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Coupled Wave–Heat Systems

Boundary coupled PDEs are used to describe, e.g.,
fluid–structure and heat–struture interactions.
Coupling often leads to rational decay of energy.

∂2u

∂t2
(x, t) = ∆u(x, t)

l
coupling BCs
l

∂w

∂t
(x, t) = ∆w(x, t)

heat equation

wave eqn
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Background and Motivation

Our model based on coupled 2D and 3D systems studied by
Avalos, Triggiani and others.
Energy decay in related 1D models studied previously using
Riesz basis methods
Research also related to a more general field of coupled PDEs,
by Mercier, Nicaise, Ammari, Zuazua, Guo and many others.
(also nonuniform rates have been studied for many systems of
this class)

Our aim was to use resolvent estimates to simplify analysis (Avalos
and Triggiani use resolvent estimates, but for general geometries
the analysis becomes involved).
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1D Wave–Heat Model

utt(ξ, t) = uξξ(ξ, t), ξ ∈ (−1, 0), t > 0,
wt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1), t > 0,

uξ(−1, t) = 0, w(1, t) = 0, t > 0,
uξ(0, t) = wξ(0, t), ut(0, t) = w(0, t), t > 0,
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1D Wave–Heat Model



utt(ξ, t) = uξξ(ξ, t), ξ ∈ (−1, 0), t > 0,
wt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1), t > 0,

uξ(−1, t) = 0, w(1, t) = 0, t > 0,
uξ(0, t) = wξ(0, t), ut(0, t) = w(0, t), t > 0,

Total energy of the system:

Ex0(t) = 1
2

∫ 0

−1
|uξ(ξ, t)|2 + |ut(ξ, t)|2 dξ + 1

2

∫ 1

0
|w(ξ, t)|2 dξ

We are most interested in showing that Ex0(t) decays at a rational
rate for all classical solutions of the system.
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Abstract Formulation
The system can be written as an abstract Cauchy problem{

x′(t) = Ax(t), t ≥ 0,
x(0) = x0,

on X = H1(−1, 0)× L2(−1, 0)× L2(0, 1) with operator

A =

 0 I 0
∆wave 0 0

0 0 ∆heat



D(A) =
{

(u, v, w) ∈ H2(−1, 0)×H1(−1, 0)×H2(0, 1)
∣∣∣

u′(−1) = w(1) = 0, v(0) = w(0), u′(0) = w′(0)
}
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Semigroup Generation and Properties
Theorem

The operator A generates a uniformly bounded C0-semigroup
(T (t))t≥0 on X, σ(A) ∩ iR = {0} and A has compact resolvent.

Proof.
We have X = Ran(A)⊕Ker(A) where dim Ker(A) = 1 and
Ran(A) is closed. The restriction A|Ran(A) generates a bounded
semigroup due to Lumer–Phillips.

Relation to the total energy of the system: For initial state
x0 = x01 + x02 ∈ Ran(A)⊕Ker(A) the energy of x(t) satisfies

Ex0(t) � ‖T (t)|Ran(A)x01‖2.

L. Paunonen Nonuniform decay rates for systems of differential equations
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Main Result: Rational Decay of Energy

Theorem
If x0 ∈ D(A), then Ex0(t) = o(t−4) as t→∞.

Due to relation between energy and norms of orbits, the decay is
equivalent to

‖T0(t)A−1
0 ‖ = O

( 1
t2

)
where A0 = A|Ran(A) and T0(t) = T (t)|Ran(A)
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Decay of Energy

Decay of energy can be deduced from the resolvent estimates.

Theorem (Borichev & Tomilov 2010)

Let (T (t))t≥0 be a uniformly bounded C0-semigroup on a Hilbert
space X. Let A be the generator of (T (t))t≥0 and suppose that
σ(A) ∩ iR = ∅.

