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Structure

e Part I: A Coupled Wave—Heat System in 1D

o Resolvent estimates
o Rational decay of energy

o Part II: Infinite Systems of Differential Equations

e Platoon-type systems
o Stability and rational decay rates

@ In Closing: Thoughts on Infinite Systems of PDEs
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Part I:
A Coupled Wave-Heat System in 1D
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Coupled Wave—Heat Systems

@ Boundary coupled PDEs are used to describe, e.g.,
fluid—structure and heat—struture interactions.

o Coupling often leads to rational decay of energy.

2u
0 (z,t) = Au(z,t)

92
N ' heat equation
coupling BCs
!
ow

a(x, t) = Aw(z,t)
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Background and Motivation

@ Our model based on coupled 2D and 3D systems studied by
Avalos, Triggiani and others.

o Energy decay in related 1D models studied previously using
Riesz basis methods

@ Research also related to a more general field of coupled PDEs,
by Mercier, Nicaise, Ammari, Zuazua, Guo and many others.
(also nonuniform rates have been studied for many systems of
this class)

Our aim was to use resolvent estimates to simplify analysis (Avalos
and Triggiani use resolvent estimates, but for general geometries
the analysis becomes involved).
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Wave—Heat Systems Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

1D Wave—Heat Model

up(§,t) = uge(§, 1), §£€(-1,0), t>0,
wy(§, 1) = wee (&, 1), §€(0,1), >0,
ug(—1,t) =0, w(l,t) =0, t>0,
ue(0,t) = we(0,1), u(0,t) = w(0,1), t>0,
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

utt(éat) = uﬁé(g?t)7 5 € (_170)7 t> 07

wt(f,t) = w&f(gat)a 5 € (07 1)7 t> 07

ug(—1,t) =0, w(l,t) =0, t>0,

ue(0,t) = we(0,1), u(0,t) = w(0,1), t>0,
wave { = Y

— Ut
heat e g

The wave equation The heat equation
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Wave—Heat Systems

Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

&e(—1,0), t >0,

Wy gat)_wﬁf(gat)a §€ (07 1)7 t>07
t)=0, w(l,t) =0, t>0,
ug(0,1) = we(0,1), ue(0,t) = w(0,1), t>0,
— U
wave \ o,
heat e g
—I Dirichlet

Neumann

The wave equation
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The heat equation
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Wave—Heat Systems Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

1D Wave—Heat Model

uge(§,t) = uge (&, 1), §e(=1,0), t>0,
wi(§,t) = wee (€, 1), §€(0,1), t>0,
ue(—1,1) = 0, w(1,t) =0, t>0,
ug(0,t) = we(0,1), u(0,t) = w(0,1), t>0,

Total energy of the system:

1 /0 1 1
Bay(t) = 5 [ uel6 OF + Jun(€ 0P de + 5 [ (e, ) ds

We are most interested in showing that E, (t) decays at a rational
rate for all classical solutions of the system.
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Abstract Formulation
The system can be written as an abstract Cauchy problem

{m'(t) = Ax(t), t>0,
z(0) = zo,

on X = H'(—1,0) x L?*(—1,0) x L?(0,1) with operator

0 I 0
A= Awave 0 0
0 0 ‘ Aheat

D(A) = { (u,v,w) € H*(=1,0) x H(~1,0) x H*(0,1) |
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Wave—Heat Systems Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

Semigroup Generation and Properties
Theorem

The operator A generates a uniformly bounded Cy-semigroup
(T'(t))e=0 on X, 0(A)NiR = {0} and A has compact resolvent.

Proof.

We have X = Ran(A4) @ Ker(A) where dim Ker(A) =1 and
Ran(A) is closed. The restriction A’Ran(A) generates a bounded
semigroup due to Lumer—Phillips. O

Relation to the total energy of the system: For initial state
xo = xo1 + xo2 € Ran(A) @ Ker(A) the energy of z(t) satisfies

By (t) =< HT(t)\Ran(A)fUmHZ-
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Main Result: Rational Decay of Energy

Theorem
If 1o € D(A), then E,,(t) = o(t™*) ast — co.

