A Control-Theoretic Approach to Stability of PDE Networks

Lassi Paunonen

Tampere University, Finland

Joint work with David Seifert and Serge Nicaise

Konstanz Seminar June 2025

Supported by Research Council of Finland grant 349002 (2022-2026).

Main Objectives

Problem

Study dynamics of networks consisting of Partial Differential Equations (PDEs), with focus on **long-time behaviour of the energy**.

Motivation:

- Dynamics of networked systems are interesting!
- Both network structure and component dynamics contribute
- $\bullet\,$ We focus on what happens when $t\to\infty$

What are PDE networks?

Throughout the talk a "PDE network" refers to

A collection of Partial Differential Equation models whose the connectivity can be described by a graph.

What are PDE networks?

Throughout the talk a "PDE network" refers to

A collection of Partial Differential Equation models whose the connectivity can be described by a graph.

Perhaps some examples will illustrate the concept...

Motivating Examples Stability and Mixed-Type PDE Networks

Beam structures

- A truss bridge beams which are joined at their ends.
- Deflection of each beam described by a PDE **beam** equation
- Can study either dynamic behaviour or the steady state.

Motivating Examples Stability and Mixed-Type PDE Networks

Beam structures

- A truss bridge beams which are joined at their ends.
- Deflection of each beam described by a PDE beam equation
- Can study either dynamic behaviour or the steady state.

Truss structures

Structure determines a graph where **the beams are the** edges and the meeting points are the nodes.

Pipe Networks

Pipe delivery networks for gas, water, and petrol can be modelled as PDE networks. PDEs are **transport equations**.

- Waterflow in channels: wave equations
- Heat or material diffusion in structures: heat or convection-diffusion equations

Couplings

Question

How do the PDEs in the network communicate?

Each PDE in the network involves:

- The actual differential equation (deflection along the beam)
- Boundary conditions (deflection, slope, strain etc at the endpoints)

 \sim The beam models interact with each other at the network nodes via their **boundary conditions**.

Examples of Boundary Couplings

Physical system: Gas pipe network

- PDE type: Transport equation
- Coupling at nodes: Incoming material = outgoing mater.

Examples of Boundary Couplings

Physical system: Gas pipe network

- PDE type: Transport equation
- Coupling at nodes: Incoming material = outgoing mater.

Physical system: Network of strings (very flexible beams)

- PDE type: Wave equation
- $\bullet\,$ Coupling: Deflections are equal and forces sum to 0

Examples of Boundary Couplings

Physical system: Gas pipe network

- PDE type: Transport equation
- Coupling at nodes: Incoming material = outgoing mater.

Physical system: Network of strings (very flexible beams)

- PDE type: Wave equation
- $\bullet\,$ Coupling: Deflections are equal and forces sum to 0

Physical system: Truss bridge

- PDE type: Beam equation
- $\bullet\,$ Coupling: Deflections are equal and forces sum to 0 and

All expressed in terms of boundary conditions, and the number depends on the PDE type.

Dynamics and Stability

Definition (Rough, but close enough)

We say the PDE network is **stable** if all its solutions converge to a steady state as $t \to \infty$.

- Linear case \rightsquigarrow zero is the unique steady state
- Stability is often equivalent to the property that the energy of the solutions satisfies E(t) → 0 as t → ∞.

Goal

We are especially interested in the **rate** of the convergence.

Mixed-Type PDE Networks

Goal

We focus on studying **stability** of networks which involve **two different types of PDEs**.

- Beams and strings (suspension bridge).
- Wave and heat equations (fluid-structure interactions?)
- Damped and undamped strings or beams.
- (PDE networks with dynamic couplings)

Stability of Mixed-Type PDE Networks

Goal

We focus on studying **stability** of networks which involve **two different types of PDEs**.

- Stability of mixed-type networks is particularly interesting!
- Convergence of solutions often slower than exponential → "polynomial stability"
- Motivates deriving accurate (rational) convergence rates for $E(t) \rightarrow 0$

Introduction Divide-and-Cone Main Results Main Results

Part II Stability Analysis

Divide-and-Conque Main Results

Dynamics of Mixed-Type Networks

Wave equations and heat equations

Divide-and-Conque Main Results

Divide-and-Conque Main Results

Divide-and-Conque Main Results

Divide-and-Conquer Main Results

Divide-and-Conquer Main Results

Inputs and Outputs

Problem

Use the properties of the two systems to deduce stability of the coupled PDE.

