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Goal of the Talk
Introduce general conditions for non-uniform stability

of damped hyperbolic Cauchy problems (and PDEs).

{
ẋ(t) = (A−BB∗)x(t)
x(0) = x0

and {
ẅ(t) + Lw(t) +DD∗ẇ(t) = 0
w(0) = w0, ẇ(0) = w1

Problem
Formulate conditions on (A,B) and (L,D) such that

‖x(t)‖ → 0, or ‖w(t)‖ → 0 as t→∞

and especially study the rate of the convergence.
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Main Assumptions (roughly, to keep things simple)

A generates a contraction semigroup eAt on a Hilbert space
X, i.e., ‖eAt‖ ≤ 1.

Either B ∈ L(U,X), or (A,B,B∗) is a “well-posed system”.

⇒ A−BB∗ generates a contraction semigroup e(A−BB∗)t

L. Paunonen Non-Uniform Stability of Damped Contraction Semigroups



Introduction
Main Results

Introduction
Non-Uniform Stability

Polynomial and Non-Uniform Stability
Definition
e(A−BB∗)t generated by A−BB∗ is non-uniformly stable if there
exist an unbounded increasing NT : [t0,∞)→ R+ and C > 0 s.t.

‖e(A−BB∗)tx0‖ ≤
C

NT (t)‖(A−BB
∗)x0‖ x0 ∈ D(A−BB∗)

[. . . , Liu–Rao ’05, Batty–Duyckaerts ’08, Borichev–Tomilov ’10,
Rozendaal–Seifert–Stahn ’19]

Application: E(t) ∼ ‖e(A−BB∗)tx0‖2 for many PDE systems.

Terminology: “Non-uniform stability” = “Semi-uniform stability”
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Polynomial and Non-Uniform Stability
Definition
e(A−BB∗)t generated by A−BB∗ is non-uniformly stable if there
exist an unbounded increasing NT : [t0,∞)→ R+ and C > 0 s.t.

‖e(A−BB∗)tx0‖ ≤
C

NT (t)‖(A−BB
∗)x0‖ x0 ∈ D(A−BB∗)

[. . . , Liu–Rao ’05, Batty–Duyckaerts ’08, Borichev–Tomilov ’10,
Rozendaal–Seifert–Stahn ’19]

Theorem (BT’10, RSS’19)
Assume e(A−BB∗)t is contractive, iR ⊂ ρ(A−BB∗), and

‖(is−A+BB∗)−1‖ ≤ N(|s|), N non-decreasing.

If N(s) . 1 + sα, then NT (t) = t1/α

If N has “positive increase”, then NT (t) = N−1(t).
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Damped Wave Equations
Non-uniform stability is encoutered in wave/beam/plate
equations with partial or weak dampings. In the 2D wave equation

ẅ(ξ, t)−∆w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Ω, t > 0
w(ξ, t) = 0 ξ ∈ ∂Ω

stability depends on geometry of Ω and ω := { ξ ∈ Ω | d(ξ) > 0 }:

d(ξ) > 0

Exponential stability

d(ξ) > 0

Non-uniform stability

d(ξ) > 0

Geometric Control
Condition
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Goal of the Talk
Introduce general conditions for non-uniform stability

of damped hyperbolic Cauchy problems and PDEs.

Damped systems of the form

ẋ(t) = (A−BB∗)x(t) and ẅ(t) + Lw(t) +DD∗ẇ(t) = 0

Motivation:
So-called “polynomial” and “non-uniform” stability often arise
in wave/beam/plate equations with weak or partial dampings
Most of the current literature based on case-by-case analysis

Main results:
General observability-type sufficient conditions for stability
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(B∗, A) exactly observable ⇔ A−BB∗ exponentially stable
‖x(t)‖ ≤Me−ωt‖x0‖ ∀x0

(B∗, A) non-uniformly obs. ⇔ A−BB∗ non-uniformly stable

(B∗, A) approx. observable ⇔∗ A−BB∗ strongly/weakly stable
x(t)→ 0 ∀x0

[Slemrod, Levan, Russell, Benchimol, Guo–Luo, Lasiecka–Triggiani,
Curtain–Weiss . . . ]

Earlier work: Ammari–Tucsnak 2001, Ammari et. al.
Anantharaman–Léautaud 2014, Joly–Laurent 2019
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A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

‖x‖2 ≤M(|s|)‖(is−A)x‖2 +m(|s|)‖B∗x‖2, x ∈ D(A), s ∈ R,

for some non-decreasing M,m : [0,∞)→ [r0,∞).