Due to relation between energy and norms of orbits, the decay is
equivalent to

70451 =0 (5)

where Ag = Algan(a) and To(t) = T(t)|Ran(a)
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Wave—Heat Systems Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

Decay of Energy

Decay of energy can be deduced from the resolvent estimates.
Theorem (Borichev & Tomilov 2010)

Let (T'(t))t>0 be a uniformly bounded Cy-semigroup on a Hilbert
space X. Let A be the generator of (T'(t)):>0 and suppose that
a(A)NiR = 0.

For any constant o > 0, the following conditions are equivalent:

(i) [1R(is, )| = O(|s|%) as [s] = oo,
(i) IT®)AY =0t V) ast — oo,
(iii) |T(#)x| = o(t~Y/*) as t — oo for all z € D(A).
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Resolvent Estimates

Theorem

IR(is, Ao)|| = O(|s['/?) as |s| = oo, and ||To(t)Ag || = O(t~?).

Here we again denote Ap = A|ran(a) and To(t) = T'(t)|Ran(4)-
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Comments on the Proof
For x = (u,v,w) and y = (f, g, h) the equation
(is—Ax =y

is equivalent to the boundary value problems

u"(§) = —s*u() —isf(§) —g(&), €€ (-1,0),
v(§) =zsu(£) f(&), §e(-1,0),

w"(€) = isw(§) — h(E), §€(0,1),
v/ (=1) = w(1) =0, v(0) = w(0), v (0) = w'(0).

Estimate ||R(is, Ao)y|| < v/|sl|ly|| follows from solving for
(u,v,w) and using some convenient tricks in the estimates.
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Wave—Heat Systems Introduction
One-Dimensional Model

Decay of Energy
Optimality of the Decay Rate

Main Result: Rational Decay of Energy

Theorem
If 1o € D(A), then E, (t) = o(t™*) as t — co.
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Wave—Heat Systems Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

Optimality of the Decay Rates

Locations of eigenvalues imply that E,(t) = o(t~*) is optimal.

Lemma

o(A) = {/\ € C | vAcosh(\) cosh(VA) + sinh(\) sinh(VA) = 0}.

Proof.
Solve the boundary value problems equivalent to (A — A)z = 0 for
x = (u,v,w). O
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Wave—Heat Systems Introduction
One-Dimensional Model
Decay of Energy

Optimality of the Decay Rate

Optimality of the Decay Rates
A Rouché argument implies:
Theorem

There exists (\,) C o(A) such that
Im A, ~nm asn — oo and

3
| )
)
)

ﬂ\mm

- - < > 0.
T A, [/ SRedp, <0, >0

In particular,

lim sup |s|~'/2||R(is, A)| > 0

|s| =00

E.,(t) = o(t™%) is optimal for zy € D(A).
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Background Motivation from Semigroup Theory
Introduction to the Models
Main Results

Infinite Systems of ODEs

Part |l

Infinite Systems of Differential Equations
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Background Motivation from Semigroup Theory
Introduction to the Models
Main Results

Infinite Systems of ODEs

Main Problem

Study asymptotics of infinite systems of the form

T (t) = Aok (t) + Ayzi—1(t), k€Z,t>0,
where Ay, A1 € C"™*™ do not depend on k € Z.
We want to study, e.g.,

sup ||zx(t) — yxllcm — 0, as t — o0
keZ

with rates.
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Background Motivation from Semigroup Theory
Introduction to the Models
Main Results

Infinite Systems of ODEs

For x € D(A) For € Ran(A)
M M .
1Tl < 75 1 Azll, IT®2ll < 5 lA™ =,
. A

Martinez '11, Batty, Chill & Tomilov '13 ("16), Chill & Seifert '16



Background Motivation from Semigroup Theory

Infinite Systems of ODEs Introduction to the Models

Main Results

Infinite Systems of Differential Equations
Our system can be formulated as an abstract Cauchy problem
&(t) = Az(t), z(0) =x0€ X
on X = (P(C™) for 1 < p < oo by choosing x(t) = (zx(t))rez and
Az = (Ao + A12k—1)kez-
i.e.

