Robustness of Strong and Polynomial Stability of Semigroups

Lassi Paunonen

Tampere University of Technology, Finland

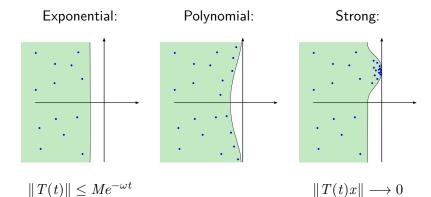
July 17th, 2014

Polynomial Stability Strong Stability Discussion

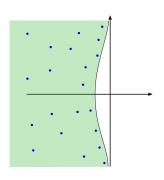
- Robustness of Polynomial Stability
- Robustness of Strong Stability
- 3 Comparison of Results

Stability of Semigroups

- X is Hilbert, $A:\mathcal{D}(A)\subset X\to X$
- ullet A generates a uniformly bounded semigroup T(t)



Polynomial Stability



Definition

T(t) is called *polynomially stable* if

- \bullet T(t) is uniformly bounded,
- $i\mathbb{R} \subset \rho(A)$,
- There exist $\alpha > 0$ and M > 0 s.t.

$$||T(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}} \qquad \forall t > 0.$$

Since uniform boundedness is required, a polynomially stable semigroup is also strongly stable.

Characterization on a Hilbert Space

Theorem

If T(t) is a uniformly bounded semigroup and $i\mathbb{R} \subset \rho(A)$. For a fixed $\alpha > 0$ the following are equivalent.

(a)
$$||T(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}}, \quad \forall t > 0$$

(b)
$$||R(i\omega, A)|| \le M(1 + |\omega|^{\alpha})$$

(c)
$$\sup_{\operatorname{Re}\lambda\geq 0}\|R(\lambda,A)(-A)^{-\alpha}\|<\infty.$$

References: Borichev–Tomilov (2010), Batty–Duyckaerts (2008), Bátkai–Engel–Prüss–Schnaubelt (2006), Latushkin–Shvydkoy (2001).

Robustness of Polynomial Stability

Assume T(t) and $\alpha > 0$ are such that

$$||T(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}}.$$

Problem

Consider stability of the semigroup generated by

$$A + BC$$
,

where $B \in \mathcal{L}(\mathbb{C}^p, X)$ and $C \in \mathcal{L}(X, \mathbb{C}^p)$.

Robustness of Polynomial Stability

Assume T(t) and $\alpha > 0$ are such that

$$||T(t)A^{-1}|| \le \frac{M_A}{t^{1/\alpha}}.$$

Problem

Consider stability of the semigroup generated by

$$A + BC$$
,

where $B \in \mathcal{L}(\mathbb{C}^p, X)$ and $C \in \mathcal{L}(X, \mathbb{C}^p)$.

Challenge: There exist B, C with arbitrarily small $\|B\|, \|C\|$ s.t. A+BC is unstable.

Main Results on Polynomial Stability

Assume perturbation A + BC satisfies

$$\mathcal{R}(B) \subset \mathcal{D}((-A)^{\beta})$$
 and $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^{\gamma})$ (1)

for some $\beta, \gamma \geq 0$.

Main Results on Polynomial Stability

Assume perturbation A + BC satisfies

$$\mathcal{R}(B) \subset \mathcal{D}((-A)^{\beta})$$
 and $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^{\gamma})$ (1)

for some $\beta, \gamma \geq 0$.

The operators B and C are "more than bounded".

Main Results on Polynomial Stability

Assume perturbation A + BC satisfies

$$\mathcal{R}(B) \subset \mathcal{D}((-A)^{\beta})$$
 and $\mathcal{R}(C^*) \subset \mathcal{D}((-A^*)^{\gamma})$ (1)

for some $\beta, \gamma \geq 0$.

The operators B and C are "more than bounded".