Theorem
If the above condition holds, then iR ⊂ ρ(A−BB∗). If
N(s) := M(s) +m(s) has positive increase, then

‖e(A−BB∗)tx0‖ ≤
C

N−1(t)‖(A−BB
∗)x0‖, x0 ∈ D(A−BB∗)
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Observability of the Schrödinger Group
For

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, on H

and MS ,mS : [0,∞)→ [r0,∞) consider (s ≥ 0)

‖w‖2 ≤MS(s)‖(s2 − L)w‖2 +mS(s)‖D∗w‖2, w ∈ D(L)

This is observability of the “Schrödinger group” (D∗, iL)
(generalises Anantharaman–Léautaud 2014, Joly–Laurent 2019)

Theorem
A similar result, decay rate determined by N−1(t), where

N(s) := MS(s)mS(s)(1 + s2).
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The Wavepacket Condition
For A skew-adjoint with spectral projection P(a,b) (for i(a, b) ⊂ iR)

‖B∗x‖ ≥ γ(|s|)‖x‖, x ∈ Ran(P(s−δ(|s|),s+δ(|s|))), s ∈ R

for some non-increasing δ, γ : [0,∞)→ (0, r0].

Such x are often called “wavepackets” of A.
(Used for exact observability, e.g., in Ramdani et.
al. 2005, Miller 2012, Tucsnak–Weiss 2009.)

Theorem
If A∗ = −A and if N(s) := δ(s)−2γ(s)−2 has
positive increase, then

‖e(A−BB∗)tx0‖ ≤
C

N−1(t)‖(A−BB
∗)x0‖.

σ(A)

δ(|s|)
is

iR
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Time-Domain Non-Uniform Observability
Time-domain observability conditions:
For τ, cτ , β > 0:

cτ‖(1−A)−βx0‖2 ≤
∫ τ

0
‖B∗eAtx0‖2dt, x0 ∈ D(A).

(cf. generalised observability conditions by Ammari–Tuscnak 2001,
Ammari–Bchatnia–El Mufti 2017)

Theorem
Assume D(A∗) = D(A), B ∈ L(U,X) and 0 < β ≤ 1. If the
above condition holds, then iR ⊂ ρ(A−BB∗), and

‖e(A−BB∗)tx0‖ ≤
C

t1/(2β) ‖Ax0‖, x0 ∈ D(A)
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Examples: 2D Wave Equations
A wave equation with viscous damping on a convex Ω ⊂ R2 with
Lipschitz boundary, d ∈ L∞(Ω), d ≥ 0

wtt(ξ, t)−∆w(ξ, t) + d(ξ)wt(ξ, t) = 0, ξ ∈ Ω, t > 0,
w(ξ, t) = 0, ξ ∈ ∂Ω, t > 0,
w(·, 0) = w0(·) ∈ H2(Ω) ∩H1

0 (Ω), wt(·, 0) = w1(·) ∈ H1
0 (Ω).

Several results exist for the exact observability of the
Schrödinger group (D∗, i∆) (Jaffard ’90, Burq–Zworski ’19)
for rectangles/tori. Leads to polynomial decay 1/

√
t.

Precise lower bounds on d lead to generalised observability of
the Schrödinger group via Burq–Zuily 2016.
In general our results are sub-optimal, since conditions do not
take into account the smoothness of d! (Burq–Hitrik ’07)
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1D Wave Equations

Consider a wave equation with weak damping (and Dirichlet BC)

wtt(ξ, t)− wξξ(ξ, t) + d(ξ)
∫ 1

0
d(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0,

The wavepacket condition characterises (optimal) stability via
lower bounds of the sine Fourier coefficients, e.g., (c, α > 0)∣∣∣∣∫ 1

0
d(ξ) sin(nπξ)dξ

∣∣∣∣ ≥ c

nα

Pointwise damping possible (formally d(ξ) = δ(ξ − ξ0)).
Analogous results for Euler–Bernoulli / Timoshenko beams

L. Paunonen Non-Uniform Stability of Damped Contraction Semigroups



Introduction
Main Results

Observability-Type Conditions for Stability
PDE Examples

Application: Water Waves System
In the reference

Su–Tucsnak–Weiss “Stabilizability properties of a linearized water
waves system,” Systems & Control Letters, 2020.

the results were applied to prove non-uniform
stabilizability of a “water waves system” in
a 2D domain.

Control/
damping

The PDE system models small amplitude gravity water waves
Stability and convergence rate proved using the “Wavepacket
condition”, A has eigenvalues λk ≈ i

√
k

δ(|s|)→ 0 so that (is− δ(|s|), is+ δ(|s|)) reduce to 1D
spectral subspaces.
The stability result is likely to be optimal.
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Conclusions

In this presentation:
General sufficient conditions for non-uniform stability of the
semigroup generated by A−BB∗.
Discussion of PDE examples and optimality of the results

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, “Non-Uniform
Stability of Damped Contraction Semiroups,” Analysis & PDE,
2023 (https://arxiv.org/abs/1911.04804)

Contact: lassi.paunonen@tuni.fi
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