p(Cm) with p =∞ and for some ζ > 0

φ(λ) = ζ3

(λ+ ζ)3 , λ 6= −ζ.

If x = x0 + x1 ∈ Ran(A)⊕Ker(A) 6= X, then

T (t)x→ x1 as t→∞.

Moreover,
If 1 < p <∞, then T (t) is strongly stable, i.e., T (t)x→ 0

L. Paunonen Asymptotic Behaviour of Platoon Systems
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The Null Space Ker(A) for Platoons

We can show that if α0, α1, α2 are chosen such that
σ(A0) = {−ζ} for ζ > 0, then x ∈ Ker(A) if and only if

x =

. . . ,
 c
−ζc/3

0

 ,
 c
−ζc/3

0

 ,
 c
−ζc/3

0

 , . . .
 .

for some c ∈ C.
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Rates of Convergence

Next aim: Find rates of convergence for

‖T (t)x− y‖ → 0 as t→∞

under the assumption σ(A) ∩ iR = {0}.

Key points:
Martinez 2011: Convergence rate if
‖(is−A)−1‖ ≤M(1 + |s|−α) near s = 0.
For platoon systems

‖(is−A)−1‖ ∼ 1
1− |φ(is)| ∼

1
dist(is, σ(A))
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Decay Rates for the Platoon System
Platoons: The possible growth rates are |s|−nφ with nφ ∈ {2, 4, 6}.

Corresponding rates are
(

log t
t

)− 1
2 ,
(

log t
t

)− 1
4 and

(
log t
t

)− 1
6

(though uniform boundedness was just shown for the first case).
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Quantified Decay for the Platoon System ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−ζ3 −3ζ2 −3ζ


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1


Theorem
Let X = `∞(C3). If there exists c ∈ R

sup
k∈Z

∣∣∣∣c− 1
n

n∑
j=1

yk−j(0)
∣∣∣∣ = O

( 1
n

)
as n→∞,

then
‖T (t)x− x1‖ = O

( 1√
t

)
where again x1 = ((c,−ζc/3, 0)T )k∈Z
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Part II:
Platoon Systems with Observers
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Long Story Short. . .

Theorem
If the control employs identical observers in all vehicles, the system
is always unstable.

The main idea here is to demonstrate how fragile the stability of
the platoon system can be.
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Background

Consider ẏk

ẇk

ȧk

 =

0 1 0
0 0 1
0 0 −1/τ

yk

wk

ak

+

0 −1 0
0 0 0
0 0 0

yk−1
wk−1
ak−1

+

0
0
1

uk(t)

with observation yk(t) = (1, 0, 0)xk(t) = C0xk(t).

For each k ∈ Z, add a Luenberger observer to estimate xk(t):

żk(t) = (A0 + LC0)zk(t) +B0uk(t)− Lyk(t),
uk(t) = Kzk(t)

where σ(A+B0K) ⊂ C− and σ(A0 + LC0) ⊂ C−.
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The System of Closed-Loop Systems

The full system is of the form(
ẋk(t)
żk(t)

)
= Ae0

(
xk(t)
zk(t)

)
+Ae1

(
xk−1(t)
zk−1(t)

)

where the pair (Ae0, Ae1) admits a characteristic function satisfying

A1R(λ,A+B0K)(λ−A0 −B0K − LC0)R(λ,A+ LC0)A1 = φ(λ)A1

⇒ The same approach is applicable.
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Spectrum of the Full System

Phenomenon: The “knot” at the origin makes the system unstable.
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Part III:
“Constant Headway Time” Spacing
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Constant Headway Time Spacing
Alternatively, we can consider a control objective, where the ideal
distance between vehicles depends on the velocity. The idea
is that we impose an ideal distance in seconds instead of meters.

The ideal separation is then the “constant headway time”.

a stability approach for strings of infinite length, and finally
a performance-oriented frequency-domain approach.

