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Stability of Semigroups
X is Hilbert, A : D(A) ⊂ X → X
A generates a uniformly bounded semigroup T (t)

Exponential:

‖T (t)‖ ≤ Me−ωt

Polynomial: Strong:

‖T (t)x‖ −→ 0
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Polynomial Stability

Definition
T (t) is called polynomially stable if

T (t) is uniformly bounded,

iR ⊂ ρ(A),

There exist α > 0 and M > 0 s.t.

‖T (t)A−1‖ ≤ MA
t1/α ∀t > 0.

Since uniform boundedness is required, a polynomially stable
semigroup is also strongly stable.
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Characterization on a Hilbert Space

Theorem
If T (t) is a uniformly bounded semigroup and iR ⊂ ρ(A). For a
fixed α > 0 the following are equivalent.

(a) ‖T (t)A−1‖ ≤ MA
t1/α , ∀t > 0

(b) ‖R(iω,A)‖ ≤ M (1 + |ω|α)

(c) sup
Reλ≥0

‖R(λ,A)(−A)−α‖ <∞.

References: Borichev–Tomilov (2010), Batty–Duyckaerts (2008),
Bátkai–Engel–Prüss–Schnaubelt (2006), Latushkin–Shvydkoy (2001).
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Robustness of Polynomial Stability
Assume T (t) and α > 0 are such that

‖T (t)A−1‖ ≤ MA
t1/α .

Problem
Consider stability of the semigroup generated by

A + BC ,

where B ∈ L(Cp,X) and C ∈ L(X ,Cp).

Challenge: There exist B,C with arbitrarily small ‖B‖, ‖C‖ s.t.
A + BC is unstable.
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Main Results on Polynomial Stability
Assume perturbation A + BC satisfies

R(B) ⊂ D((−A)β) and R(C ∗) ⊂ D((−A∗)γ) (1)

for some β, γ ≥ 0.

The operators B and C are “more than bounded”.

Theorem (LP 2012, 2013)
Assume β + γ ≥ α. There exists δ > 0 such that if B and C
satisfy (1) and

‖(−A)βB‖ < δ, and ‖(−A∗)γC ∗‖ < δ,

then the semigroup generated by A + BC is strongly and
polynomially stable (with the same exponent α > 0).
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Example: 1D Wave Equation on [0, 1]

∂2w
∂t2 (z, t) = ∂2w

∂z2 (z, t) + [damp] (Dirichlet BC’s)

Damping−→

Undamped equation Damped: pol. stable with
α = 2 (dep’n on [damp]).
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For the Wave Equation

In the original wave equation on [0, 1]

∂2w
∂t2 (z, t) = ∂2w

∂z2 (z, t) + [damp] + b0

(
〈w, c1〉L2 + 〈∂w

∂t , c2〉L2

)

the polynomial stability is preserved if

b0, c2 ∈ H 2 ∩H 1
0 and c1 ∈ L2(0, 1),

and if the L2-norms

‖b0‖L2 , ‖b′0‖L2 , ‖c1‖L2 , ‖c2‖L2 , ‖c′2‖L2

are sufficiently small.
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Part II:
Preservation of Strong Stability
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Finite Spectral Points on iR

Restriction:

Polynomial stability implies σ(A)∩iR = ∅

Problem
How to handle spectrum on iR?
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Solution
Study the situation where T (t) is strongly stable, σ(A) ∩ iR is
finite, and the resolvent growth is suitably bounded on iR.

−

− iω2

iω1

‖R(iω,A)‖ ≤ M
|ω − ω2|α

‖R(iω,A)‖ ≤ M
|ω − ω1|α

For a fixed α ≥ 1:

sup
|ω| large

‖R(iω,A)‖ <∞
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Main Problem

Problem
For a fixed α ≥ 1, consider stability of the semigroup generated by

A + BC ,

where B ∈ L(Cp,X) and C ∈ L(X ,Cp).

General aim: Define suitable graph norms to measure the sizes of
B and C .
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Properties

The operators iω1 −A and iω2 −A have unbounded sectorial
inverses

(iω1 −A)−1 and (iω2 −A)−1

−

− iω2

iω1

Use graph norms of the inverses in
studying robustness of stability!
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Robustness of Stability

Problem
For a fixed α ≥ 1, consider stability of the semigroup generated by

A + BC ,

where B ∈ L(Cp,X) and C ∈ L(X ,Cp).

Assume perturbation satisfies

R(B) ⊂ D((iω1 −A)−β) and R(C ∗) ⊂ D((−iω1 −A∗)−γ)

R(B) ⊂ D((iω2 −A)−β) and R(C ∗) ⊂ D((−iω2 −A∗)−γ)

for some β, γ ≥ 0.
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Robustness of Stability
Assume

R(B) ⊂ D((iωk −A)−β), R(C ∗) ⊂ D((−iωk −A∗)−γ) (2)

for some β, γ ≥ 0 and k = 1, 2.

