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The Main Problem

Problem
Study

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t). (SDe)

Motivation:
The Periodic Output Regulation Problem
Characterization of controllers solving the PORP.

L. Paunonen The Infinite-Dimensional Sylvester Differential Equation



Introduction
The Main Problem

Main Results
Motivation: The Periodic Output Regulation Problem
Characterization of the Controllers Solving the PORP

Introduction

PCS
yyref ue

−

Closed-loop system

L. Paunonen The Infinite-Dimensional Sylvester Differential Equation



Introduction
The Main Problem

Main Results
Motivation: The Periodic Output Regulation Problem
Characterization of the Controllers Solving the PORP

Motivation

Definition (The periodic signal generator S)
The exosystem is of form

v̇ = Sv, v(0) ∈W = Cq ,

yref (t) = −F(t)v(t)

S ∈ L(W ) and F ∈ C 1
T (R,L(W , Y )).

Here

C 1
T (R, X) =

{
f ∈ C 1(R, X)

∣∣ f (t + T ) = f (t) for all t ∈ R
}
.
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The Closed-Loop System

The closed-loop system is of form

ẋe = Ae(t)xe + Be(t)v, xe(0) ∈ Xe

e = Ce(t)xe + De(t)v.

Assume there exists a strongly continuous evolution family Ue(t, s)
associated to the family (Ae(t),D(Ae(t))).
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The Evolution Family Ue(t, s)

Definition (A Strongly Continuous Evolution Family)
1 Ue(t, t) = I
2 Ue(t, r)Ue(r , s) = Ue(t, s) for s ≤ r ≤ t
3
{

(t, s)
∣∣ t ≥ s

}
3 (t, s) 7→ Ue(t, s) is strongly continuous.

In the finite-dimensional case: Ue(t, s) = e
∫ t

s Ae(r)dr .

If Ae(t) ≡ Ae, generates a semigroup: Ue(t, s) = Te(t − s).
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The Evolution Family Ue(t, s)

Definition (A Strongly Continuous Evolution Family)
1 Ue(t, t) = I
2 Ue(t, r)Ue(r , s) = Ue(t, s) for s ≤ r ≤ t
3
{

(t, s)
∣∣ t ≥ s

}
3 (t, s) 7→ Ue(t, s) is strongly continuous.

The state of the closed-loop system

xe(t) = Ue(t, 0)xe(0) +
∫ t

0
Ue(t, s)Be(s)v(s)ds.
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The Periodic Output Regulation Problem

Problem (Periodic Output Regulation Problem)
Choose the controller such that

The CL system is exponentially stable, i.e. there exist
Me, ωe > 0 s.t.

‖Ue(t, s)‖ ≤ Mee−ωe(t−s), t ≥ s

For all initial states xe(0) ∈ Xe and v(0) ∈W the regulation
error satisfies

e(t) −→ 0

as t →∞.

L. Paunonen The Infinite-Dimensional Sylvester Differential Equation



Introduction
The Main Problem

Main Results
Motivation: The Periodic Output Regulation Problem
Characterization of the Controllers Solving the PORP

Theorem (Theorem 1)

Assume the controller stabilizes the closed-loop system
exponentially.

1 The periodic Sylvester differential equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t)

has a unique periodic solution Σ∞(·).
2 The controller solves the PORP if and only if this solution

satisfies
Ce(t)Σ∞(t) + De(t) = 0

for all t ∈ [0, T ].
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The Main Problem

Problem
Study

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t). (SDe)

What are the required assumptions for Theorem 1.
The unique periodic solution
The type of SDe (strong/weak)?
Corresponding additional conditions for (2) in Theorem 1?
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The Main Problem

Problem
Study

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t). (SDe)

Main results:

1 Solvability of the strong SDe + additional conds for (2)

2 Solvability of the weak SDe + additional conds for (2).
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Assumption
Ae(t) = Asg + Ab(t) on a Hilbert space Xe, where

Asg gen. a C0-semigroup
Ab(·)x ∈ C 1

T for all x ∈ Xe

D(Ae(t)) ≡ D(Asg) =: D(Ae)
D(Ae(t)∗) ≡ D(A∗

sg) =: D(A∗
e)

Be(·) ∈ C 1
T (R, Xe)