Theorem (LP 2012, 2013)

Assume $\beta + \gamma \geq \alpha$. There exists $\delta > 0$ such that if B and C satisfy (1) and

$$\|(-A)^{\beta}B\| < \delta$$
, and $\|(-A^*)^{\gamma}C^*\| < \delta$,

then the semigroup generated by A+BC is strongly and polynomially stable (with the same exponent $\alpha>0$).

Example: 1D Wave Equation on [0,1]

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + [\text{damp}] \qquad \text{(Dirichlet BC's)}$$



Undamped equation

Damped: pol. stable with $\alpha = 2$ (dep'n on [damp]).

For the Wave Equation

In the original wave equation on $\left[0,1\right]$

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + \left[\mathsf{damp}\right] + b_0 \left(\langle w, c_1 \rangle_{L^2} + \langle \frac{\partial w}{\partial t}, c_2 \rangle_{L^2}\right)$$

For the Wave Equation

In the original wave equation on [0,1]

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + \left[\mathsf{damp}\right] + b_0 \left(\langle w, c_1 \rangle_{L^2} + \langle \frac{\partial w}{\partial t}, c_2 \rangle_{L^2}\right)$$

the polynomial stability is preserved if

$$b_0, c_2 \in H^2 \cap H_0^1$$
 and $c_1 \in L^2(0,1),$

and if the L^2 -norms

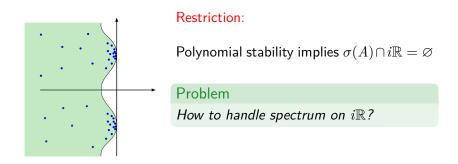
$$||b_0||_{L^2}$$
, $||b_0'||_{L^2}$, $||c_1||_{L^2}$, $||c_2||_{L^2}$, $||c_2'||_{L^2}$

are sufficiently small.

Part II:

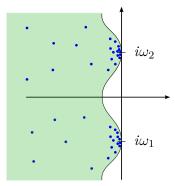
Preservation of Strong Stability

Finite Spectral Points on $i\mathbb{R}$



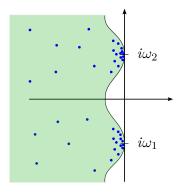
Solution

Study the situation where T(t) is strongly stable, $\sigma(A) \cap i\mathbb{R}$ is finite, and the resolvent growth is suitably bounded on $i\mathbb{R}$.



Solution

Study the situation where T(t) is strongly stable, $\sigma(A) \cap i\mathbb{R}$ is finite, and the resolvent growth is suitably bounded on $i\mathbb{R}$.



For a fixed $\alpha \geq 1$:

$$||R(i\omega, A)|| \le \frac{M}{|\omega - \omega_2|^{\alpha}}$$

$$||R(i\omega, A)|| \le \frac{M}{|\omega - \omega_1|^{\alpha}}$$

$$\sup_{|\omega|}\|R(i\omega,A)\|<\infty$$

Main Problem

Problem

For a fixed $\alpha \geq 1$, consider stability of the semigroup generated by

$$A + BC$$
,

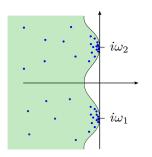
where $B \in \mathcal{L}(\mathbb{C}^p, X)$ and $C \in \mathcal{L}(X, \mathbb{C}^p)$.

<u>General aim</u>: Define suitable graph norms to measure the sizes of B and C.

Properties

The operators $i\omega_1-A$ and $i\omega_2-A$ have unbounded sectorial inverses

$$(i\omega_1 - A)^{-1}$$
 and $(i\omega_2 - A)^{-1}$



Use graph norms of the **inverses** in studying robustness of stability!

Robustness of Stability

Problem

For a fixed $\alpha \geq 1$, consider stability of the semigroup generated by

$$A + BC$$
,

where $B \in \mathcal{L}(\mathbb{C}^p, X)$ and $C \in \mathcal{L}(X, \mathbb{C}^p)$.

