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Introduction
Problem
Study robust output regulation of linear PDE models.

linear PDE
u(t)

wdist(t)

y(t)

Output Regulation = Tracking + Disturbance Rejection:
Design a controller such that the output y(t) of the system
converges to a reference signal despite the disturbance wdist(t), i.e.,

∥y(t) − yref (t)∥ → 0, as t → ∞

Robustness: The controller is required to tolerate uncertainty in
the parameters of the system.
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Applications

Applications of regulation for PDEs:
Temperature tracking control, e.g., in manufacturing processes
Tracking control of flexible robotic manipulators
Rejection of unwanted periodic noises or vibrations

Robustness:
Tolerance to the unavoidable uncertainty in models.
Allows reliable use of approximate controller parameters.
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Goal of the Talk

Highlight differences between internal model control for
(linear) ODE and PDE systems
Discuss selected approaches to controller design
Examples in tutorial style
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The Reference and Disturbance Signals
The reference and disturbance signals are of the form

yref (t) =
q∑

k=0
ak cos(ωkt + θk)

wdist(t) =
q∑

k=0
bk cos(ωkt + φk)

with known frequencies 0 = ω0 < ω1 < · · · < ωq and unknown
amplitudes and phases.
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The Dynamic Error Feedback Controller

PC
yyref

wdist

ue

−

We consider a dynamic error feedback controller which is another
linear system.

Theorem
The Robust Output Regulation Problem is solvable if the system

is stabilizable and detectable
does not have transmission zeros at the frequencies ±iωk of
yref(t) and wdist(t).
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The Internal Model Principle

Pωkωk

yyref

wdist

ue

−

Theorem (Francis–Wonham, Davison 1970’s, . . . )
The following are equivalent:

The controller solves the robust output regulation problem.
Closed-loop system is stable and the controller has an internal
model of the frequencies {ωk}k of wdist(t) and yref(t).

“Internal Model”: For every k, the complex frequencies
±iωk must be eigenmodes of the controller dynamics with
at least p = dim Y independent eigenvectors.
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Internal Model Based Controller Design

The robust output regulation problem can be solved in two parts:

Step 1◦ Include a suitable internal model into the controller

Step 2◦ Use the rest of the controller’s parameters to stabilize
the closed-loop system.

Internal model has fixed structure (easy), the closed-loop stability
can be achieved in several ways (often the main challenge).
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Robust Regulation of Linear ODE Systems

ODE model

System (A,B,C,D)

IM Controller

Internal Model Principle

Robust Regulation

1. Represent ODE in 
    the standard form

2. Choose a general IM-based 
    controller structure

3. Construct the IM based on freq's
4. Tune the controller to stabilize CL

5. Invoke IMP to show that 
    the controller works
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Robust Regulation of linear PDE systems

PDE model

System (within a class)

IM Controller

Internal Model Principle

Robust Regulation

1. Represent PDE in 
    the standard form

2. Choose a general IM-based 
    controller structure

3. Construct the IM based on freq's
4. Tune the controller to stabilize CL

5. Invoke IMP to show that 
    the controller works
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Robust Regulation of linear PDE systems
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The Possible Types of “Standard Representations”

1. “A class of PDEs”
A parametrised collection of PDEs of the same type
(parabolic, hyperbolic, coupled)
Allows various input/output configurations
Examples: Distributed port-Hamiltonian systems, n × m
hyperbolic systems, reaction-convection-diffusion equations

2. “Abstract linear systems” (or “DPS”)
Represents the PDE as a linear system (A, B, C, D) but on an
infinite-dimensional space X

Different subclasses based on properties of the operators
Examples: Regular Linear Systems, Well-Posed Systems
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Comparison of Internal Model Controllers

1. A class of PDEs:
Currently there’s no actual “IMP” for PDE classes
but IM-based controllers (with tuning recipes) exist!

Benefit: Usually straightforward design!

2. Abstract linear systems:
Internal Model Principle exists for several system classes.
Several different types of IM controllers

Trade-off: Sometimes technically demanding design.
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Part II: Controller Design for PDEs

Illustrate how controller design works for concrete PDEs
Keep the PDE models simple
Swipe a lot of technical terms and details under the rug
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The “Simplest Example”
Consider a one-dimensional heat equation

∂tv(ξ, t) = ∂ξξv(ξ, t) + b(ξ)u(t) + bd(ξ)wdist(t), ξ ∈ (0, 1)

∂ξv(0, t) = ∂ξv(1, t) = 0, v(ξ, 0) = v0(ξ)

y(t) =
∫ 1

0
v(ξ, t)c(ξ)dξ

with piecewise continuous functions b, bd, c : [0, 1] → R.