For any constant α > 0, the following conditions are equivalent:

(i) ‖R(is, A)‖ = O(|s|α) as |s| → ∞;
(ii) ‖T (t)A−1‖ = O(t−1/α) as t→∞;
(iii) ‖T (t)x‖ = o(t−1/α) as t→∞ for all x ∈ D(A).
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Resolvent Estimates

Theorem

‖R(is, A0)‖ = O(|s|1/2) as |s| → ∞, and ‖T0(t)A−1
0 ‖ = O(t−2).

Here we again denote A0 = A|Ran(A) and T0(t) = T (t)|Ran(A).
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Comments on the Proof

For x = (u, v, w) and y = (f, g, h) the equation

(is−A)x = y

is equivalent to the boundary value problems

u′′(ξ) = −s2u(ξ)− isf(ξ)− g(ξ), ξ ∈ (−1, 0),
v(ξ) = isu(ξ)− f(ξ), ξ ∈ (−1, 0),

w′′(ξ) = isw(ξ)− h(ξ), ξ ∈ (0, 1),
u′(−1) = w(1) = 0, v(0) = w(0), u′(0) = w′(0).

Estimate ‖R(is, A0)y‖ .
√
|s|‖y‖ follows from solving for

(u, v, w) and using some convenient tricks in the estimates.

L. Paunonen Nonuniform decay rates for systems of differential equations
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Main Result: Rational Decay of Energy

Theorem
If x0 ∈ D(A), then Ex0(t) = o(t−4) as t→∞.
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Optimality of the Decay Rates

Locations of eigenvalues imply that Ex0(t) = o(t−4) is optimal.

Lemma

σ(A) =
{
λ ∈ C

∣∣ √λ cosh(λ) cosh(
√
λ) + sinh(λ) sinh(

√
λ) = 0

}
.

Proof.
Solve the boundary value problems equivalent to (λ−A)x = 0 for
x = (u, v, w).

L. Paunonen Nonuniform decay rates for systems of differential equations
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Optimality of the Decay Rates
A Rouché argument implies:

Theorem

There exists (λn) ⊂ σ(A) such that
Imλn ∼ nπ as n→∞ and

− 1
| Imλn|1/2 . Reλn < 0, n ≥ 0.

In particular,

lim sup
|s|→∞

|s|−1/2‖R(is, A)‖ > 0

Ex0(t) = o(t−4) is optimal for x0 ∈ D(A).
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Part II:
Infinite Systems of Differential Equations
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Main Problem

Study asymptotics of infinite systems of the form

ẋk(t) = A0xk(t) +A1xk−1(t), k ∈ Z, t ≥ 0,

where A0, A1 ∈ Cm×m do not depend on k ∈ Z.

We want to study, e.g.,

sup
k∈Z
‖xk(t)− yk‖Cm → 0, as t→∞

with rates.

L. Paunonen Nonuniform decay rates for systems of differential equations



Wave–Heat Systems
Infinite Systems of ODEs
Infinite Systems of PDEs

Conclusions

Background Motivation from Semigroup Theory
Introduction to the Models
Main Results

For x ∈ D(A)

‖T (t)x‖ ≤ M

t1/α
‖Ax‖,

For x ∈ Ran(A)

‖T (t)x‖ ≤ M

t1/α
‖A−1x‖,

Martinez ’11, Batty, Chill & Tomilov ’13 (’16), Chill & Seifert ’16
L. Paunonen Nonuniform decay rates for systems of differential equations
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Infinite Systems of Differential Equations
Our system can be formulated as an abstract Cauchy problem

ẋ(t) = Ax(t), x(0) = x0 ∈ X

on X = `p(Cm) for 1 ≤ p ≤ ∞ by choosing x(t) = (xk(t))k∈Z and

Ax = (A0xk +A1xk−1)k∈Z.

i.e.

A =


. . . . . .

A1 A0
A1 A0

. . . . . .


Here A ∈ L(X) and our system belongs to the class of “Spatially
invariant systems” (Bamieh et. al. and others).
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A Concrete Model: An Infinite Vehicle Platoon

 ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−α0 −α1 −α2


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1
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a stability approach for strings of infinite length, and finally
a performance-oriented frequency-domain approach.

