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Figure: Source: Ploeg et. al., IEEE, 2011.
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Introduction

An Infinite Vehicle Platoon

Uk 0 1 0 Yk 0 -1 0\ [yr—

wg | = 0 0 1 w,|+]10 0 0 Wh—1

ag —Qp —01 —Q9 ag 0 0 0 ap—1
= A() = Al

yr(t) = displacement from ideal distance between k and k£ — 1
wy(t) = velocity of kth vehicle (displacement from ideal)

ax(t) = acceleration of kth vehicle

Objective: Choose g, a1, a3 € R so that sup |ygx| — 0 as t — oo.
k€EZ
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Introduction

Aims and Main Results
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Figure: Source: Ploeg et. al., IEEE, 2011.

We analyze convergence of the displacements to ideal distances in
three different scenarios:

(1) Control employs state feedback (original situation).

(2) Control of vehicles require observer design.

(3) "Constant headway time" spacing, where ideal distance
depends on velocity.
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Introduction

Structure

@ Part I: Platoon Systems with State Feedback

e Strong asymptotic convergence
e “Nonuniform” subexponential rates of convergence

o Part Il: Infinite Systems with Observers
o Demonstrate that stability is unachievable

@ Part Ill: Constant Headway Spacing Policy

o Improved stability properties and simplified analysis
e Subexponential rates of convergence
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Part I
Platoon Systems with State Feedback
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Main Problem

Study asymptotics of infinite systems of the form

T (t) = Aok (t) + Ayzi—1(t), k€Z,t>0,
where Ay, A1 € C"™*™ do not depend on k € Z.
We want to study, e.g.,

sup ||zx(t) — yxllcm — 0, as t — o0
keZ

with rates.
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Platoon Systems
Our system can be formulated as an abstract Cauchy problem
&(t) = Az(t), z(0) =x0€ X
on X = (P(C™) for 1 < p < oo by choosing x(t) = (zx(t))rez and
Az = (Ao + A12k—1)kez-
i.e.
Ao | ala

A1 Ao

Here A € £(X) and our system belongs to the class of “Spatially
invariant systems” (Bamieh et. al. and others).
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Platoon Systems

Our system can be formulated as an abstract Cauchy problem
x(t) = Ax(t), z(0)=zp€ X
on X = ¢P(C™) for 1 < p < oo by choosing z(t) = (¢ (t))kez and
Az = (Aozp + A12k—1)kez-

The operator A € £(X) generates a strongly continuous semigroup
T(t) (i.e., T(t) = e?), and the solutions of the system are given by

z(t) = (21(t))rez = T(t)xo

Semigroup T'(t) does not admit a simple expression, but can be
used in the analysis.
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Earlier Work

Platoon systems have been studied extensively in the literature:
@ Jovanovic & Bamieh 2005: Exponential stability is
unachievable.

o Curtain, Iftime & Zwart 2009: Strong stability possible for ¢2
(Fourier methods).

@ No analysis of convergence rates.
@ Also analysis of so-called string stability by Swaroop &
Hedrick (1996) and many others.

Our work: Analysis of stability and convergence rates for all /P,
1 < p < oo (with emphasis on p = c0) using semigroup methods.
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The Characteristic Function

Assumption
Assume A; # 0, 0(Ap) C C_, and there exists ¢ : C — C s.t.
Al()\ — Ao)ilAl = (f)()\)Al, AeC \ O'(Ao).

@(+) is called characteristic function of the infinite system.

Lemma

Assumption holds whenever rank Ay = 1. For the platoon system
(7)) . (675}

p(/\) - )\3 o 062>\2 a4 041/\ + Ck()'

P(A) =
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Main Results

We will do the following: For solutions x(t) = T'(t)zo

(i) Characterize spectrum of A
(ii) Present conditions for boundedness sup;>||T'(t)|| < oo
(i) Study rates of convergence of ||T'(t)zo — y|| — 0 as t — oc.
For all these purposes use the characteristic function ¢(-):
Ai(A— Ag) TA1 = p(N) A1, A€ C\o(A).