3.2. Output Tracking of Time-Varying Signals 43
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Figure 3.5: Output (red) of the harmonic oscillator with the feedforward controller and the
reference signal yref (t) = sin(2⇡t) + 1 (blue).

Example 3.2.5. In this example we consider output tracking control for a heat equation,
which models the evolution of the temperature profile of an object made out of material
which conducts heat relatively well. We consider the situation where the object is approx-
imately one-dimensional, for example a metal rod. We also consider the case where the
temperature profile can be controlled by heating (or cooling) one part of the metal rod, and
as the output of the system we measure the average temperature over another part of the
rod. More precisely, we assume that the metal rod has length ` = 1, the heating and cooling
happens on the left half of the rod, and the temperature measurement is over the right half
of the rod (see Figure 3.6). In addition, we assume that there is no heat flux through the
two ends of the metal rod (that is, the ends of the rod are insulated).

⇠ = 0 ⇠ = 1/2 ⇠ = 1

control measurement

Figure 3.6: The input output configuration in the controlled heat system.

In this case, the dynamics of the temperature profile can be modelled with a partial
differential equation, namely, the one-dimensional heat equation. If we denote by v(⇠, t) the
temperature of the metal rod at time t � 0 and at point ⇠ 2 [0, 1], then v is a function of two
variables ⇠ and t and it satisfies the partial differential equation

@v

@t
(⇠, t) = ↵

@2v

@⇠2
(⇠, t) + b(⇠)u(t) (3.6a)

@v

@⇠
(0, t) = 0,

@v

@⇠
(1, t) = 0, v(⇠, 0) = v0(⇠) (3.6b)

y(t) = 2

Z 1

1/2

v(⇠, t)d⇠, (3.6c)
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The “Simplest Example”
Consider a one-dimensional heat equation

∂tv(ξ, t) = ∂ξξv(ξ, t) + b(ξ)u(t) + bd(ξ)wdist(t), ξ ∈ (0, 1)

∂ξv(0, t) = ∂ξv(1, t) = 0, v(ξ, 0) = v0(ξ)

y(t) =
∫ 1

0
v(ξ, t)c(ξ)dξ

with piecewise continuous functions b, bd, c : [0, 1] → R.

Choose x(t) = v(·, t) and look for a representation

ẋ(t) = Ax(t) + Bu(t) + Bdwdist(t), x(0) = x0 ∈ X

y(t) = Cx(t)
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Abstract Representation
The heat equation can be rewritten as a linear system

ẋ(t) = Ax(t) + Bu(t) + Bdwdist(t), x(0) = x0 ∈ X

y(t) = Cx(t)

if we choose
State x(t) = v(·, t) (heat profile at t ≥ 0),
State space X = L2(0, 1) (Hilbert), U = Y = Ud = C
Operators A : D(A) ⊂ X → X, B, Bd, and C

Af = d2f

dξ2 , D(A) = { f ∈ H2(0, 1) | f ′(0) = f ′(1) = 0 }

Bu = b(·)u, Bdu = bd(·)u Cf =
∫ 1

0
f(ξ)c(ξ)dξ
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Internal Model Controller design

Simplifying assumptions:
yref (t) = a sin(ωt + θ), single freq ω > 0 and wdist(t) ≡ 0
SISO systems only (generalisation to MIMO easy)
Use one particular “observer-based” controller structure
(others exist too!)
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Controller Design for the Heat System
Theorem (Immonen 2007, Hämäläinen–Pohjolainen 2010)
The Robust Output Regulation Problem can be solved with the
internal model controller

ż1(t) = G1z1(t) + G2(y(t) − yref(t))
˙̂x(t) = Ax̂(t) + Bu(t) + L(ŷ(t) − y(t) + yref(t))
ŷ(t) = Cx̂(t)
u(t) = K1z1(t) + K2x̂(t)

with matrices G1, G2, K1 and bounded operators L and K2.

