On Polynomial Stability of Linear Systems

Lassi Paunonen & Petteri Laakkonen

Tampere University of Technology, Finland

July 7th, 2014

Motivation Input-Output Stability H^{∞} -Stability

Introduction

On a Hilbert space X, consider

$$\dot{x} = Ax + Bu$$
 $x(0) = x_0 \in X$
 $y = Cx$

with bounded B and C, and A generates a strongly stable semigroup $T(t). \label{eq:constraint}$

Problem

Consider and compare stability concepts related to the system:

- T(t) not exponentially stabilizable
- Stability in terms of signals: Input-to-output stability
- Stability in the frequency domain vs. the time domain

Motivation Input-Output Stability H^{∞} -Stability

Motivation

In robust output regulation with nonsmooth periodic reference and disturbance signals, the closed-loop system is not exponentially stabilizable.

- A demand for solvability conditions etc.
- Polynomial semigroup stability often achievable.

References

LP & S. Pohjolainen: *The Internal Model Principle for Systems with Unbounded Control and Observation*, SICON, in review.

LP & S. Pohjolainen: *Robust Output Regulation and the Preservation of Polynomial Closed-Loop Stability*, IJRNC, 2013.

 $\begin{array}{c|c} & & \mbox{Motivation} \\ \mbox{Conditions for Input-Output Stability} \\ \mbox{P-Stability and Polynomial I/O-Stability} \\ \end{array} \begin{array}{c} & \mbox{Motivation} \\ & \mbox{Input-Output Stability} \\ & \mbox{H}^\infty\mbox{-Stability} \\ \end{array}$

PART I: Stability types in the literature.

- Input-Output Stability, H^{∞} -Stability
- Strong Stability of a Linear System
- RESULTS: Conditions for I/O-stability

PART II: Newer stability types.

- P-Stability (frequency domain)
- Polynomial Input-Output Stability (time domain)
- $\bullet~\mbox{RESULTS:}$ Relationship between P-stability and polynomial $I/O\mbox{-stability}$

Motivation Input-Output Stability H^{∞} -Stability

Input-Output Stability

Definition (Input-Output Map)

Consider a map $\mathbb F$ such that $\mathbb F u = y$ for $u \in L^2(0,\infty;U)$ where

$$y(t) = C \int_0^t T(t-s)Bu(s)ds$$

y(t) is the output corresponding to x(0) = 0 and the input u(t).

Definition (Input-Output Stability)

The linear system is *input-output stable*, if \mathbb{F} exists as a bounded linear operator from $L^2(0,\infty; U)$ to $L^2(0,\infty; Y)$.

Motivation Input-Output Stability H^{∞} -Stability

Input-Output Stability

Roughly: An L^2 -input produces an L^2 -output

$$\underbrace{u \in L^2}_{\text{I/O-stable}} \underbrace{y \in L^2}_{\text{I/O-stable}}$$

and for some $M\geq 1$

 $\|y\|_{L^2} \le M \|u\|_{L^2} \qquad \forall u \in L^2$

Motivation Input-Output Stability H^{∞} -Stability

H^{∞} -Stability

Definition

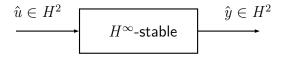
The plant is called H^{∞} -stable if its transfer function $P(\lambda) = C(\lambda - A)^{-1}B$ satisfies $P(\cdot) \in H^{\infty}(\mathbb{C}^+; \mathcal{L}(U, Y))$, i.e., if

 $\sup_{\operatorname{Re}\lambda>0} \|P(\lambda)\| < \infty.$

Recall: T(t) was assumed to be strongly stable $\Rightarrow \mathbb{C}^+ \subset \rho(A)$.

Motivation Input-Output Stability H^{∞} -Stability

I/O Stability vs. H^{∞} -Stability



Input-output stability corresponds to the H^{∞} -stability.

Theorem

The system is input-output stable if and only if it is H^{∞} -stable, i.e., if $P(\cdot) \in H^{\infty}(\mathbb{C}^+; \mathcal{L}(U, Y))$.

Motivation Input-Output Stability H^{∞} -Stability

Strong Stability of a System

I/O-stability a part of the definition of a *strongly stable system*:

Definition

Strongly stable system = I/O-stab. + input stab. + output stab. + semigroup stability.

Motivation Input-Output Stability H^{∞} -Stability

Strong Stability of a System

I/O-stability a part of the definition of a *strongly stable system*:

Definition Strongly stable system = I/O-stab. + input stab. + output stab. + semigroup stability.