Theorem
Assume β + γ ≥ α. There exists δ > 0 such that if B and C
satisfy (2) and

‖B‖+ ‖(iωk −A)−βB‖ < δ, and

‖C‖+ ‖(−iωk −A∗)−γC ∗‖ < δ

for k = 1, 2, then the semigroup generated by A + BC is strongly
stable.
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Example
Example
Consider X = `2(C) and A ∈ L(X) by

A =
∞∑

k=1
−1

k 〈·, ek〉ek ∈ L(X)

and A + 〈·, c〉b with b, c ∈ X .
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Example
Example
Consider X = `2(C) and A ∈ L(X) by

A =
∞∑

k=1
−1

k 〈·, ek〉ek ∈ L(X)

and A + 〈·, c〉b with b, c ∈ X .

Now σ(A) ∩ iR = {0} and α = 1.

Inverse (−A)−1 unbounded, self-adjoint, positive. For β ≥ 0

(−A)−βx =
∞∑

k=1
kβ〈x, ek〉ek ,
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Example
Example
Consider X = `2(C) and A ∈ L(X) by

A =
∞∑

k=1
−1

k 〈·, ek〉ek ∈ L(X)

and A + 〈·, c〉b with b, c ∈ X .

Conclusion: A + 〈·, c〉b is stable for β + γ = 1, and for small norms

‖(−A)−βb‖2 =
∞∑

k=1
k2β|〈b, ek〉|2

‖(−A∗)−γc‖2 =
∞∑

k=1
k2γ |〈c, ek〉|2
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Compare

Polynomial stability:

A : D(A) ⊂ X → X

Strong stability:

A ∈ L(X), with σ(A) ∩ iR = {0}
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Compare

Polynomial stability:

A : D(A) ⊂ X → X

Resolvent growth:

‖R(iω,A)‖ ≤ M |ω|α

for |ω| large.

Strong stability:

A ∈ L(X), with σ(A) ∩ iR = {0}

Resolvent growth:

‖R(iω,A)‖ ≤ M
|ω|α

for |ω| small.
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Compare

Polynomial stability:

A : D(A) ⊂ X → X

Decay for x ∈ D(A)

‖T (t)x‖ ≤ MA
t1/α ‖Ax‖

for all t > 0.

Strong stability:

A ∈ L(X), with σ(A) ∩ iR = {0}

Decay for x ∈ R(A)

‖T (t)x‖ ≤ MA
t1/α ‖A

−1x‖

for all t > 0.

(Batty, Chill & Tomilov ’13)
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Compare

Polynomial stability:

A : D(A) ⊂ X → X

Conditions for A + BC :
Graph norms with β + γ = α

‖(−A)βB‖, ‖(−A∗)γC ∗‖

small ⇒ Robustness.

Strong stability:

A ∈ L(X), with σ(A) ∩ iR = {0}

Conditions for A + BC :
Graph norms with β + γ = α

‖(−A)−βB‖, ‖(−A∗)−γC ∗‖

small ⇒ Robustness.
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Further developments
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Similar techniques can be used to study polynomial stability of a
semigroup T (t) generated by an operator matrix A of the form

A =
(

A1 BC
0 A2

)
or A =

(
A1 B1C2

B2C1 A2

)
.
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Similar techniques can be used to study polynomial stability of a
semigroup T (t) generated by an operator matrix A of the form

A =
(

A1 BC
0 A2

)
or A =

(
A1 B1C2

B2C1 A2

)
.

Triangular case (BC finite rank):

For β/α1 + γ/α2 ≥ 1 range condition

R(B) ⊂ D((−A1)β) R(C ∗) ⊂ D((−A∗2)γ)

implies polynomial stability of T (t) (exponent α = max{α1, α2}).
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Similar techniques can be used to study polynomial stability of a
semigroup T (t) generated by an operator matrix A of the form

A =
(

A1 BC
0 A2

)
or A =

(
A1 B1C2

B2C1 A2

)
.

Full case (B1C2 and B2C1 finite rank):

For βk/αk + γl/αl ≥ 1 for k, l ∈ {1, 2} a graph norm condition

‖(−A1)β1B1‖ · ‖(−A∗1)γ1C ∗1 ‖ · ‖(−A2)β2B2‖ · ‖(−A∗2)γ2C ∗2 ‖ < δ

implies polynomial stability of T (t) (exponent α = max{α1, α2}).
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Conclusions

Conditions for the preservation of strong and polynomial
stabilities of a semigroup
Comparison of results.

Thank You!
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