The matrices (G1, G2) contain the internal model,

G1 =
[

0 ω
−ω 0

]
, G2 =

[
1
1

]
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Controller Parameters L, K1 and K2

The operators L, K1 and K2: Chosen so that the systems

ẋ(t) = (A + LC)x(t) ; output injection
and

ẋ(t) =
([

G1 G2C
0 A

]
+
[

0
B

] [
K1, K2

])
x(t)

are exponentially stable.
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Controller Parameters L, K1 and K2
Stabilize

ẋ(t) =
([

G1 G2C
0 A

]
+
[

0
B

] [
K1, K2

])
x(t)

Can be rewritten as feedback stabilization of a PDE-ODE cascade:

ż1(t) = G1z1(t) + G2

∫ 1

0
v(ξ, t)c(ξ)dξ

∂tv(ξ, t) = ∂ξξv(ξ, t) + b(ξ)K1z1(t) + b(ξ)
∫ 1

0
v(ξ, t)k2(ξ)dξ

∂ξv(0, t) = ∂ξv(1, t) = 0,

Possible approaches:
Numerical approximations and LQR (Banks–Kunisch ’84)
“Forwarding” (+ numerical approx)
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The PDE Controller

Finally, rewrite the “abstract controller” as a PDE-ODE system:

ż1(t) =
[

0 ω
−ω 0

]
z1(t) +

[
1
1

]
(y(t) − yref (t))

∂tv̂(ξ, t) = ∂ξξ v̂(ξ, t) + b(ξ)K1z1(t) + b(ξ)
∫ 1

0
k2(ξ)v̂(ξ, t)dξ

+ ℓ(ξ)
(∫ 1

0
c(ξ)v̂(ξ, t)dξ − y(t) + yref (t)

)
u(t) = K1z1(t) +

∫ 1

0
k2(ξ)v̂(ξ, t)dξ, ∂ξ v̂(ξ, t) = ∂ξ v̂(ξ, t) = 0.

(Here we use the knowledge of X, A, B, C etc.)
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Simulation Results
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RORPack – Matlab/Python libraries for Robust Output Regulation
Available at https://github.com/lassipau/rorpack-matlab/

L. Paunonen Internal Model Control of Partial Differential Equations

https://github.com/lassipau/rorpack-matlab/


Robust Regulation and Internal Models
Controller Design for PDE Models

Robust Regulation for a Heat System
A Hyperbolic System

Example: What did we learn?

1 Representation of the PDE as an abstract system was “easy”
2 Choices of L, K1 and K2 could be completed by solving

stabilization problems for a PDE and a PDE-ODE cascade
3 The abstract controller that we constructed could be

reinterpreted as a PDE-ODE system

Why was this a “simple” example?
The control and observation were inside the spatial domain
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A More Challenging Case
Consider the 2 × 2 hyperbolic system

∂tv(ξ, t) − µ1∂ξv(ξ, t) = a1(ξ)w(ξ, t)
∂tw(ξ, t) + µ2∂ξw(ξ, t) = a2(ξ)v(ξ, t)
v(0, t) = q0w(0, t), v(1, t) = q1w(1, t) + u(t)
y(t) = v(0, t)

with µ1, µ2 > 0, q0, q1 ∈ R.

InputOutput v(ξ, t)

w(ξ, t)

The model has boundary control and boundary observation
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Representation as an Abstract System
The hyperbolic system

∂tv − µ1∂ξv = a1w, v(0, t) = q0w(0, t)+wdist(t),
∂tw + µ2∂ξw = a2v, v(1, t) = q1w(1, t) + u(t),
y(t) = v(0, t)

Choose x(t) = (v(·, t), w(·, t))T ; A regular linear system

ẋ(t) = Ax(t) + Bu(t)+Bdwdist(t), x(0) = x0 ∈ X

y(t) = CΛx(t)

on X = L2(0, 1) × L2(0, 1) with u(t), y(t) ∈ C.

Question
“What’s so difficult?”
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Representation as an Abstract System

∂tv − µ1∂ξv = a1w, v(0, t) = q0w(0, t),
∂tw + µ2∂ξw = a2v, w(1, t) = q1v(1, t) + u(t),
y(t) = v(0, t)

regular linear system on X = L2(0, 1)2

ẋ(t) = Ax(t) + Bu(t) x(0) = x0 ∈ X

y(t) = CΛx(t)

Question (“What’s so difficult?”)
(1) Boundary input and output ; the abstract class is “large”
(2) Stabilization requires boundary feedback.

Same applies to undamped wave, plate and beam equations.
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Overview

Question (“What’s so difficult?”)
(1) Boundary input and output ; the abstract class is “large”
(2) Stabilization requires boundary feedback.