References

O. Staffans, *Quadratic optimal control of stable well-posed linear systems*, 1997.

R. Curtain and J. Oostveen, *Necessary and sufficient conditions for strong stability of distributed parameter systems*, 1999.

J. Oostveen, "Strongly stabilizable infinite-dimensional systems," Ph.D. thesis, 1999.

Introduction Conditions for Input-Output Stability P-Stability and Polynomial I/O-Stability Conditions for Input-Output Stability

PART I: Conditions for Input-Output Stability

Polynomial Stability of Semigroups Characterization of Polynomial Stability Conditions for Input-Output Stability

Conditions for Input-Output Stability

Problem

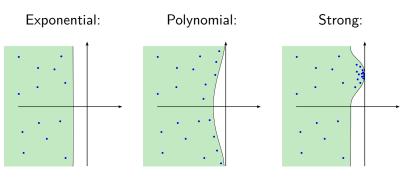
Find sufficient conditions for input-output stability of a plant.

Assumption: T(t) generated by A is polynomially stable.

Polynomial Stability of Semigroups Characterization of Polynomial Stability Conditions for Input-Output Stability

Detour: Stability of Semigroups

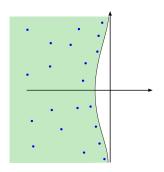
- X is Hilbert, $A: \mathcal{D}(A) \subset X \to X$
- A generates a uniformly bounded semigroup T(t)



 $\|T(t)\| \le M e^{-\omega t}$

Polynomial Stability of Semigroups Characterization of Polynomial Stability Conditions for Input-Output Stability

Polynomial Stability



Definition

T(t) is called *polynomially stable* if

- T(t) is uniformly bounded,
- $i\mathbb{R}\subset \rho(A)$,
- There exist $\alpha > 0$ and $M_A > 0$ s.t.

$$\|T(t)A^{-1}\| \le \frac{M_A}{t^{1/\alpha}} \qquad \forall t > 0.$$

Consequence: If $x \in \mathcal{D}(A)$, then $||T(t)x|| = \mathcal{O}(t^{-1/\alpha})$.

Characterization on a Hilbert Space

Theorem

If T(t) is a uniformly bounded semigroup and $i\mathbb{R} \subset \rho(A)$. For a fixed $\alpha > 0$ the following are equivalent.

(a)
$$||T_A(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}}, \quad \forall t > 0$$

(b)
$$||R(i\omega, A)|| \le M(1 + |\omega|^{\alpha})$$

Batty, Chill & Tomilov (2013), Borichev & Tomilov (2010), and Batty & Duyckaerts (2008).

Main Results: Conditions for Input-Output Stability

Question

So ..? When is a system input-output stable?

Assume A is polynomially stable with $\alpha > 0$, and B and C satisfy

$$\mathcal{R}(B) \subset \mathcal{D}((-A)^n)$$
 and $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^m)$

for some $n, m \ge 0$ (**not** necessarily integers).

"Smoothness conditions" for bounded operators B and C.

Main Results: Conditions for Input-Output Stability

Question

So ..? When is a system input-output stable?

Assume A is polynomially stable with $\alpha>0,$ and B and C satisfy

 $\mathcal{R}(B) \subset \mathcal{D}((-A)^n) \qquad \text{and} \qquad \mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^m)$

for some $n, m \ge 0$ (**not** necessarily integers).

"Smoothness conditions" for bounded operators B and C.

Theorem

If $n + m \ge \alpha$, then system is input-output stable (and H^{∞} -stable).

PART II: P-Stability and Polynomial I/O-Stability

P-Stability: Introduction

If T(t) generated by A is polynomially stable and B and C do not possess sufficient level of smoothness, the transfer function $P(\lambda)$ may become unbounded on $i\mathbb{R}$.

Motivates defining *P-stable systems* [Laakkonen, PhD thesis 2013]. (Used in frequency domain theory for robust output regulation)

P-Stability (Frequency Domain)

Definition (P-Stability)

The plant is called *P*-stable (with $\alpha > 0$) if the following conditions are satisfied.

(a)
$$P(\cdot)$$
 is analytic in a domain containing $\overline{\mathbb{C}^+}$

(b)
$$P(\cdot) \in H^{\infty}(\mathbb{C}^+_{\beta}; \mathcal{L}(U, Y))$$
 for every $\beta > 0$.

