Non-Uniform Stability of Damped Contraction Semigroups

Lassi Paunonen

Tampere University, Finland

joint work with R. Chill, D. Seifert, R. Stahn and Y. Tomilov.

IWOTA

Helsinki, Finland

August, 2023

Goal of the Talk

Introduce general conditions for non-uniform stability of **damped** hyperbolic Cauchy problems (and PDEs).

Goal of the Talk

Introduce general conditions for non-uniform stability of **damped** hyperbolic Cauchy problems (and PDEs).

$$\begin{cases} \dot{x}(t) = (A - BB^*)x(t) \\ x(0) = x_0 \end{cases}$$

and

$$\begin{cases} \ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0\\ w(0) = w_0, \quad \dot{w}(0) = w_1 \end{cases}$$

Problem

Formulate conditions on (A,B) and (L,D) such that

$$||x(t)|| \to 0$$
, or $||w(t)|| \to 0$ as $t \to \infty$

and especially study the rate of the convergence.

Main Assumptions (roughly, to keep things simple)

- A generates a contraction semigroup e^{At} on a Hilbert space X, i.e., $\|e^{At}\| \leq 1$.
- Either $B \in \mathcal{L}(U, X)$, or (A, B, B^*) is a "well-posed system".
- ullet $\Rightarrow A BB^*$ generates a contraction semigroup $e^{(A-BB^*)t}$

Polynomial and Non-Uniform Stability

Definition

 $e^{(A-BB^*)t}$ generated by $A-BB^*$ is **non-uniformly stable** if there exist an unbounded increasing $N_T \colon [t_0, \infty) \to \mathbb{R}_+$ and C > 0 s.t.

$$||e^{(A-BB^*)t}x_0|| \le \frac{C}{N_T(t)}||(A-BB^*)x_0|| \quad x_0 \in D(A-BB^*)$$

[..., Liu–Rao '05, Batty–Duyckaerts '08, Borichev–Tomilov '10, Rozendaal–Seifert–Stahn '19]

Application: $E(t) \sim \|e^{(A-BB^*)t}x_0\|^2$ for many PDE systems.

Terminology: "Non-uniform stability" = "Semi-uniform stability"

Polynomial and Non-Uniform Stability

Definition

 $e^{(A-BB^*)t}$ generated by $A-BB^*$ is **non-uniformly stable** if there exist an unbounded increasing $N_T\colon [t_0,\infty)\to \mathbb{R}_+$ and C>0 s.t.

$$||e^{(A-BB^*)t}x_0|| \le \frac{C}{N_T(t)}||(A-BB^*)x_0|| \quad x_0 \in D(A-BB^*)$$

[..., Liu–Rao '05, Batty–Duyckaerts '08, Borichev–Tomilov '10, Rozendaal–Seifert–Stahn '19]

Theorem (BT'10, RSS'19)

Assume $e^{(A-BB^*)t}$ is contractive, $i\mathbb{R}\subset \rho(A-BB^*)$, and $\|(is-A+BB^*)^{-1}\|\leq N(|s|), \qquad N \text{ non-decreasing.}$

- If $N(s) \lesssim 1 + s^{\alpha}$, then $N_T(t) = t^{1/\alpha}$
- If N has "positive increase", then $N_T(t) = N^{-1}(t)$.

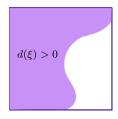
Damped Wave Equations

Non-uniform stability is encoutered in wave/beam/plate equations with **partial** or **weak** dampings. In the 2D wave equation

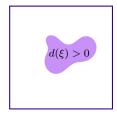
$$\ddot{w}(\xi,t) - \Delta w(\xi,t) + d(\xi)\dot{w}(\xi,t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$w(\xi,t) = 0 \qquad \qquad \xi \in \partial \Omega$$

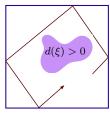
stability depends on geometry of Ω and $\omega := \{ \xi \in \Omega \mid d(\xi) > 0 \}$:



Exponential stability



Non-uniform stability



Geometric Control
Condition

Goal of the Talk

Introduce general conditions for non-uniform stability of **damped** hyperbolic Cauchy problems and PDEs.