_ CAr Ao
A= A Ao

Here A € £(X) and our system belongs to the class of “Spatially
invariant systems” (Bamieh et. al. and others).

L. Paunonen Nonuniform decay rates for systems of differential equations



Background Motivation from Semigroup Theory
Introduction to the Models
Main Results

Infinite Systems of ODEs

A Concrete Model: An Infinite Vehicle Platoon

Yk 0 1 Yk 0 =1 0} (yr
wg | = 0 0 1 we |+ [0 0 0 Wh—1
dk -y —OQ1 —Q9 af 0 0 0 af—1
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tion to the Models
l\/hm Results

Infinite Systems of ODEs

A Concrete Model: An Infinite Vehicle Platoon

Uk 0 1 0 Yk 0 -1 0 Yk—1
wg | = 0 0 1 we, |+ 10 0 O Wh_1
Qg —ap —Qp —Qo ag 0O 0 O ap_1
/\f\i\vireless' )
communication

Vit radar Vi /;:

BN 1T OO T e ]

diy di i1 L ,0,1",1,

Figure: Source: Ploeg et. al., IEEE, 2011.
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Background Motivation from Semigroup Theory
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Infinite Systems of ODEs

A Concrete Model: An Infinite Vehicle Platoon

Yk 0 1 0 Yk 0 —1 0} (yr

wg | = 0 0 1 we |+ [0 0 0 Wk—1

aj —Qyg —01 —O9 af 0 0 0 Q1
:AO :Al

yr(t) = displacement from ideal distance between k and k& — 1
wy(t) = velocity of kth vehicle
a(t) = acceleration of kth vehicle

Objective: Choose ag, a1, as € R so that sup |yx| — 0 as t — oco.
keZ
Challenge: The matrices Ay and A; do not commute.
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Background Motivation from Semigroup Theory
Introduction to the Models
Main Results

Infinite Systems of ODEs

A More Abstract Class

Assumption

Assume A; # 0, 0(Ap) C C_, and there exists ¢ : C — C s.t.
Aj(A— Ap) T4 = oM A1, A e C\a(A).

¢(+) is called characteristic function of the infinite system.

Lemma
If Ay is of rank one such that A; = ab* € C™*™, then

d(\) = b*(\ — Ag) " La.

Clearly ¢p(\) = % where degn(-) < degd(-).
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Background Motivation from Semigroup Theory
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Infinite Systems of ODEs

Main Results

In the following we will do the following:

(i) Characterize spectrum of A
(i) Present conditions for uniform boundedness of T'(t)
(i) Study rates of convergence of ||T'(t)zo — y|| — 0 as t — oc.
For all these purposes use the characteristic function ¢(-):
Ai(A— Ag) TA1 = p(N) A1, A€ C\o(A).

Main idea: Existence of ¢(-) compensates for the lack of
commutativity of Ay and Aj.
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Background Motivation from Semigroup Theory
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Infinite Systems of ODEs

Spectrum of the System

Characteristic function ¢(-) determines the spectrum of A:

Theorem

Let X =/P(C™) with1 <p < oo. Then for A\ € C\ o(Ap)
A€a(A) if and only if  |p(N)| = 1.

Moreover, for A € o(A) \ c(Ap) we have
o Ker(A— A) # {0} if and only if p = o0
@ Ran(A\— A) = X ifand only if 1 < p < 0.