(c) There exist $\varepsilon > 0$ and $M_P \ge 1$ such that

$$||P(\lambda)|| \le M_P(1+|\lambda|^{\alpha})$$

in a strip $0 \leq \operatorname{Re} \lambda < \varepsilon$.

Introduction P-Stability Polynomial I/O-Stability Polynomial Input-Output Stability Main Result: Correspondence of the Concepts

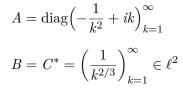
Example

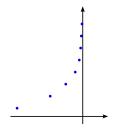
The transfer function

$$P(\lambda) = \sum_{k=1}^{\infty} \frac{1}{k^{4/3}(\lambda + 1/k^2 - ik)},$$

is P-stable with $\alpha = 2/3$ (and $P(\cdot) \notin H^{\infty}$).

From a diagonal system on $X = \ell^2(\mathbb{C})$, with a polynomial semigroup:





P-Stability Polynomial Input-Output Stability Main Result: Correspondence of the Concepts

Question:

Question

What is the time-domain stability concept corresponding to *P*-stability?

 H^{∞} -stability \longleftrightarrow input-output stability P-stability \longleftrightarrow ???

Polynomial Input-Output Stability

Definition (Polynomially input-output stable system)

Assume $\alpha \in \mathbb{N}_0$. The plant is called *polynomially input-output* stable (with α) if the input-output map $y = \mathbb{F}u$ satisfies

$$\mathbb{F} \in \mathcal{L}(W^{\alpha,2}(0,\infty;U), L^2(0,\infty;Y))$$

Here $W^{\alpha,2}$ is the Sobolev space of order α ,

$$W^{\alpha,2} = \{ \ u \in L^2 \ | \ u^{(j)} \in L^2 \text{ for } 0 \le j \le \alpha \}.$$

Polynomial Input-Output Stability

Roughly: A $W^{\alpha,2}$ -input produces an L^2 -output

$$u \in W^{\alpha,2}$$
 pol. I/O-stable $y \in L^2$

and for some $M\geq 1$

$$\|y\|_{L^2} \le M \|u\|_{W^{\alpha,2}} \qquad \forall u \in W^{\alpha,2}$$

Main Results: P-Stability \longleftrightarrow Polynomial I/O-Stablity

Theorem

Assume $\alpha \in \mathbb{N}$.

- (i) If the plant is P-stable with α, then it is polynomially input-output stable with α.
 - I.e. (roughly)

$$\|P(\lambda)\| \le M_P(1+|\lambda|^{lpha}),$$
 near $i\mathbb{R}$

implies

$$\mathbb{F} \in \mathcal{L}(W^{\alpha,2}(0,\infty; U), L^2(0,\infty; Y))$$

Main Results: P-Stability \longleftrightarrow Polynomial I/O-Stablity

Theorem

Assume $\alpha \in \mathbb{N}$, T(t) is uniformly bounded, and $i\mathbb{R} \subset \rho(A)$.

- (ii) If the plant is polynomially input-output stable with α , then it is P-stable with α .
 - I.e. (roughly)

$$\mathbb{F} \in \mathcal{L}(W^{\alpha,2}(0,\infty; U), L^2(0,\infty; Y))$$

implies

$$\|P(\lambda)\| \le M_P(1+|\lambda|^{lpha}),$$
 near $i\mathbb{R}$

Example

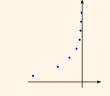
In our earlier diagonal example on $X = \ell^2(\mathbb{C})$ we had $\alpha = 2/3$.

$$A = \operatorname{diag}\left(-\frac{1}{k^2} + ik\right)_{k=1}^{\infty}$$
$$B = C^* = \left(\frac{1}{k^{2/3}}\right)_{k=1}^{\infty} \in \ell^2$$

Example

In our earlier diagonal example on $X = \ell^2(\mathbb{C})$ we had $\alpha = 2/3$.

$$A = \operatorname{diag}\left(-\frac{1}{k^2} + ik\right)_{k=1}^{\infty}$$
$$B = C^* = \left(\frac{1}{k^{2/3}}\right)_{k=1}^{\infty} \in \ell^2$$



Conclusion: The input-output map has the property:

$$\mathbb{F} \in \mathcal{L}(W^{1,2}(0,\infty; U), L^2(0,\infty; Y))$$

Conclusions

- Review of selected stability types for systems.
- P-stability and polynomial input-output stability.
- Comparison of concepts.

Thank You!