Damped systems of the form

$$\dot{x}(t) = (A - BB^*)x(t) \quad \text{and} \quad \ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0$$

Motivation:

- So-called "polynomial" and "non-uniform" stability often arise in wave/beam/plate equations with weak or partial dampings
- Most of the current literature based on case-by-case analysis

Main results:

• General observability-type sufficient conditions for stability

$$(B^*,A)$$
 exactly observable
$$\Leftrightarrow \quad A-BB^* \text{ exponentially stable}$$

$$\|x(t)\| \leq Me^{-\omega t} \|x_0\| \ \forall x_0$$

$$(B^*,A)$$
 approx. observable $\quad \Leftrightarrow^* \quad A-BB^*$ strongly/weakly stable
$$x(t) \to 0 \ \forall x_0$$

[Slemrod, Levan, Russell, Benchimol, Guo-Luo, Lasiecka-Triggiani, Curtain-Weiss . . .]

$$(B^*,A)$$
 exactly observable
$$\Leftrightarrow \quad A-BB^* \text{ exponentially stable}$$

$$\|x(t)\| \leq Me^{-\omega t}\|x_0\| \ \forall x_0$$

 (B^*,A) non-uniformly obs. \Leftrightarrow $A-BB^*$ non-uniformly stable

$$(B^*,A)$$
 approx. observable $\quad \Leftrightarrow^* \quad A-BB^*$ strongly/weakly stable
$$x(t) \to 0 \; \forall x_0$$

[Slemrod, Levan, Russell, Benchimol, Guo-Luo, Lasiecka-Triggiani, Curtain-Weiss . . .]

Earlier work: Ammari–Tucsnak 2001, Ammari et. al. Anantharaman–Léautaud 2014, Joly–Laurent 2019

Main Results

A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

$$||x||^2 \le M(|s|)||(is - A)x||^2 + m(|s|)||B^*x||^2, \quad x \in D(A), s \in \mathbb{R},$$

for some non-decreasing $M, m \colon [0, \infty) \to [r_0, \infty)$.

A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

$$||x||^2 \le M(|s|)||(is - A)x||^2 + m(|s|)||B^*x||^2, \quad x \in D(A), s \in \mathbb{R},$$

for some non-decreasing $M, m \colon [0, \infty) \to [r_0, \infty)$.

Theorem

If the above condition holds, then $i\mathbb{R} \subset \rho(A-BB^*)$. If N(s) := M(s) + m(s) has positive increase, then

$$||e^{(A-BB^*)t}x_0|| \le \frac{C}{N^{-1}(t)}||(A-BB^*)x_0||, \quad x_0 \in D(A-BB^*)$$

Observability of the Schrödinger Group

For

$$\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \quad \text{on} \quad H$$

and $M_S, m_S \colon [0, \infty) \to [r_0, \infty)$ consider $(s \ge 0)$

$$||w||^2 \le M_S(s)||(s^2 - L)w||^2 + m_S(s)||D^*w||^2, \quad w \in D(L)$$

This is **observability of the "Schrödinger group"** (D^*, iL) (generalises Anantharaman–Léautaud 2014, Joly–Laurent 2019)

Theorem

A similar result, decay rate determined by $N^{-1}(t)$, where

$$N(s) := M_S(s)m_S(s)(1+s^2).$$

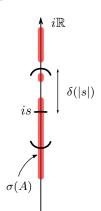
The Wavepacket Condition

For A skew-adjoint with spectral projection $P_{(a,b)}$ (for $i(a,b) \subset i\mathbb{R}$)

$$||B^*x|| \ge \gamma(|s|)||x||, \quad x \in \text{Ran}(P_{(s-\delta(|s|),s+\delta(|s|))}), \ s \in \mathbb{R}$$

for some non-increasing $\delta, \gamma \colon [0, \infty) \to (0, r_0]$.

Such x are often called "wavepackets" of A. (Used for exact observability, e.g., in Ramdani et. al. 2005, Miller 2012, Tucsnak–Weiss 2009.)



The Wavepacket Condition

For A skew-adjoint with spectral projection $P_{(a,b)}$ (for $i(a,b) \subset i\mathbb{R}$)

$$||B^*x|| \ge \gamma(|s|)||x||, \quad x \in \text{Ran}(P_{(s-\delta(|s|),s+\delta(|s|))}), \ s \in \mathbb{R}$$

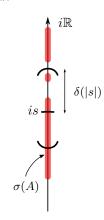
for some non-increasing $\delta, \gamma \colon [0, \infty) \to (0, r_0]$.