The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m ∈ N interconnected vehicles. This system is string-
stable if and only if

‖zi(t)‖Lp ≤ ‖zi−1(t)‖Lp , ∀ t ≥ 0, 2 ≤ i ≤ m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) ∈ Lp is a
given input signal, and zi(0) = 0 for 2 ≤ i ≤ m.

‖ · ‖Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that ‖zi(t)‖Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.

III. CONTROL DESIGN

An elegant method to arrive at a suitable controller for
CACC is based on formulation of the error dynamics, as

di di–1di+1

vi+1

i+1

vi vi–1

wireless
communication

radar

i–1i

Fig. 2. CACC-equipped string of vehicles.

shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i − 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 ≤ i ≤ m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) − dr,i(t)

= (si−1(t) − si(t) − Li) − (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
is adopted:




ḋi

v̇i

ȧi


 =




vi−1 − vi

ai

− 1
τ ai + 1

τ ui


 , 2 ≤ i ≤ m, (3)

where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and τ a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant τ is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).

The control law can now be designed by formulating the
error dynamics. Define to this end the error states




e1,i

e2,i

e3,i


 =




ei

ėi

ëi


 , 2 ≤ i ≤ m. (4)

!"#

Figure: Source: Ploeg et. al., IEEE, 2011.
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Constant Headway Time Spacing
Alternatively, we can consider a control objective, where the ideal
distance between vehicles depends on the velocity. The idea
is that we impose an ideal distance in seconds instead of meters.

The ideal separation is then the “constant headway time”.

Motivation:
Constant headway time spacing has been observed to improve
the string stability of the platoon system [Ploeg et. al. 2011].
We show that it also leads to better stability properties of the
semigroup.
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The Full System

For ideal separation of form c+ hvk(t), the system beocmes

ẋ(t) = A0xk(t) +A1xk−1(t),

with

A0 =


0 1 0 0
0 0 1 0
−β0 −β1 −β2 − 1 0
β0/h β1/h β2/h −1/h

 , A1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/h

 .

where β0, β1, β2 ∈ R are parameters of the feedback law.
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The Characteristic Function

Property: For any β0, β1, β2 ∈ R we have

φ(λ) = 1
hλ+ 1 , λ 6= −1

h
.

For any β0, β1, β2 ∈ R we immediately get
Stable spectrum
Uniform boundedness
Convergence with rate

(
log t
t

)1/2
for x0 ∈ Ran(A)⊕Ker(A)

In the original problem this was possible only for some α0, α1, α2.
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The Characteristic Function

Property: For any β0, β1, β2 ∈ R we have
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.
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log t
t
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Decay for the Platoon System

Theorem
Let X = `∞(C4). T (t)x converges if and only if there exists c ∈ R

sup
k∈Z

∣∣∣∣hc− 1
n

n∑
j=1

[
x2
k−j(0) + x3

k−j(0) + hx4
k−j(0)

]∣∣∣∣→ 0, n→∞,

and if this holds then the distances dk(t) converge as

sup
k∈Z
|dk(t)− (c+ hvk(t))| → 0

and the main objective holds.
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Decay for the Platoon System

Theorem
Let X = `∞(C4). If there exists c ∈ R such that

sup
k∈Z

∣∣∣∣hc− 1
n

n∑
j=1

[
x2
k−j(0) + x3

k−j(0) + hx4
k−j(0)

]∣∣∣∣ = O

( 1
n

)

then the distances dk(t) converge as

sup
k∈Z
|dk(t)− (c+ hvk(t))| = O

( 1√
t

)
.

L. Paunonen Asymptotic Behaviour of Platoon Systems



Introduction
Stability of Platoon Systems
Modified Control Objectives

Conclusions

Conclusions

In this presentation:
Study of the infinite platoon system using semigroup methods.
Three variants: State feedback control, output feedback
control, and constant headway time spacing.
Study of spectrum, uniform boundedness and asymptotic
convergence.
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