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Tampere University of Technology, Finland

lassi.paunonen@tut.fi

July 31, 2008

L. Paunonen On Sylvester Equation and The Internal Model Principle



Introduction
Main Problem

Conclusions

1 Introduction

2 Main Problem

3 Conclusions

L. Paunonen On Sylvester Equation and The Internal Model Principle



Introduction
Main Problem

Conclusions

Introduction

We study the Sylvester equations

ΠS = AΠ +BKΓ + E
ΓS = G1Γ + G2(CΠ +DKΓ + F )

(S1)

and their decomposing into

ΠS = AΠ +BKΓ + E
ΓS = G1Γ

0 = CΠ +DKΓ + F
(S2)
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Motivation

The Sylvester equations are closely related to robust output
regulation for a system Σ(A,B,C,D,E, F ) on X

ẋ = Ax+Bu+ Ev, x(0) = x0

e = Cx+Du+ Fv

with a signal generator on W

v̇ = Sv, v(0) = v0,

and an error feedback controller (G1,G2,K) on Z

ż = G1z + G2e, z(0) = z0

u = Kz
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The basic idea

If the closed-loop system with state (x, z)T on X × Z is stable,
then the equations

ΠS = AΠ +BKΓ + E
ΓS = G1Γ + G2(CΠ +DKΓ + F )

(S1)

have a unique solution (Π,Γ) and

‖
[
x(t)
z(t)

]
−
[
Π
Γ

]
v(t)‖ → 0 as t→∞,

Further, e(t)→ 0 as t→∞ if CΠ +DKΓ + F = 0.
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Regulation: Choose controller parameters (G1,G2,K) such that
the closed-loop system is stable and the equations

ΠS = AΠ +BKΓ + E
ΓS = G1Γ + G2(CΠ +DKΓ + F )

(S1)

decompose into

ΠS = AΠ +BKΓ + E
ΓS = G1Γ

0 = CΠ +DKΓ + F
(S2)

Then e(t)→ 0 as t→∞ since the closed-loop system is stable
and CΠ +DKΓ + F = 0 is satisfied.
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Robust Regulation: Choose controller parameters (G1,G2,K) such
that the closed-loop system is stable and the equations

ΠpS = ApΠp +BpKΓp + Ep

ΓpS = G1Γp + G2(CpΠp +DpKΓp + Fp)
(S1)

decompose into

ΠpS = ApΠp +BpKΓp + Ep

ΓpS = G1Γp

0 = CpΠp +DpKΓp + Fp

(S2)

for all Ap, Bp, Cp, Dp, Ep, Fp, Πp and Γp.

Then e(t)→ 0 as t→∞ for all perturbations p preserving
closed-loop stability.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Main Problem

Problem

Find necessary and sufficient conditions for (G1,G2,K) such that{
ΠS = AΠ +BKΓ + E
ΓS = G1Γ + G2(CΠ +DKΓ + F )

(S1)

⇔


ΠS = AΠ +BKΓ + E
ΓS = G1Γ

0 = CΠ +DKΓ + F
(S2)

for all operators (A,B,C,D,E, F ), Π ∈ L(W,Z) and
Γ ∈ L(W,Z) for which Π(D(S)) ⊂ D(A) and Γ(D(S)) ⊂ D(G1).
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Earlier Research

This problem is related to the Internal Model Principle.

The Internal Model Principle for infinite-dimensional systems:

Bhat, 1976

Immonen, 2006
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Assumptions

The exosystem:

Sv =
∑
k∈Z

iωk〈v, φk〉φk,

D(S) =
{
v ∈W

∣∣ ∑
k∈Z

ω2
k|〈v, φk〉|2 <∞

}
,

where (ωk)k∈Z ⊂ R has no finite accumulation points,
ωk 6= ωl for k 6= l and {φk}k∈Z is an orthonormal basis of W .

For all considered operators:

A generates a C0-semigroup on X and σ(A) ∩ σ(S) = ∅
(B,C,D,E, F ) bounded
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Main Results

Theorem

The Sylvester equations (S1) and (S2) are equivalent for all
operators (A,B,C,D,E, F ) if and only if

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S)
N (G2) = {0} (GC)

Sufficiency: Hämäläinen & Pohjolainen ’08
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Necessity:

Proof.

Show that
(S1) ⇔ (S2)

implies

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S)
N (G2) = {0} (GC)
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Proof of ”only if”, N (G2) = {0}.
1 Let y ∈ N (G2) and φ ∈W with ‖φ‖ = 1.

2 Choose E = 0, Π = 0, Γ = 0 and F = 〈·, φ〉y
3 The equations

ΠS = AΠ +BKΓ + E
ΓS = G1Γ + G2(CΠ +DKΓ + F )

(S1)

are satisfied

4 The decomposing of the equations implies

0 = CΠ +DKΓ + F = F

and thus y = 0.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Proof of ”only if”, R(sI − G1) ∩R(G2) = {0}.
1 Let iωk ∈ σ(S) and v ∈ R(iωkI − G1) ∩R(G2).