Such x are often called "wavepackets" of A. (Used for exact observability, e.g., in Ramdani et. al. 2005, Miller 2012, Tucsnak–Weiss 2009.)

Theorem

If $A^* = -A$ and if $N(s) := \delta(s)^{-2} \gamma(s)^{-2}$ has positive increase, then

$$||e^{(A-BB^*)t}x_0|| \le \frac{C}{N^{-1}(t)}||(A-BB^*)x_0||.$$



Time-Domain Non-Uniform Observability

Time-domain observability conditions:

For $\tau, c_{\tau}, \beta > 0$:

$$c_{\tau} \| (1-A)^{-\beta} x_0 \|^2 \le \int_0^{\tau} \| B^* e^{At} x_0 \|^2 dt, \qquad x_0 \in D(A).$$

(cf. generalised observability conditions by Ammari–Tuscnak 2001, Ammari–Bchatnia–El Mufti 2017)

Theorem

Assume $D(A^*) = D(A)$, $B \in \mathcal{L}(U,X)$ and $0 < \beta \le 1$. If the above condition holds, then $i\mathbb{R} \subset \rho(A-BB^*)$, and

$$||e^{(A-BB^*)t}x_0|| \le \frac{C}{t^{1/(2\beta)}}||Ax_0||, \quad x_0 \in D(A)$$

Examples: 2D Wave Equations

A wave equation with viscous damping on a convex $\Omega\subset\mathbb{R}^2$ with Lipschitz boundary, $d\in L^\infty(\Omega),\ d\geq 0$

$$w_{tt}(\xi,t) - \Delta w(\xi,t) + d(\xi)w_{t}(\xi,t) = 0, \qquad \xi \in \Omega, \ t > 0,$$

$$w(\xi,t) = 0, \qquad \qquad \xi \in \partial\Omega, \ t > 0,$$

$$w(\cdot,0) = w_{0}(\cdot) \in H^{2}(\Omega) \cap H^{1}_{0}(\Omega), \qquad w_{t}(\cdot,0) = w_{1}(\cdot) \in H^{1}_{0}(\Omega).$$

- Several results exist for the exact observability of the Schrödinger group $(D^*, i\Delta)$ (Jaffard '90, Burq–Zworski '19) for rectangles/tori. Leads to polynomial decay $1/\sqrt{t}$.
- Precise lower bounds on d lead to generalised observability of the Schrödinger group via Burq-Zuily 2016.
- In general our results are sub-optimal, since conditions do not take into account the **smoothness** of d! (Burg–Hitrik '07)

1D Wave Equations

Consider a wave equation with weak damping (and Dirichlet BC)

$$w_{tt}(\xi,t) - w_{\xi\xi}(\xi,t) + d(\xi) \int_0^1 d(r)w_t(r,t)dr = 0, \quad \xi \in (0,1), \ t > 0,$$

• The wavepacket condition characterises (optimal) stability via lower bounds of the sine Fourier coefficients, e.g., $(c, \alpha > 0)$

$$\left| \int_0^1 d(\xi) \sin(n\pi\xi) d\xi \right| \ge \frac{c}{n^{\alpha}}$$

- Pointwise damping possible (formally $d(\xi) = \delta(\xi \xi_0)$).
- Analogous results for Euler-Bernoulli / Timoshenko beams

Application: Water Waves System

In the reference

Su-Tucsnak-Weiss "Stabilizability properties of a linearized water waves system," *Systems & Control Letters*, 2020.

the results were applied to prove non-uniform stabilizability of a "water waves system" in a 2D domain.

- The PDE system models small amplitude gravity water waves
- Stability and convergence rate proved using the "Wavepacket condition", A has eigenvalues $\lambda_k \approx i \sqrt{k}$
- $\delta(|s|) \to 0$ so that $(is \delta(|s|), is + \delta(|s|))$ reduce to 1D spectral subspaces.
- The stability result is likely to be optimal.

Conclusions

In this presentation:

- General sufficient conditions for non-uniform stability of the semigroup generated by $A BB^*$.
- Discussion of PDE examples and optimality of the results



Contact: lassi.paunonen@tuni.fi

Thank You!

Advertisement:

Open Postdoc position at the research group in Tampere, Finland. Application deadline **September 4th, 2023**.

For details, see

https://sysgrouptampere.wordpress.com

or contact lassi.paunonen@tuni.fi