The type of spectrum depends on p, but the location does not.
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Background Motivation from Semigroup Theory
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Infinite Systems of ODEs

Spectrum of the Platoon System

Uk 0 1 0 Yk 0 -1 0\ [yk—1

w | = 0 0 1 we |l +10 0 O Wh_1

a —qp —Qap —Qo ag 0 0 O ap_1
aQ (&%s)

Characteristic function: ¢(\) = = '
aracteristic tunction (15( ) p()x) /\3+a2)\2+a1)\+040

Spectrum of the platoon system is determined by ag, a1, and as.
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Infinite Systems of ODEs

Uniform Boundedness of the Semigroup

Theorem
Let 1 <p<o0o. Ifo(A) Cc C_U{0},

mn

l
LS00

A )\n+1 o0
sup ————— < 0o and sup sup
o<a<1 1 —[p(N)] neN a0 Nl gz:;

< 00,

then the semigroup generated by A is uniformly bounded.

Proof.
A fairly direct Hille=Yosida approach using a resolvent formula. [

Property: Systems for m > 2 are typically not contractive. In
particular, the platoon system is never contractive.
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Infinite Systems of ODEs

Uniform Boundedness for the Platoon System

Lemma
If ¢(-) is such that for some { >0, ¢ € N,
B =, A£C /\
(A+Q)e .
then U
PER! oo
g oup <23 fawe| <oo

The characteristic function of the platoon system is of this form if
parameters ag, a1, g are chosen so that o(Ag) = {—(}.

Then the platoon system is guaranteed to be uniformly bounded.
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Infinite Systems of ODEs

(Unquantified) Asymptotic Behaviour

Combining the results on spectrum and uniform boundedness:
Theorem

Let X = ¢P(C™) and

¢l

¢()\) = m;

A#—C.

o If1 < p < oo, then T'(t) is strongly stable, i.e., T'(t)x — 0
o Ifp=1, then T(t)x — 0 ast — oo for all x € Ran(A) # X.
o Ifp=o00 and z = z9+ 21 € Ran(A) & Ker(A) # X, then

T(t)r — 1 as t — o0.
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Infinite Systems of ODEs

Rates of Convergence

Next aim: Find rates of convergence for Q
| T(t)z|| — 0 as t— oo
and —
Ttz —y| -0 as t— o0
under the assumption o(A) N iR = {0}. @
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Infinite Systems of ODEs

From Resolvent Estimates Near 0 to Rates

Theorem (Martinez, Chill-Seifert)

Let T'(t) generated by A € L(X) be uniformly bounded and
o(A) NiR = {0}. If for some o > 1 we have

[R(is, A)l| = O(|s|™*)  as |s| =0

- 1/a
IT(®) Az = O ((ltgt> ) e

By Batty—Chill-Tomilov '13, logarithm can be omitted if X Hilbert.

then
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Infinite Systems of ODEs

Convergence Rates via Resolvent Estimates

Theorem
Let 1 <p<oo. If0€c(A) C C_U{0}, then for0 < s <1

[ R(is, A)[| < s|7")

1
i leGa) OV

for an even integer ng > 2. Thus if T'(t) is uniformly bounded and
x =z + x1 € Ran(A) @ Ker(A), then

IT(®)z = 21] = O ((btgt>1/n¢>

Batty, Chill & Tomilov '13: Logarithm can be omitted if p = 2.
(Note that z; =0 if 1 < p < 00)
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Infinite Systems of ODEs

Decay Rates for the Platoon System

For the platoon system, the possible exponents ny are 2, 4 and 6.

9 : :

0 . .

_1 1 _1
Corresponding rates are (lngt> 2 (ngt) * and (lngt) ¢

(though uniform boundedness was just shown for the first case).
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Infinite Systems of ODEs

Characterizing Initial States Leading to Convergence

Problem
Characterize elements € Ran(A) and x € Ran(A).