Main idea: Existence of ¢(-) compensates for the lack of
commutativity of Ay and Aj.
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Spectrum of the System

Characteristic function ¢(-) determines the spectrum of A:
Theorem

Let X =¢P(C™) with1 <p < oo. Then for A\ € C\ o(Ap)
A€ a(A) if and only if — |p(N)| = 1.

Moreover, o(A) \ o(Ag) is
@ point spectrum if and only if p = oo

@ continuous spectrum if and only if 1 < p < oo.

The type of spectrum depends on p, but the location does not.
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Spectrum of the Platoon System

Uk 0 1 0 Yk 0 -1 0\ [yr—1

w | = 0 0 1 we |l +10 0 O Wh_1

a —qp —Qap —Qo ag 0 0 O ap_1
aQ (&%s)

Characteristic function: ¢(\) =

p()\) - /\3 + ag)\2 + Oé1>\ + Oéo.

Spectrum of the platoon system is determined by ag, a1, and as.

= |ay| Q )
=
\4 3 |

eyl
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Uniform Boundedness of the Semigroup

Theorem
Let 1 <p<o0o. Ifo(A) C C_U{0},
A )\n+1 0 m

sup —————— < oo and sup su —— (N
ocrer 1 — [6(V)] nel as0 ! Zz:; d)\”gb( )

< 00,

then the semigroup T'(t) generated by A is uniformly bounded.

Proof.
A fairly direct Hille—Yosida approach using a resolvent formula. [

Property: Systems for m > 2 are typically not contractive. In
particular, the platoon system is never contractive.
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Uniform Boundedness for the Platoon System

Lemma
If ¢(-) is such that for some ¢ > 0, /\
SN = g )
G+ 07 U
then the semigroup T'(t) is uniformly bounded.

The characteristic function of the platoon system is of this form if
parameters ag, a1, g are chosen so that o(Ag) = {—(}.

Then the platoon system is guaranteed to be uniformly bounded.
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(Unquantified) Asymptotic Behaviour

Combining the results on spectrum and uniform boundedness:

Theorem
Let X = ¢P(C™) with p = oo and for some { > 0
BN = o AEC
A+

If v = xo+ x1 € Ran(A) & Ker(A) # X, then
T(t)r — =1 as t— oo.

Moreover,

e If 1 < p < oo, then T'(t) is strongly stable, i.e., T'(t)x — 0

L. Paunonen Asymptotic Behaviour of Platoon Systems



Platoon Systems
Stability of Platoon Systems Main Results

Uniform Boundedness
Asymptotic Behaviour

The Null Space Ker(A) for Platoons

We can show that if g, o1, g are chosen such that
o(Ap) = {—C} for ¢ > 0, then x € Ker(A) if and only if

c c c
x=|....,1=Cc/3|,|—Cc/3|,|—Cc/3],-..
0 0 0

for some c € C.
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Rates of Convergence

Next aim: Find rates of convergence for
|T(t)x —y|| — 0 as t— o0
under the assumption o(A) N iR = {0}. Q
Key points: |
@ Martinez 2011: Convergence rate if

|(is — A)7Y| < M(1 + |s|~®) near s = 0. @

@ For platoon systems

1 N 1
1—|p(is)]  dist(is,o(A))

I(is — A) = ~
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Decay Rates for the Platoon System
Platoons: The possible growth rates are |s|~"¢ with ng4 € {2,4,6}.

NQ N
\%@ NG

_1 1 _1
Corresponding rates are (lo—gt> 2 (ngt) * and (lngt) ¢

t
(though uniform boundedness was just shown for the first case).
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Quantified Decay for the Platoon System

Uk 0 1 0 Yk 0 =1 0\ [yk—

wg | = 0 0 1 we | +]10 0 0 W—1

g —¢3 =3¢ =3¢/ \ap 0 0 0/ \ar
Theorem

Let X = (°°(C3). If there exists c € R

1 & 1
sup |c — — -0‘20() as n — oo,
i njz::lyk ]() n

then
1

I7t)e— 2l =0 ()

where again x1 = ((c¢, —Cc/3,0)" ) ez

L. Paunonen Asymptotic Behaviour of Platoon Systems



Control Employing Observers

Modified Control Objectives Constant Headway Time Spacing

Part |l

Platoon Systems with Observers
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Control Employing Observers

Modified Control Objectives Constant Headway Time Spacing

Long Story Short. ..