Assume perturbation satisfies

$$\mathcal{R}(B) \subset \mathcal{D}((i\omega_1 - A)^{-\beta})$$
 and $\mathcal{R}(C^*) \subset \mathcal{D}((-i\omega_1 - A^*)^{-\gamma})$

$$\mathcal{R}(B) \subset \mathcal{D}((i\omega_2 - A)^{-\beta})$$
 and $\mathcal{R}(C^*) \subset \mathcal{D}((-i\omega_2 - A^*)^{-\gamma})$

for some $\beta, \gamma > 0$.

Robustness of Stability

Assume

$$\mathcal{R}(B) \subset \mathcal{D}((i\omega_k - A)^{-\beta}), \quad \mathcal{R}(C^*) \subset \mathcal{D}((-i\omega_k - A^*)^{-\gamma})$$
 (2)

for some $\beta, \gamma \geq 0$ and k = 1, 2.

Theorem

Assume $\beta + \gamma \geq \alpha$. There exists $\delta > 0$ such that if B and C satisfy (2) and

$$\|B\| + \|(i\omega_k - A)^{-\beta}B\| < \delta, \qquad \text{and}$$

$$\|C\| + \|(-i\omega_k - A^*)^{-\gamma}C^*\| < \delta$$

for k=1,2, then the semigroup generated by A+BC is strongly stable.

Example

Consider $X = \ell^2(\mathbb{C})$ and $A \in \mathcal{L}(X)$ by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and $A + \langle \cdot, c \rangle b$ with $b, c \in X$.

L. Paunonen

Example

Example

Consider $X=\ell^2(\mathbb{C})$ and $A\in\mathcal{L}(X)$ by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and $A + \langle \cdot, c \rangle b$ with $b, c \in X$.

Now
$$\sigma(A) \cap i\mathbb{R} = \{0\}$$
 and $\alpha = 1$.

Inverse $(-A)^{-1}$ unbounded, self-adjoint, positive. For $\beta \geq 0$

$$(-A)^{-\beta}x = \sum_{k=1}^{\infty} k^{\beta} \langle x, e_k \rangle e_k,$$

Example

Example

Consider $X = \ell^2(\mathbb{C})$ and $A \in \mathcal{L}(X)$ by

$$A = \sum_{k=1}^{\infty} -\frac{1}{k} \langle \cdot, e_k \rangle e_k \in \mathcal{L}(X)$$

and $A + \langle \cdot, c \rangle b$ with $b, c \in X$.

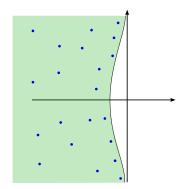
Conclusion: $A + \langle \cdot, c \rangle b$ is stable for $\beta + \gamma = 1$, and for small norms

$$\|(-A)^{-\beta}b\|^2 = \sum_{k=1}^{\infty} k^{2\beta} |\langle b, e_k \rangle|^2$$

$$\|(-A^*)^{-\gamma}c\|^2 = \sum_{k=1}^{\infty} k^{2\gamma} |\langle c, e_k \rangle|^2$$

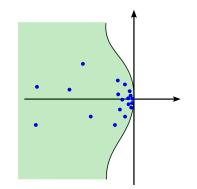
Polynomial stability:

$$A: \mathcal{D}(A) \subset X \to X$$



Strong stability:

$$A \in \mathcal{L}(X)$$
, with $\sigma(A) \cap i\mathbb{R} = \{0\}$



Polynomial stability:

$$A: \mathcal{D}(A) \subset X \to X$$

Resolvent growth:

$$||R(i\omega, A)|| \le M|\omega|^{\alpha}$$

for $|\omega|$ large.

Strong stability:

$$A \in \mathcal{L}(X)$$
, with $\sigma(A) \cap i\mathbb{R} = \{0\}$

Resolvent growth:

$$||R(i\omega, A)|| \le \frac{M}{|\omega|^{\alpha}}$$

for $|\omega|$ small

Polynomial stability:

$$A: \mathcal{D}(A) \subset X \to X$$

Decay for $x \in \mathcal{D}(A)$

$$||T(t)x|| \le \frac{M_A}{t^{1/\alpha}} ||Ax||$$

for all t > 0.

