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Consider a System P, a Signal Generator S and a Controller C
where y is the Output and e the Regulation Error.
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The Main Problem

Definition (The periodic signal generator S)
The exosystem is of form

ẇ(t) = S(t)w(t), w(0) ∈W = Cq ,

d(t) = Ed(t)w(t)

yref (t) = −Fr(t)w(t)

S ∈C 1
T (R,L(W )), Ed ∈C 1

T (R,L(W , X)), Fr ∈C 1
T (R,L(W , Y )).

Here

C 1
T (R, X) =

{
f ∈ C 1(R, X)

∣∣ f (t + T ) = f (t) for all t ∈ R
}
.
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The Main Problem

Definition (Equivalent, Floquet-Lyapunov Theory)
The exosystem is of form

v̇ = Sv, v(0) ∈W = Cq ,

d(t) = E(t)v(t)

yref (t) = −F(t)v(t)

S ∈ L(W ), E ∈ C 1
T (R,L(W , X)) and F ∈ C 1

T (R,L(W , Y )).

Here

C 1
T (R, X) =

{
f ∈ C 1(R, X)

∣∣ f (t + T ) = f (t) for all t ∈ R
}
.
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The Plant P

We consider a plant

ẋ = Ax + Bu + E(t)v

d(t)︷ ︸︸ ︷
E(t)v

, x(0) ∈ X
e = Cx + Du + F(t)v

F(t)v︸ ︷︷ ︸
−yref (t)

X is Banach
A generates an analytic semigroup
B, C and D are bounded linear operators.
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The Plant P

We consider a plant

ẋ = Ax + Bu +
d(t)︷ ︸︸ ︷

E(t)v , x(0) ∈ X
e = Cx + Du + F(t)v︸ ︷︷ ︸

−yref (t)

X is Banach
A generates an analytic semigroup
B, C and D are bounded linear operators.
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The Controller C

The feedback controller (G1,G2, K ) is of form

ż = G1(t)z + G2(t)e, z(0) ∈ Z
u = K (t)z.

Z is Banach
The family (G1(t),D(G1(t))) of operators is T -periodic
G2 ∈ C 1

T (R,L(Y , Z )) and K ∈ C 1
T (R,L(Z , U )).
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The Closed-Loop System

The closed-loop system with xe = (x, z)T is given by

ẋe = Ae(t)xe + Be(t)v
e = Ce(t)xe + De(t)v.

Assume there exists a parabolic evolution family Ue(t, s)
associated to the family (Ae(t),D(Ae(t))).
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The Evolution Family Ue(t, s)

Definition (A Strongly Continuous Evolution Family)
1 Ue(t, t) = I
2 Ue(t, r)Ue(r , s) = Ue(t, s) for s ≤ r ≤ t
3
{

(t, s)
∣∣ t ≥ s

}
3 (t, s) 7→ Ue(t, s) is strongly continuous.

In the finite-dimensional case: Ue(t, s) = e
∫ t

s Ae(r)dr .

If Ae(t) ≡ Ae, generates a semigroup: Ue(t, s) = Te(t − s).
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The Evolution Family Ue(t, s)

Definition (A Strongly Continuous Evolution Family)
1 Ue(t, t) = I
2 Ue(t, r)Ue(r , s) = Ue(t, s) for s ≤ r ≤ t
3
{

(t, s)
∣∣ t ≥ s

}
3 (t, s) 7→ Ue(t, s) is strongly continuous.

The state of the closed-loop system

xe(t) = Ue(t, 0)xe(0) +
∫ t

0
Ue(t, s)Be(s)v(s)ds.
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The Evolution Family Ue(t, s)

Definition (A Strongly Continuous Evolution Family)
1 Ue(t, t) = I
2 Ue(t, r)Ue(r , s) = Ue(t, s) for s ≤ r ≤ t
3
{

(t, s)
∣∣ t ≥ s

}
3 (t, s) 7→ Ue(t, s) is strongly continuous.

Parabolic EF: Satisfied, e.g., if Ae(t) = Asg + Ab(t) where

Asg generates an analytic semigroup

(Ab(t)) ⊂ L(Xe) and Ab(·)xe ∈ C 1
T (R, Xe) for all xe ∈ Xe.
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The Periodic Output Regulation Problem

Problem (Periodic Output Regulation Problem)
Choose the controller (G1,G2, K ) such that

The CL system is exponentially stable, i.e. there exist
Me, ωe > 0 s.t.

‖Ue(t, s)‖ ≤ Mee−ωe(t−s), t ≥ s

For all initial states xe(0) ∈ Xe and v(0) ∈W the regulation
error satisfies

e(t) −→ 0

as t →∞.
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Earlier Work

Zhen & Serrani: The linear periodic output regulation
problem, 2006 (dim X = n)

Hämäläinen, Pohjolainen, LP (dim X =∞, auton. exo).
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Main Results

Theorem (Characterization of solvability of the PORP)

Assume the controller (G1,G2, K ) stabilizes the closed-loop system
exponentially.

The periodic Sylvester differential equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t)

has a unique periodic strong solution Σ∞(·).
The controller solves the PORP if and only if this solution
satisfies

Ce(t)Σ∞(t) + De(t) = 0

for all t ∈ [0, T ].
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Controller Design

Theorem (Assumptions)
Assume there exist

K1 ∈ L(X , U ) such that A + BK1 is exp. stable
L(·) ∈ C 1

T (R,L(Y , Xe)) such that[
A E(t)

S

]
− L(t)

[
C F(t)

]
is exponentially stable
X(·) ∈ C 1

T (R,L(W , X)) and U (·) ∈ C 1
T (R,L(W , U )) s.t.

Ẋ(t) + X(t)S = AX(t) + BU (t) + E(t)
0 = CX(t) + DU (t) + F(t).
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Controller Design

Theorem (Choices of Parameters)
The PORP is solved by a controller (G1,G2, K ) if we choose

K (t) =
[
K1 K2(t)

]
, K2(t) = U (t)−K1X(t)

G1(t) =
[
A E(t)

S

]
+
[
B
0

]
K (t)− L(t)

([
C F(t)

]
+ DK (t)

)

and G2(t) = L(t).
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Example: A Stable SISO System

Example
dim W = dim Y = dim U = 1
A exponentially stable, D 6= 0
The exosystem:

v̇ = 0, E(t) ≡ 0, F(t) 6= 0 ∀t ∈ [0, T ]

Choose L(t) = (0, 1/F(t))T . Then[
A E(t)

S

]
− L(t)

[
C F(t)

]
=
[

A
−1/F(t) · C −1

]

is exponentially stable.
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Example: A Stable SISO System

Example
Now

Ẋ(t) + X(t)S = AX(t) + BU (t) + E(t)
0 = CX(t) + DU (t) + F(t)

implies U (t) = −D−1(CX(t) + F(t)). Substituting, we have

Ẋ(t) = (A− BD−1C )X(t)−D−1F(t),

which has a unique periodic solution if A− BD−1C is exp. stable
(satisfied for large enough D).
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Conclusion

In this presentation:
Periodic Output Regulation Problem for infinite-dimensional
systems
Main results

Characterization of controllers solving the PORP
Construction of an observer-based controller.

Further research topics:
Solvability of the periodic Sylvester differential equation
Stabilizability of nonautonomous infinite-dimensional systems.
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