The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m ∈ N interconnected vehicles. This system is string-
stable if and only if

‖zi(t)‖Lp ≤ ‖zi−1(t)‖Lp , ∀ t ≥ 0, 2 ≤ i ≤ m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) ∈ Lp is a
given input signal, and zi(0) = 0 for 2 ≤ i ≤ m.

‖ · ‖Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that ‖zi(t)‖Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.

III. CONTROL DESIGN

An elegant method to arrive at a suitable controller for
CACC is based on formulation of the error dynamics, as

di di–1di+1

vi+1

i+1

vi vi–1

wireless
communication

radar

i–1i

Fig. 2. CACC-equipped string of vehicles.

shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i − 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 ≤ i ≤ m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) − dr,i(t)

= (si−1(t) − si(t) − Li) − (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
is adopted:




ḋi

v̇i

ȧi


 =




vi−1 − vi

ai

− 1
τ ai + 1

τ ui


 , 2 ≤ i ≤ m, (3)

where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and τ a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant τ is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).

The control law can now be designed by formulating the
error dynamics. Define to this end the error states




e1,i

e2,i

e3,i


 =




ei

ėi

ëi


 , 2 ≤ i ≤ m. (4)

!"#

Figure: Source: Ploeg et. al., IEEE, 2011.
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A Concrete Model: An Infinite Vehicle Platoon

 ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−α0 −α1 −α2


︸ ︷︷ ︸

= A0

ykwk
ak

+

0 −1 0
0 0 0
0 0 0


︸ ︷︷ ︸

= A1

yk−1
wk−1
ak−1



yk(t) = displacement from ideal distance between k and k− 1
wk(t) = velocity of kth vehicle
ak(t) = acceleration of kth vehicle

Objective: Choose α0, α1, α2 ∈ R so that sup
k∈Z
|yk| → 0 as t→∞.

Challenge: The matrices A0 and A1 do not commute.
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A More Abstract Class

Assumption

Assume A1 6= 0, σ(A0) ⊂ C−, and there exists φ : C→ C s.t.

A1(λ−A0)−1A1 = φ(λ)A1, λ ∈ C \ σ(A0).

φ(·) is called characteristic function of the infinite system.

Lemma
If A1 is of rank one such that A1 = ab∗ ∈ Cm×m, then

φ(λ) = b∗(λ−A0)−1a.

Clearly φ(λ) = n(λ)
d(λ) where degn(·) ≤ deg d(·).

L. Paunonen Nonuniform decay rates for systems of differential equations
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Main Results

In the following we will do the following:

(i) Characterize spectrum of A
(ii) Present conditions for uniform boundedness of T (t)
(iii) Study rates of convergence of ‖T (t)x0 − y‖ → 0 as t→∞.

For all these purposes use the characteristic function φ(·):

A1(λ−A0)−1A1 = φ(λ)A1, λ ∈ C \ σ(A0).

Main idea: Existence of φ(·) compensates for the lack of
commutativity of A0 and A1.

L. Paunonen Nonuniform decay rates for systems of differential equations
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Spectrum of the System

Characteristic function φ(·) determines the spectrum of A:

Theorem

Let X = `p(Cm) with 1 ≤ p ≤ ∞. Then for λ ∈ C \ σ(A0)

λ ∈ σ(A) if and only if |φ(λ)| = 1.

Moreover, for λ ∈ σ(A) \ σ(A0) we have
Ker(λ−A) 6= {0} if and only if p =∞
Ran(λ−A) = X if and only if 1 < p <∞.

The type of spectrum depends on p, but the location does not.

L. Paunonen Nonuniform decay rates for systems of differential equations
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Spectrum of the Platoon System ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−α0 −α1 −α2


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1



Characteristic function: φ(λ) = α0
p(λ) = α0

λ3 + α2λ2 + α1λ+ α0
.

Spectrum of the platoon system is determined by α0, α1, and α2.

|φ(λ)| = 1
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Uniform Boundedness of the Semigroup

Theorem

Let 1 ≤ p ≤ ∞. If σ(A) ⊂ C− ∪ {0},

sup
0<λ≤1

λ

1− |φ(λ)| <∞ and sup
n∈N

sup
λ>0

λn+1

n!