Strong stability:

$$A \in \mathcal{L}(X)$$
, with $\sigma(A) \cap i\mathbb{R} = \{0\}$

Decay for $x \in \mathcal{R}(A)$

$$||T(t)x|| \le \frac{M_A}{t^{1/\alpha}} ||A^{-1}x||$$

for all t > 0.

(Batty, Chill & Tomilov '13)

Polynomial stability:

$$A: \mathcal{D}(A) \subset X \to X$$

Conditions for A + BC:

Graph norms with $\beta+\gamma=\alpha$

$$\|(-A)^{\beta}B\|, \|(-A^*)^{\gamma}C^*\|$$

 $small \Rightarrow Robustness.$

Strong stability:

$$A \in \mathcal{L}(X)$$
, with $\sigma(A) \cap i\mathbb{R} = \{0\}$

Conditions for A + BC:

Graph norms with $\beta+\gamma=\alpha$

$$\|(-A)^{-\beta}B\|, \|(-A^*)^{-\gamma}C^*\|$$

 $small \Rightarrow Robustness.$

Further developments

Similar techniques can be used to study polynomial stability of a semigroup T(t) generated by an operator matrix A of the form

$$A = \begin{pmatrix} A_1 & BC \\ 0 & A_2 \end{pmatrix} \qquad \text{or} \qquad A = \begin{pmatrix} A_1 & B_1\,C_2 \\ B_2\,C_1 & A_2 \end{pmatrix}.$$

Similar techniques can be used to study polynomial stability of a semigroup T(t) generated by an operator matrix A of the form

$$A = \begin{pmatrix} A_1 & BC \\ 0 & A_2 \end{pmatrix} \qquad \text{or} \qquad A = \begin{pmatrix} A_1 & B_1C_2 \\ B_2C_1 & A_2 \end{pmatrix}.$$

Triangular case (BC finite rank):

For $\beta/\alpha_1 + \gamma/\alpha_2 \ge 1$ range condition

$$\mathcal{R}(B) \subset \mathcal{D}((-A_1)^{\beta})$$
 $\mathcal{R}(C^*) \subset \mathcal{D}((-A_2^*)^{\gamma})$

implies polynomial stability of T(t) (exponent $\alpha = \max\{\alpha_1, \alpha_2\}$).

Similar techniques can be used to study polynomial stability of a semigroup T(t) generated by an operator matrix A of the form

$$A = \begin{pmatrix} A_1 & BC \\ 0 & A_2 \end{pmatrix} \qquad \text{or} \qquad A = \begin{pmatrix} A_1 & B_1 \, C_2 \\ B_2 \, C_1 & A_2 \end{pmatrix}.$$

Full case ($B_1 C_2$ and $B_2 C_1$ finite rank):

For $\beta_k/\alpha_k + \gamma_l/\alpha_l \ge 1$ for $k, l \in \{1, 2\}$ a graph norm condition

$$\|(-A_1)^{\beta_1}B_1\|\cdot\|(-A_1^*)^{\gamma_1}C_1^*\|\cdot\|(-A_2)^{\beta_2}B_2\|\cdot\|(-A_2^*)^{\gamma_2}C_2^*\|<\delta$$

implies polynomial stability of T(t) (exponent $\alpha = \max\{\alpha_1, \alpha_2\}$).

References

- L. Paunonen, Robustness of strong and polynomial stability of semigroups, *Journal of Functional Analysis*, 2012.
- L. Paunonen, Robustness of strong stability of semigroups, *ArXiv/Submitted*, 2013.
- L. Paunonen, Polynomial Stability of Semigroups Generated by Operator Matrices, *Journal of Evolution Equations*, 2014.

Conclusions

- Conditions for the preservation of strong and polynomial stabilities of a semigroup
- Comparison of results.

Thank You!