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Main Objectives

Problem
Study dynamics of networks consisting of Partial Differential
Equations (PDEs), with focus on long-time behaviour of
the energy.

Motivation:
Dynamics of networked systems are interesting!
Both network structure and component dynamics
contribute
We focus on what happens when t → ∞
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What are PDE networks?

Throughout the talk a “PDE network” refers to
A collection of Partial Differential Equation models

whose the connectivity can be described by a graph.

Perhaps some examples will illustrate the concept. . .
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Beam structures

A truss bridge — beams which are joined at their ends.
Deflection of each beam described by a PDE — beam
equation
Can study either dynamic behaviour or the steady state.
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Truss structures
Structure determines a graph where the beams are the
edges and the meeting points are the nodes.

;

We focus on such PDE networks, i.e., where
PDE ↔ edge connection ↔ node/vertex
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Pipe Networks
Pipe delivery networks for gas, water, and petrol can be
modelled as PDE networks. PDEs are transport equations.

Waterflow in channels: wave equations
Heat or material diffusion in structures: heat or
convection-diffusion equations
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Couplings

Question
How do the PDEs in the network communicate?

Each PDE in the network involves:
The actual differential equation
(deflection along the beam)

Boundary conditions (deflection,
slope, strain etc at the endpoints)

; The beam models interact with each other at the network
nodes via their boundary conditions.
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Examples of Boundary Couplings
Physical system: Gas pipe network

PDE type: Transport equation
Coupling at nodes: Incoming material = outgoing mater.

Physical system: Network of strings (very flexible beams)
PDE type: Wave equation
Coupling: Deflections are equal and forces sum to 0

Physical system: Truss bridge
PDE type: Beam equation
Coupling: Deflections are equal and forces sum to 0 and

All expressed in terms of boundary conditions, and the number
depends on the PDE type.
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Dynamics and Stability

Definition (Rough, but close enough)
We say the PDE network is stable if all its solutions converge
to a steady state as t → ∞.

Linear case ; zero is the unique steady state
Stability is often equivalent to the property that the
energy of the solutions satisfies E(t) → 0 as t → ∞.

Goal
We are especially interested in the rate of the convergence.
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Mixed-Type PDE Networks

Goal
We focus on studying stability of networks which involve two
different types of PDEs.

Beams and strings (suspension
bridge).
Wave and heat equations
(fluid-structure interactions?)
Damped and undamped strings or
beams.
(PDE networks with dynamic
couplings)
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Stability of Mixed-Type PDE Networks

Goal
We focus on studying stability of networks which involve two
different types of PDEs.

Stability of mixed-type networks is
particularly interesting!
Convergence of solutions often
slower than exponential ;
“polynomial stability”
Motivates deriving accurate
(rational) convergence rates for
E(t) → 0
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Part II
Stability Analysis
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Dynamics of Mixed-Type Networks

Wave equations and heat equations
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Wave–Heat Networks – Decoupled

wave
network

heat
network
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Inputs and Outputs

wave
network

heat
network

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)
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Problem
Use the properties of the two systems to deduce stability of
the coupled PDE.

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)

Unstable

Stable

Benefits:
“Divide and conquer”
Reduce to well-known
parts
Modularity
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Assumption
The two systems are impedance passive

They have no “internal sources of energy”

System 1 is stable under (neg) output feedback
This often represents addition of damping to System 1.

Knowledge of the transfer function P2(λ) of System 2
P2(λ) describes how “Laplace transform of u2 is mapped
to Laplace transform of y2”, i.e., ŷ2(λ) = P2(λ)û2(λ).

System 1
u1(t) y1(t)

System 2
u2(t) y2(t)

Unstable Stable
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They have no “internal sources of energy”
System 1 is stable under (neg) output feedback

This often represents addition of damping to System 1.
Knowledge of the transfer function P2(λ) of System 2

P2(λ) describes how “Laplace transform of u2 is mapped
to Laplace transform of y2”, i.e., ŷ2(λ) = P2(λ)û2(λ).

System 1
−y1(t) y1(t)

System 2
û2(λ) ŷ2(λ)

P2(λ)

Stable Stable
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Main Stability Result

Theorem
Assume the following:

The two systems are impedance passive
System 1 becomes stable under (neg) output feedback
and we know the energy decay rate E1(t) → 0
We have an estimate for the transfer function P2(λ) of
System 2 on the imaginary axis

Then:

The network is stable and we have
a very good estimate for the decay rate of E(t) → 0.
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A Quick Mathematical Overview
The abstract model for the mixed-type networks is a
coupled system of two boundary control systems,

ż1(t) = L1z1(t), t ≥ 0,

ż2(t) = L2z2(t), t ≥ 0,

G1z1(t) = K2z2(t), t ≥ 0,

G2z2(t) = −K1z1(t), t ≥ 0

Has a contraction semigroup [Aalto–Malinen 2013]
Our main results establish resolvent estimates

∥(is − A)−1∥ ≤ M1(s)M2(s), ∀s ∈ R,

and these lead to polynomial or semi-uniform stability.
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Application to Wave-Heat Networks

Question
Decay rate for energy E(t) in a network of N wave equations
and 1 heat equation?
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Wave/Heat Decoupling

P2(λ)

In the wave network (System 1) the “output feedback” is
equivalent to damping at a single exterior node.
; Stability results in the literature
Transfer function P2(λ) of the heat equation (System 2)
can be computed explicitly.
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Wave/Heat Decoupling

P2(λ)

Theorem
If decay rate for classical solutions in the decoupled
wave-network is E1(t) ∼ t−α, α > 0, then the energy E(t) of
classical solutions of the wave-heat network has decay

E(t) ∼ t− 4α
4+α , t → ∞. (slower)
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Wave/Heat Decoupling

P2(λ)

Theorem (Using Valein–Zuazua ’09)
Assume that decoupled wave-network is star-shaped with
same wave speeds, and ratios of lengths of the waves are
irrational numbers “of constant type”. Then energy of classical
solutions has decay

E(t) ∼ t− 4
4N−3 , t → ∞.

L. Paunonen Polynomial Stability of PDE Networks



Introduction
Main Results

Divide-and-Conquer
Main Results

A Quick Literature Survey

PDE networks — single-type
Valein–Zuazua, Ammari–Jellouli, Ammari–Shel,
Nicaise–Valein, Kramar-Fijavž et. al., Augner, . . .

Coupled PDEs — two equations or simple network
structures (3–4 PDEs)

Zhang–Zuazua, Duyackerts, Li-Wang, Augner,
Avalos–Lasiecka–Triggiani, Rao–Zhang, Avalos–Geredeli,
. . .

Coupled abstract systems
Ben Ait Hassi et. al., Ammari et. al., Feng–Guo, LP,
Boulouz–Bounit–Hadd, Dell’Oro–LP–Seifert, . . .
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Conclusions
In this talk:

Study of dynamics and stability of networks of partial
differential equations of mixed type.
Main result on energy decay rate for the full network in
terms of the properties of simpler networks.

S. Nicaise, LP, D. Seifert “Stability of Abstract
Boundary-Coupled Systems”, Journal of Functional Analysis,
2025.

LP, “On polynomial stability of coupled partial differential
equations in 1D” Proceedings of SOTA 2018,
arXiv:1911.06715

Thank You!
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