∞∑
`=1

∣∣∣∣ dndλnφ(λ)`
∣∣∣∣ <∞,

then the semigroup generated by A is uniformly bounded.

Proof.
A fairly direct Hille–Yosida approach using a resolvent formula.

Property: Systems for m ≥ 2 are typically not contractive. In
particular, the platoon system is never contractive.
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Uniform Boundedness for the Platoon System

Lemma
If φ(·) is such that for some ζ > 0, q ∈ N,

φ(λ) = ζq

(λ+ ζ)q , λ 6= −ζ

then

sup
n∈N

sup
λ>0

λn+1

n!

∞∑
`=1

∣∣∣∣ dndλnφ(λ)`
∣∣∣∣ <∞.

The characteristic function of the platoon system is of this form if
parameters α0, α1, α2 are chosen so that σ(A0) = {−ζ}.

Then the platoon system is guaranteed to be uniformly bounded.
L. Paunonen Nonuniform decay rates for systems of differential equations
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(Unquantified) Asymptotic Behaviour
Combining the results on spectrum and uniform boundedness:

Theorem
Let X = `p(Cm) and

φ(λ) = ζq

(λ+ ζ)q , λ 6= −ζ.

If 1 < p <∞, then T (t) is strongly stable, i.e., T (t)x→ 0
If p = 1, then T (t)x→ 0 as t→∞ for all x ∈ Ran(A) 6= X.
If p =∞ and x = x0 + x1 ∈ Ran(A)⊕Ker(A) 6= X, then

T (t)x→ x1 as t→∞.
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Rates of Convergence

Next aim: Find rates of convergence for

‖T (t)x‖ → 0 as t→∞

and

‖T (t)x− y‖ → 0 as t→∞

under the assumption σ(A) ∩ iR = {0}.
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From Resolvent Estimates Near 0 to Rates

Theorem (Martinez, Chill–Seifert)
Let T (t) generated by A ∈ L(X) be uniformly bounded and
σ(A) ∩ iR = {0}. If for some α ≥ 1 we have

‖R(is, A)‖ = O(|s|−α) as |s| → 0

then

‖T (t)Ax‖ = O

(( log t
t

)1/α)
, t→∞.

By Batty–Chill–Tomilov ’13, logarithm can be omitted if X Hilbert.
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Convergence Rates via Resolvent Estimates

Theorem
Let 1 ≤ p ≤ ∞. If 0 ∈ σ(A) ⊂ C− ∪ {0}, then for 0 < s ≤ 1

‖R(is, A)‖ � 1
|1− |φ(is)|| = O(|s|−nφ)

for an even integer nφ ≥ 2. Thus if T (t) is uniformly bounded and
x = x0 + x1 ∈ Ran(A)⊕Ker(A), then

‖T (t)x− x1‖ = O

(( log t
t

)1/nφ
)

Batty, Chill & Tomilov ’13: Logarithm can be omitted if p = 2.

(Note that x1 = 0 if 1 ≤ p <∞)
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Decay Rates for the Platoon System
For the platoon system, the possible exponents nφ are 2, 4 and 6.

Corresponding rates are
(

log t
t

)− 1
2 ,
(

log t
t

)− 1
4 and

(
log t
t

)− 1
6

(though uniform boundedness was just shown for the first case).
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Characterizing Initial States Leading to Convergence

Problem
Characterize elements x ∈ Ran(A) and x ∈ Ran(A).

Motivation: Initial states x0 ∈ Ran(A)⊕Ker(A) lead to
convergence with rate

‖T (t)x0‖ ≤M
( log t

t

)1/nφ
‖A−1x0‖.