2 Then v = (iωkI − G1)z = G2y for some z, y.

3 Use this to choose E, Π, Γ and F such that the equations

ΠS = AΠ +BKΓ + E
ΓS = G1Γ + G2(CΠ +DKΓ + F )

(S1)

are satisfied and (ΓS − G1Γ)φk = (iωkI − G1)z = v.

4 The decomposing of the equations implies ΓS = G1Γ and thus

0 = (ΓS − G1Γ)φk = v.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Sufficiency:

Proof.

Show that
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Proof of ”if”, Hämäläinen & Pohjolainen, 2008.

1 It is sufficient to show that

ΓS = G1Γ + G2(CΠ +DKΓ + F )

implies CΠ +DKΓ + F = 0.

2 For all k ∈ Z apply both sides of this equation to φk to obtain

(iωkI − G1)Γφk = G2(CΠ +DKΓ + F )φk

3 Since R(iωkI − G1) ∩R(G2) = {0}, we have
G2(CΠ +DKΓ + F )φk = 0.

4 Further, (CΠ +DKΓ + F )φk = 0 since N (G2) = {0}.
5 Since {φk}k∈Z is a basis of W , we have CΠ +DKΓ + F = 0.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Connection to The Internal Model Principle

Problem

Study the conditions

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S)
N (G2) = {0} (GC)

in greater detail.

In particular, we want to compare them to the Internal Model of
finite-dimensional control theory.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Internal Model

In finite-dimensional control theory the controller (G1,G2,K)
incorporates an internal model of S if the following holds:

If s ∈ σ(S) is an eigenvalue of S such that d(s) is the dimension of
the largest Jordan block associated to s, then s ∈ σ(G1) and G1 has
at least dimY Jordan blocks of dimension ≥ d(s) associated to s.

For our operator S this reduces to

dimN (sI − G1) ≥ dimY ∀s ∈ σ(S).
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Notation

Define

Ae =
[
A BK
G2C G1 + G2DK

]
.

(System operator of the closed-loop system on X × Z with
state xe(t) = (x(t), z(t))T )

For λ ∈ ρ(A) define

P (λ) = CR(λ,A)B +D ∈ L(U, Y ),

(Transfer function of the plant)
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Theorem

If σ(Ae) ∩ σ(S) = ∅ and if

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S)
N (G2) = {0} (GC)

then
dimN (sI − G1) = dimY ∀s ∈ σ(S).

In particular, operator (P (s)K)|N (sI−G1) is an isomorphism
between N (sI − G1) and Y for all s ∈ σ(S).

L. Paunonen On Sylvester Equation and The Internal Model Principle
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Proof.
1 Let s ∈ σ(S). Then s ∈ ρ(Ae).

2 sI −Ae is injective ⇒ (P (s)K)|N (sI−G1) is injective

3 sI−Ae is surjective & (GC)⇒ (P (s)K)|N (sI−G1) is surjective

4 This concludes that (P (s)K)|N (sI−G1) is an isomorphism
between N (sI − G1) and Y .
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Theorem

If σp(Ae) ∩ σ(S) = ∅, dimY <∞ and if

dimN (sI − G1) = dimY ∀s ∈ σ(S).

then

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S)
N (G2) = {0} (GC)
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Proof of N (G2) = {0}.
1 Let y ∈ N (G2) and s ∈ σ(S).

2 sI −Ae is injective ⇒ (P (s)K)|N (sI−G1) is injective

3 Since dimN (sI − G1) = dimY <∞, the operator
(P (s)K)|N (sI−G1) is invertible

4 There exists z1 ∈ N (sI − G1) such that

y = P (s)Kz1

5 The injectivity of sI −Ae can be used to show that z1 = 0
and thus y = 0.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Proof of R(sI − G1) ∩R(G2) = {0}.
1 Let s ∈ σ(S) and v ∈ R(sI − G1) ∩R(G2)
2 Then v = (sI − G1)z = G2y for some y, z.

3 Similarly as before, the operator (P (s)K)|N (sI−G1) is
invertible

4 There exists z0 ∈ N (sI − G1) such that

y = P (s)K(z + z0)

and thus

v = (sI − G1)(z + z0) = G2P (s)K(z + z0)

5 The injectivity of sI −Ae can be used to show that
z + z0 = 0 and thus v = 0.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Lemma

If σp(Ae) ∩ σ(S) = ∅, then

dimN (sI − G1) ≤ dimY ∀s ∈ σ(S).

Proof.

Injectivity of (P (s)K)|N (sI−G1) and the Rank-Nullity Theorem.
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Decomposing of the Sylvester Equations
Connection to The Internal Model Principle

Corollary

Let σ(Ae) ∩ σ(S) = ∅ and dimY <∞. Then

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S)
N (G2) = {0} (GC)

hold if and only if

dimN (sI − G1) ≥ dimY ∀s ∈ σ(S).
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Conclusions

In this presentation:

Necessary and sufficient conditions for decomposing of certain
infinite-dimensional Sylvester equations

Under certain assumptions these conditions are equivalent to
the Internal Model of finite-dimensional control theory

Future research:

More general signal generator S.
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