Theorem

If the control employs identical observers in all vehicles, the system
is always unstable.

The main idea here is to demonstrate how fragile the stability of
the platoon system can be.

L. Paunonen Asymptotic Behaviour of Platoon Systems



Control Employing Observers
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Background
Consider
Uk 0 1 0 Yk 0 -1 0 Yr—1 0
wp, | =10 0 1 wg ] +[(0 0 O wi—1 | + | 0] ur(?)
dk 0 0 —1/7’ Qg 0 0 0 A1 1
with observation y;(t) = (1,0, 0)zx(t) = Cozi(t).

For each k € Z, add a Luenberger observer to estimate x(t):

41(t) = (Ao + LCo) 2k (t) + Boug(t) — Lyx(t),
up(t) = Kzg(t)

where 0(A+ ByK) C C_ and o(Ap + LCy) C C_.
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The System of Closed-Loop Systems

The full system is of the form

xk(t) _ Ae xk(t) e xkfl(t)
(5) =0 (20 5 (220

where the pair (Af, AS) admits a characteristic function satisfying

AlR()\, A+ B()K)()\ — Ay — BoK — LC())R(/\, A+ LC())Al = (25()\)141

= The same approach is applicable.
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Spectrum of the Full System

Phenomenon: The “knot” at the origin makes the system unstable.
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Part IlI:
“Constant Headway Time" Spacing
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Constant Headway Time Spacing

Alternatively, we can consider a control objective, where the ideal
distance between vehicles depends on the velocity. The idea
is that we impose an ideal distance in seconds instead of meters.

The ideal separation is then the “constant headway time".

wireless
communication
radar ‘/\
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Figure: Source: Ploeg et. al., IEEE, 2011.
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Constant Headway Time Spacing

Alternatively, we can consider a control objective, where the ideal
distance between vehicles depends on the velocity. The idea
is that we impose an ideal distance in seconds instead of meters.

The ideal separation is then the “constant headway time".

Motivation:

@ Constant headway time spacing has been observed to improve
the string stability of the platoon system [Ploeg et. al. 2011].

@ We show that it also leads to better stability properties of the
semigroup.
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The Full System

For ideal separation of form ¢ + hvg(t), the system beocmes

.%'(t) = Aol’k(t) + Alwkfl(t),

with
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 O
Ao = B0 =B —B2—1 0 A= 000 O
Bo/h Bi/h Ba/h —1/h 00 0 1/h

where g, 51, B2 € R are parameters of the feedback law.
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The Characteristic Function

B() = At

Property: For any fy, 51, 32 € R we have m
1 .
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The Characteristic Function

Property: For any fy, 51, 32 € R we have m
1 1 _
¢()\) : v _E‘ v

For any 5, 81, B2 € R we immediately get
@ Stable spectrum

@ Uniform boundedness

1/2
e Convergence with rate (lotgt) / for zp € Ran(A) @& Ker(A)

In the original problem this was possible only for some «g, a1, as.

L. Paunonen
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Decay for the Platoon System

Theorem
Let X = ¢>(C*). T(t)x converges if and only if there exists c € R

sup
kEZ

1 n
he — o Z [xi_j(O) + x%—j(o) + hxé—j(O)H =0, n— oo,
j=1

and if this holds then the distances dj(t) converge as

sup |di(t) — (¢ + hvg(t))] — 0
kEZ

and the main objective holds.
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Decay for the Platoon System

Theorem
Let X = ¢>(C*). If there exists ¢ € R such that

sup

sup [he - Ly [25(0) + 2, (0) + hat_;(0)] ' —0 <1>

n =

then the distances dj(t) converge as

sup [di(t) — (¢ + hur(8))| = O (\2) .

keZ
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Conclusions

In this presentation:
@ Study of the infinite platoon system using semigroup methods.

@ Three variants: State feedback control, output feedback
control, and constant headway time spacing.

@ Study of spectrum, uniform boundedness and asymptotic
convergence.
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Conclusions

Thank You!
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