Motivation: Initial states zg € Ran(A) @ Ker(A) lead to
convergence with rate

rwol < 0 (B Atz
In the cases X = ¢}(C™) and X = ¢>°(C™)
t—T(t)x
converges to some y € X if and only if z € Ran(A) @ Ker(A).
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Infinite Systems of ODEs

Theorem
Let X =¢>°(C™), 0 € o(A) Cc C_uU{0}, T(t) is bdd, ¢'(0) # 0.

x € Ran(A) @ Ker(A) if and only if there exists yo € Ran(A;)

n

1 ; _
- > o0 FA AT T — o
=1

—0, n—oo, (1)
Ccm

sup
kEZ
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Infinite Systems of ODEs

Theorem
Let X =¢>°(C™), 0 € o(A) Cc C_uU{0}, T(t) is bdd, ¢'(0) # 0.

x € Ran(A) @ Ker(A) if and only if there exists yo € Ran(A;)

n

1 ; _
- > o0 FA AT T — o
=1

—0, n—oo, (1)
Ccm

sup
kEZ

Moreover, if the decay in (1) is like O(n~') as n — oo then
x =x9+ x1 € Ran(A) @ Ker(A) and

1 1/ng
IT(t)z — z1] = O <(Ogt> ) oo

t
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Decay for the Platoon System

Uk 0 1 0 Yk 0 -1 0\ [yr—1

wg | = 0 0 1 we | +]10 0 0 W1

ag - -3¢ -3¢) \a 0 0 0/ \ap1
Theorem

Let X = (>°(C3). T(t)x converges if and only if there exists c € R

sup
kEZ

1 n
== —;(0)] =0 —
o 2 )| >0 oo,

and if this holds then T'(t)x — x1, where

c c €
x1= ..., =Ce/3 |, —=Ce/3],]|—-Cc/3],...
0 0 0
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Infinite Systems of ODEs Background Motivation from Semigroup Theory

Introduction to the Models
Main Results

Quantified Decay for the Platoon System

Uk 0 1 0 Yk

0 0\ [yr—1
wy | = 0 0 1 wry | +10 0 0 Wg_1
ax —¢* =3¢ -3¢) \a 0 0 0 \apy

Theorem

Let X = (>°(C3). If there exists c € R

sup
kEZ

1 & 1
c—n]z—:lyk_j(O)‘:O<n> as n — oo,

then ||T'(t)x — x1|| = O(\}E) where again x1 = ((¢, —(c/3,0)T )rez

Here the logarithm was removed using N. Dungey 2008.
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Infinite Systems of PDEs

Infinite Systems of PDEs

Ideas for systems consisting of infinite coupled PDEs.

Two types of couplings:
@ Inside the domain

@ Through shared boundaries
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Infinite Systems of PDEs

An Infinite System of Heat Equations

|

One-dimensional systems on (0, 1):

uf (6,t) = uge(&,t) +yuh (1)
uF(0,t) =uF(1,t) =0
uF(€,0) = uf (&)

for k € Z.
Full system x(t) = (uF(-,t))kez € £2(L?(0,1))

Az = (@), + Y2k—1)kez

for v = (zp)pez € C2(H? N HY).
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Infinite Systems of PDEs

An Infinite System of Heat Equations

I Spectrum o (Ap) of the subsystem Ay = 5%:
/\ A
[

I —e . —1

AN

Spectrum o(A) of the full system (Radii =~ > 0):

I A
AN N eNe

[ N

Y

L. Paunonen
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Infinite Systems of PDEs

An Infinite System of Heat Equations

I Spectrum o (Ap) of the subsystem Ay = %:

VAN —‘-
I —_—0
/\

Spectrum o(A)

of the full system (Ch

e d

!
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Infinite Systems of PDEs

Infinite Wave—Heat System with Boundary Coupling

SN NN

AL Ay Ay

A: A_l AO Al
A1 Ao A1
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Infinite Systems of PDEs

Infinite Network of PDEs

A doubly infinite block operator matrix with finite bandwidth.
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Conclusions

Thank You!
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