In the cases X = `1(Cm) and X = `∞(Cm)

t 7→ T (t)x

converges to some y ∈ X if and only if x ∈ Ran(A)⊕Ker(A).
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Theorem
Let X = `∞(Cm), 0 ∈ σ(A) ⊂ C− ∪ {0}, T (t) is bdd, φ′(0) 6= 0.

x ∈ Ran(A)⊕Ker(A) if and only if there exists y0 ∈ Ran(A1)

sup
k∈Z

∥∥∥∥ 1
n

n∑
j=1

φ(0)j−kA1A
−1
0 xk−j − y0

∥∥∥∥
Cm
→ 0, n→∞, (1)

Moreover, if the decay in (1) is like O(n−1) as n→∞ then
x = x0 + x1 ∈ Ran(A)⊕Ker(A) and

‖T (t)x− x1‖ = O

(( log t
t

)1/nφ
)
, t→∞.
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Theorem
Let X = `∞(Cm), 0 ∈ σ(A) ⊂ C− ∪ {0}, T (t) is bdd, φ′(0) 6= 0.

x ∈ Ran(A)⊕Ker(A) if and only if there exists y0 ∈ Ran(A1)

sup
k∈Z

∥∥∥∥ 1
n

n∑
j=1

φ(0)j−kA1A
−1
0 xk−j − y0

∥∥∥∥
Cm
→ 0, n→∞, (1)

Moreover, if the decay in (1) is like O(n−1) as n→∞ then
x = x0 + x1 ∈ Ran(A)⊕Ker(A) and

‖T (t)x− x1‖ = O

(( log t
t

)1/nφ
)
, t→∞.
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Decay for the Platoon System ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−ζ3 −3ζ2 −3ζ


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1


Theorem
Let X = `∞(C3). T (t)x converges if and only if there exists c ∈ R

sup
k∈Z

∣∣∣∣c− 1
n

n∑
j=1

yk−j(0)
∣∣∣∣→ 0, n→∞,

and if this holds then T (t)x→ x1, where

x1 =

. . . ,
 c
−ζc/3

0

 ,
 c
−ζc/3

0

 ,
 c
−ζc/3

0

 , . . .
 .
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Quantified Decay for the Platoon System
 ẏkẇk
ȧk

 =

 0 1 0
0 0 1
−ζ3 −3ζ2 −3ζ


ykwk
ak

+

0 −1 0
0 0 0
0 0 0


yk−1
wk−1
ak−1


Theorem
Let X = `∞(C3). If there exists c ∈ R

sup
k∈Z

∣∣∣∣c− 1
n

n∑
j=1

yk−j(0)
∣∣∣∣ = O

( 1
n

)
as n→∞,

then ‖T (t)x− x1‖ = O( 1√
t
) where again x1 = ((c,−ζc/3, 0)T )k∈Z

Here the logarithm was removed using N. Dungey 2008.
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Infinite Systems of PDEs

Ideas for systems consisting of infinite coupled PDEs.

Two types of couplings:
Inside the domain
Through shared boundaries
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An Infinite System of Heat Equations

One-dimensional systems on (0, 1):

ukt (ξ, t) = ukξξ(ξ, t) + γuk−1(ξ, t)
uk(0, t) = uk(1, t) = 0
uk(ξ, 0) = uk0(ξ)

for k ∈ Z.

Full system x(t) = (uk(·, t))k∈Z ∈ `2(L2(0, 1))

Ax = (x′′k + γxk−1)k∈Z

for x = (xk)k∈Z ∈ `2(H2 ∩H1
0 ).
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An Infinite System of Heat Equations
Spectrum σ(A0) of the subsystem A0 = d2

dξ2 :

Spectrum σ(A) of the full system (Radii = γ > 0):
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An Infinite System of Heat Equations
Spectrum σ(A0) of the subsystem A0 = d2

dξ2 :

Spectrum σ(A) of the full system (Ch. γ = π2):
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Infinite Wave–Heat System with Boundary Coupling

A =


. . . . . . . . .

A−1 A0 A1
A−1 A0 A1

A−1 A0 A1
. . . . . . . . .
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Infinite Network of PDEs

A doubly infinite block operator matrix with finite bandwidth.

A =

 . . . . . . . . .
∗ ∗ ∗
∗ ∗ ∗

. . . . . . . . .
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Thank You!
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