Ue(t, s) is exp. stable, i.e. ‖Ue(t, s)‖ ≤ Mee−ωe(t−s), ωe > 0

‖eSt‖ ≥ MS > 0 for t ≥ 0.
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Strong Solution
Theorem (The Strong SDe)
If for every v ∈W we have∫ 0

−∞
Ue(0, s)Be(s)eSsvds ∈ D(Ae),

then the equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t)

has a unique periodic solution Σ∞(·) ∈ C 1
T given by

Σ∞(t) =
∫ t

−∞
Ue(t, s)Be(s)eS(s−t)ds

such that R(Σ∞(t)) ⊂ D(Ae) for all t ∈ [0, T ].
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The Parabolic Case

Corollary
If Ae(t) = Asg + Ab(t) where Asg generates an analytic semigroup,
the equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) + Be(t)

has a unique periodic solution Σ∞(·) ∈ C 1
T given by

Σ∞(t) =
∫ t

−∞
Ue(t, s)Be(s)eS(s−t)ds

such that R(Σ∞(t)) ⊂ D(Ae) for all t ∈ [0, T ].
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Assumptions for Theorem 1

Theorem (Additional assumptions for (2) in Theorem 1)

If (SDe) has a strong solution, no additional assumptions required:

The controller solves the PORP if and only if

Ce(t)Σ∞(t) + De(t) ≡ 0.
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The Weak Sylvester Differential Equation

Problem
Study

d
dt 〈Σ(t)v, y〉+ 〈Σ(t)Sv, y〉 = 〈Σ(t)v, Ae(t)∗y〉+ 〈Be(t)v, y〉,

for all v ∈W , y ∈ D(A∗e).
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Weak Solution

Theorem (The Weak SDe)
The equation

d
dt 〈Σ(t)v, y〉+ 〈Σ(t)Sv, y〉 = 〈Σ(t)v, Ae(t)∗y〉+ 〈Be(t)v, y〉,

for all v ∈W , y ∈ D(A∗e), has a unique periodic solution

Σ∞(t) =
∫ t

−∞
Ue(t, s)Be(s)eS(s−t)ds.
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Assumptions for Theorem 1

Theorem (Additional assumptions for (2) in Theorem 1)
Assume

Ue(t, s)∗(D(A∗e)) ⊂ D(A∗e)
d
ds Ue(t, s)∗y = −Ae(s)∗Ue(t, s)∗y for all y ∈ D(A∗e).

The controller solves the PORP iff Ce(t)Σ∞(t) + De(t) ≡ 0.

For Ae(t) = Asg + Ab(t) these are satisfied if R(Ab(t)∗) ⊂ D(A∗sg)
and if

t 7→ A∗sgAb(t)∗

is strongly continuous.
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Assumptions for Theorem 1

Theorem (Additional assumptions for (2) in Theorem 1)
Assume

Ue(t, s)∗(D(A∗e)) ⊂ D(A∗e)
d
ds Ue(t, s)∗y = −Ae(s)∗Ue(t, s)∗y for all y ∈ D(A∗e).

The controller solves the PORP iff Ce(t)Σ∞(t) + De(t) ≡ 0.

For an observer-based controller of a DPS (A, B, C ):

R(C ∗) ⊂ D(A∗)
There exists K ∈ L(X , U ) with R(K ∗) ⊂ D(A∗) such that
A + BK is exponentially stable.
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More General Sylvester Differential Equations
Problem
Consider

Σ̇(t)v + Σ(t)S(t)v = A(t)Σ(t)v + B(t)v, Σ(0) = Σ0

for all v ∈ D(S) where
The families (A(t),D(A)) and (S(t),D(S)) have associated
evolution families UA(t, s) and US(t, s)
B(·)v ∈ Cub.

The solution is of form

Σ(t) = UA(t, 0)Σ0US(0, t) +
∫ t

0
UA(t, s)B(s)US(s, t)ds.

L. Paunonen The Infinite-Dimensional Sylvester Differential Equation



Introduction
The Main Problem

Main Results

Strong Solution in the Parabolic Case
Weak Solution in the Hyperbolic Case
More General SDe’s

Conclusion

In this presentation:
Periodic Sylvester differential equation
Conditions for

Solvability
Theorem 1 (Characterization of the solvability of the PORP).

Further research topics:
Further conditions
Possible to get rid of exponential stability?
Banach space.
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