Introduction The Main Problem Main Results

The Infinite-Dimensional Sylvester Differential Equation and Periodic Output Regulation

L. Paunonen

(with S. Pohjolainen) Tampere University of Technology Finland

July 13, 2010

Introduction The Main Problem Main Results

Motivation: The Periodic Output Regulation Problem Characterization of the Controllers Solving the PORP

The Main Problem

Problem

Study

$$\dot{\Sigma}(t) + \Sigma(t)S = A_e(t)\Sigma(t) + B_e(t).$$
 (SDe)

Motivation:

- The Periodic Output Regulation Problem
- Characterization of controllers solving the PORP.

Introduction The Main Problem Main Results

Motivation: The Periodic Output Regulation Problem Characterization of the Controllers Solving the PORP

Introduction

Motivation

Definition (The periodic signal generator \mathcal{S})

The exosystem is of form

$$\begin{split} \dot{v} &= Sv, \qquad v(0) \in W = \mathbb{C}^q, \\ y_{ref}(t) &= -F(t)v(t) \\ S \in \mathcal{L}(W) \text{ and } F \in C^1_T(\mathbb{R}, \mathcal{L}(W, Y)). \end{split}$$

Here

$$C^1_T(\mathbb{R},X) = \big\{ f \in C^1(\mathbb{R},X) \mid f(t+T) = f(t) \text{ for all } t \in \mathbb{R} \big\}.$$

The Closed-Loop System

The closed-loop system is of form

$$\dot{x}_e = A_e(t)x_e + B_e(t)v, \qquad x_e(0) \in X_e$$
$$e = C_e(t)x_e + D_e(t)v.$$

Assume there exists a strongly continuous evolution family $U_e(t,s)$ associated to the family $(A_e(t), \mathcal{D}(A_e(t)))$.

The Evolution Family $U_e(t,s)$

Definition (A Strongly Continuous Evolution Family)

$$U_e(t,t) = I$$

2
$$U_e(t,r)U_e(r,s) = U_e(t,s)$$
 for $s \le r \le t$

$$\left\{ (t,s) \mid t \ge s \right\} \ni (t,s) \mapsto U_e(t,s) \text{ is strongly continuous.}$$

In the finite-dimensional case: $U_e(t,s) = e^{\int_s^t A_e(r)dr}$.

If $A_e(t) \equiv A_e$, generates a semigroup: $U_e(t,s) = T_e(t-s)$.

The Evolution Family $U_e(t,s)$

Definition (A Strongly Continuous Evolution Family)

$$U_e(t,t) = I$$

2
$$U_e(t,r)U_e(r,s) = U_e(t,s)$$
 for $s \le r \le t$

$$\ \, \textbf{0} \ \, \big\{ (t,s) \mid t \geq s \big\} \ni (t,s) \mapsto U_e(t,s) \text{ is strongly continuous.}$$

The state of the closed-loop system

$$x_e(t) = U_e(t,0)x_e(0) + \int_0^t U_e(t,s)B_e(s)v(s)ds.$$

The Periodic Output Regulation Problem

Problem (Periodic Output Regulation Problem)

Choose the controller such that

• The CL system is exponentially stable, i.e. there exist $M_e, \omega_e > 0 \, \text{ s.t.}$

$$||U_e(t,s)|| \le M_e e^{-\omega_e(t-s)}, \qquad t \ge s$$

• For all initial states $x_e(0) \in X_e$ and $v(0) \in W$ the regulation error satisfies

$$e(t) \longrightarrow 0$$

as $t \to \infty$.

Theorem (Theorem 1)

Assume the controller stabilizes the closed-loop system exponentially.

• The periodic Sylvester differential equation

$$\dot{\Sigma}(t) + \Sigma(t)S = A_e(t)\Sigma(t) + B_e(t)$$

has a unique periodic solution $\Sigma_{\infty}(\cdot)$.

The controller solves the PORP if and only if this solution satisfies

$$C_e(t)\Sigma_{\infty}(t) + D_e(t) = 0$$

for all $t \in [0, T]$.

The Main Problem

Problem

Study

$$\dot{\Sigma}(t) + \Sigma(t)S = A_e(t)\Sigma(t) + B_e(t).$$
(SDe)

What are the required assumptions for Theorem 1.

- The unique periodic solution
- The type of SDe (strong/weak)?
- Corresponding additional conditions for (2) in Theorem 1?

The Main Problem

Problem

Study

$$\dot{\Sigma}(t) + \Sigma(t)S = A_e(t)\Sigma(t) + B_e(t).$$
(SDe)

Main results:

- Solvability of the strong SDe + additional conds for (2)
- **②** Solvability of the weak SDe + additional conds for (2).

Standing Assumptions

Assumption

- A_e(t) = A_{sg} + A_b(t) on a Hilbert space X_e, where
 A_{sg} gen. a C₀-semigroup
 A_b(·)x ∈ C¹_T for all x ∈ X_e
 D(A_e(t)) ≡ D(A_{sg}) =: D(A_e)
 D(A_e(t)*) ≡ D(A^{*}_{sg}) =: D(A^{*}_e)
- $B_e(\cdot) \in C^1_T(\mathbb{R}, X_e)$
- $U_e(t,s)$ is exp. stable, i.e. $\|U_e(t,s)\| \le M_e e^{-\omega_e(t-s)}$, $\omega_e > 0$
- $||e^{St}|| \ge M_S > 0$ for $t \ge 0$.