Benefits:

- "Divide and conquer"
- Reduce to well-known parts
- Modularity

Introduction Divide-and-Conqu Main Results Main Results

Assumption

- The two systems are impedance passive
 - They have no "internal sources of energy"

Introduction Divide-and-Conque Main Results Main Results

Assumption

- The two systems are impedance passive
 - They have no "internal sources of energy"
- System 1 is stable under (neg) output feedback
 - This often represents addition of **damping** to System 1.

Introduction Divide-and-Conqu Main Results Main Results

Assumption

- The two systems are impedance passive
 - They have no "internal sources of energy"
- System 1 is stable under (neg) output feedback
 - This often represents addition of **damping** to System 1.
- Knowledge of the transfer function $P_2(\lambda)$ of System 2
 - P₂(λ) describes how "Laplace transform of u₂ is mapped to Laplace transform of y₂", i.e., ŷ₂(λ) = P₂(λ)û₂(λ).

Main Stability Result

Theorem

Assume the following:

- The two systems are impedance passive
- System 1 becomes stable under (neg) output feedback and we know the energy decay rate $E_1(t) \rightarrow 0$
- We have an estimate for the transfer function P₂(λ) of System 2 on the imaginary axis

Then:

The network is stable and we have a very good estimate for the decay rate of $E(t) \rightarrow 0$.

A Quick Mathematical Overview

• The abstract model for the mixed-type networks is a coupled system of two **boundary control systems**,

$$\begin{aligned} \dot{z}_1(t) &= L_1 z_1(t), & t \ge 0, \\ \dot{z}_2(t) &= L_2 z_2(t), & t \ge 0, \\ G_1 z_1(t) &= K_2 z_2(t), & t \ge 0, \\ G_2 z_2(t) &= -K_1 z_1(t), & t \ge 0 \end{aligned}$$

- Has a contraction semigroup [Aalto-Malinen 2013]
- Our main results establish resolvent estimates

$$\|(is-A)^{-1}\| \le M_1(s)M_2(s), \qquad \forall s \in \mathbb{R},$$

and these lead to polynomial or semi-uniform stability.

Application to Wave-Heat Networks

Question

Decay rate for energy E(t) in a network of N wave equations and 1 heat equation?

Wave/Heat Decoupling

- In the wave network (System 1) the "output feedback" is equivalent to damping at a single exterior node.
 - \rightsquigarrow Stability results in the literature
- Transfer function $P_2(\lambda)$ of the heat equation (System 2) can be computed explicitly.

Divide-and-Conquer Main Results

Wave/Heat Decoupling

Theorem

If decay rate for classical solutions in the **decoupled** wave-network is $E_1(t) \sim t^{-\alpha}$, $\alpha > 0$, then the energy E(t) of classical solutions of the **wave-heat network** has decay

$$E(t) \sim t^{-\frac{4\alpha}{4+\alpha}}, \qquad t \to \infty.$$
 (slower)

Theorem (Using Valein–Zuazua '09)

Assume that **decoupled** wave-network is **star-shaped** with same wave speeds, and ratios of lengths of the waves are irrational numbers "of constant type". Then energy of classical solutions has decay

$$E(t) \sim t^{-\frac{4}{4N-3}}, \qquad t \to \infty.$$

A Quick Literature Survey

- PDE networks single-type
 - Valein–Zuazua, Ammari–Jellouli, Ammari–Shel, Nicaise–Valein, Kramar-Fijavž et. al., Augner, ...
- Coupled PDEs two equations or simple network structures (3–4 PDEs)
 - Zhang–Zuazua, Duyackerts, Li-Wang, Augner, Avalos–Lasiecka–Triggiani, Rao–Zhang, Avalos–Geredeli,
- Coupled abstract systems

. . .

 Ben Ait Hassi et. al., Ammari et. al., Feng–Guo, LP, Boulouz–Bounit–Hadd, Dell'Oro–LP–Seifert, ...

Conclusions

In this talk:

- Study of dynamics and stability of networks of partial differential equations of mixed type.
- Main result on energy decay rate for the full network in terms of the properties of simpler networks.
- S. Nicaise, LP, D. Seifert "Stability of Abstract Boundary-Coupled Systems", Journal of Functional Analysis, 2025.
- LP, "On polynomial stability of coupled partial differential equations in 1D" Proceedings of SOTA 2018, arXiv:1911.06715

Thank You!