Strong Solution

Theorem (The Strong SDe) If for every $v \in W$ we have

$$\int_{-\infty}^{0} U_e(0,s) B_e(s) e^{Ss} v ds \in \mathcal{D}(A_e),$$

then the equation

$$\dot{\Sigma}(t) + \Sigma(t)S = A_e(t)\Sigma(t) + B_e(t)$$

has a unique periodic solution $\Sigma_\infty(\cdot) \in C^1_T$ given by

$$\Sigma_{\infty}(t) = \int_{-\infty}^{t} U_e(t,s) B_e(s) e^{S(s-t)} ds$$

such that $\mathcal{R}(\Sigma_{\infty}(t)) \subset \mathcal{D}(A_e)$ for all $t \in [0, T]$.

The Parabolic Case

Corollary

If $A_e(t) = A_{sg} + A_b(t)$ where A_{sg} generates an analytic semigroup, the equation

$$\dot{\Sigma}(t) + \Sigma(t)S = A_e(t)\Sigma(t) + B_e(t)$$

has a unique periodic solution $\Sigma_{\infty}(\cdot) \in C^1_T$ given by

$$\Sigma_{\infty}(t) = \int_{-\infty}^{t} U_e(t,s) B_e(s) e^{S(s-t)} ds$$

such that $\mathcal{R}(\Sigma_{\infty}(t)) \subset \mathcal{D}(A_e)$ for all $t \in [0, T]$.

Assumptions for Theorem 1

Theorem (Additional assumptions for (2) in Theorem 1)

If (SDe) has a strong solution, no additional assumptions required:

The controller solves the PORP if and only if

 $C_e(t)\Sigma_{\infty}(t) + D_e(t) \equiv 0.$

Introduction Strong Solution in the Parabolic Case Weak Solution in the Hyperbolic Case Main Results More General SDe's

The Weak Sylvester Differential Equation

Problem

Study

$$\frac{d}{dt}\langle \Sigma(t)v, y \rangle + \langle \Sigma(t)Sv, y \rangle = \langle \Sigma(t)v, A_e(t)^*y \rangle + \langle B_e(t)v, y \rangle,$$

for all $v \in W$, $y \in \mathcal{D}(A_e^*)$.

Weak Solution

Theorem (The Weak SDe)

The equation

$$\frac{d}{dt}\langle \Sigma(t)v, y \rangle + \langle \Sigma(t)Sv, y \rangle = \langle \Sigma(t)v, A_e(t)^*y \rangle + \langle B_e(t)v, y \rangle,$$

for all $v \in W$, $y \in \mathcal{D}(A_e^*)$, has a unique periodic solution

$$\Sigma_{\infty}(t) = \int_{-\infty}^{t} U_e(t,s) B_e(s) e^{S(s-t)} ds.$$

Assumptions for Theorem 1

Theorem (Additional assumptions for (2) in Theorem 1) *Assume*

•
$$U_e(t,s)^*(\mathcal{D}(A_e^*)) \subset \mathcal{D}(A_e^*)$$

•
$$\frac{d}{ds} U_e(t,s)^* y = -A_e(s)^* U_e(t,s)^* y$$
 for all $y \in \mathcal{D}(A_e^*)$.

The controller solves the PORP iff $C_e(t)\Sigma_{\infty}(t) + D_e(t) \equiv 0$.

For $A_e(t) = A_{sg} + A_b(t)$ these are satisfied if $\mathcal{R}(A_b(t)^*) \subset \mathcal{D}(A^*_{sg})$ and if

$$t \mapsto A_{sg}^* A_b(t)^*$$

is strongly continuous.

Assumptions for Theorem 1

Theorem (Additional assumptions for (2) in Theorem 1) *Assume*

•
$$U_e(t,s)^*(\mathcal{D}(A_e^*)) \subset \mathcal{D}(A_e^*)$$

•
$$\frac{d}{ds}U_e(t,s)^*y = -A_e(s)^*U_e(t,s)^*y$$
 for all $y \in \mathcal{D}(A_e^*)$.

The controller solves the PORP iff $C_e(t)\Sigma_{\infty}(t) + D_e(t) \equiv 0$.

For an observer-based controller of a DPS (A, B, C):

- $\mathcal{R}(C^*) \subset \mathcal{D}(A^*)$
- There exists $K \in \mathcal{L}(X, U)$ with $\mathcal{R}(K^*) \subset \mathcal{D}(A^*)$ such that A + BK is exponentially stable.

Introduction Strong Solution in the Parabolic Case The Main Problem Weak Solution in the Hyperbolic Case Main Results More General SDe's

More General Sylvester Differential Equations

Problem

Consider

$$\dot{\Sigma}(t)v + \Sigma(t)S(t)v = A(t)\Sigma(t)v + B(t)v, \quad \Sigma(0) = \Sigma_0$$

for all $v \in \mathcal{D}(S)$ where

- The families $(A(t), \mathcal{D}(A))$ and $(S(t), \mathcal{D}(S))$ have associated evolution families $U_A(t, s)$ and $U_S(t, s)$
- $B(\cdot)v \in C_{ub}$.

The solution is of form

$$\Sigma(t) = U_A(t,0)\Sigma_0 U_S(0,t) + \int_0^t U_A(t,s)B(s) U_S(s,t) ds.$$

Conclusion

In this presentation:

- Periodic Sylvester differential equation
- Conditions for
 - Solvability
 - Theorem 1 (Characterization of the solvability of the PORP).

Further research topics:

- Further conditions
- Possible to get rid of exponential stability?
- Banach space.