The good news: An IMP for regular linear systems exists [P. ’16]

The bad news: The existing controller constructions do not
manage boundary feedbacks well.

Result (P. 2023+)
New abstract controller design techniques for regular linear systems
allowing boundary feedback.
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Controller Design for the Hyperbolic System

Theorem (P. 2023+)
The Robust Output Regulation Problem can be solved with the
internal model controller which formally resembles

ż1(t) = G1z1(t) + G2(y(t) − yref(t))
˙̂x(t) = Ax̂(t) + Bu(t) + L(ŷ(t) − y(t) + yref(t))
ŷ(t) = Cx̂(t)
u(t) = K1z1(t) + K2x̂(t)

with matrices G1, G2, K1 and unbounded operators L and K2.

Matrices (G1, G2) contain the internal model
L contains output injections for the hyperbolic system
K1 and K2 stabilize a cascade of the system and the IM

L. Paunonen Internal Model Control of Partial Differential Equations



Robust Regulation and Internal Models
Controller Design for PDE Models

Robust Regulation for a Heat System
A Hyperbolic System

Choosing output injection L

L can be constructed by choosing ℓb ∈ R, ℓ1, ℓ2 : [0, 1] → R so that

∂tv − µ1∂ξv = a1w + ℓ1(ξ)v(0, t),
∂tw + µ2∂ξw = a2v + ℓ2(ξ)v(0, t),
v(0, t) = q0w(0, t) + ℓbv(0, t), w(1, t) = q1v(1, t)

is exponentially stable.

This problem can be solved with backstepping.
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Choosing Feedback Operators K1 and K2

Choose K1 ∈ R2×2, kb ∈ R, k1, k2 : [0, 1] → R that the cascade

ż1(t) = G1z1(t) + G2v(0, t)
∂tv − µ1∂ξv = a1w,

∂tw + µ2∂ξw = a2v, v(0, t) = q0w(0, t)

w(1, t) = q1v(1, t) + K1z1(t) + kbv(1, t)

+
∫ 1

0
k1(ξ)v(ξ, t) + k2(ξ)w(ξ, t)dξ

is exponentially stable.

This problem can either be solved directly with backstepping
cascade techniques, or reduced using forwarding to stabilization of
the hyperbolic system.

L. Paunonen Internal Model Control of Partial Differential Equations



Robust Regulation and Internal Models
Controller Design for PDE Models

Robust Regulation for a Heat System
A Hyperbolic System

The PDE Controller

Finally, rewrite the abstract controller as a PDE-ODE system:

ż1(t) =
[

0 ω
−ω 0

]
z1(t) +

[
1
1

]
(v(0, t) − yref (t))

∂tv̂ − µ1∂ξ v̂ = a1ŵ + ℓ1(ξ)(v̂(0, t) − v(0, t) + yref (t)),
∂tŵ + µ2∂ξŵ = a2v̂ + ℓ2(ξ)(v̂(0, t) − v(0, t) + yref (t)),

v̂(0, t) = q0ŵ(0, t) + ℓb(v̂(0, t) − v(0, t) + yref (t))
ŵ(1, t) = q1v̂(1, t) + K1z1(t) + kbv̂(1, t)

+
∫ 1

0
k1(ξ)v̂(ξ, t) + k2(ξ)ŵ(ξ, t)dξ

(Here we use the knowledge of X, A, B, C etc.)
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Discussion on the Examples

We focused on two 1D examples with differing properties
Note that boundary control is not always difficult!

Easy cases:
If the system is already stable, can use a very easy
finite-dimensional controller by Rebarber–Weiss ’03 (for
a large class of systems)
For parabolic PDEs, you can often design a finite-dim.
controller using Galerkin approximations even in the unstable
case [P.–Phan ’20, ’21, Huhtala–P.–Hu ’22]
In PDEs with boundary control, actuator and sensor
dynamics make things easier∗!
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Historical Highlights Related to PDEs

Internal Model Principle (characterization of controllers) for PDEs:

Starting point: IMP for linear finite-dimensional systems
Francis–Wonham ’75, Davison ’76:

Extension to PDEs with distributed control and observation
Bhat ’76: Geometric approach, PhD with Koivo and Wonham
Immonen ’05–’07: Approach using Sylvester equations
P.–Pohjolainen ’10: The “classical” form of the IMP

Extension to PDEs with boundary control and observation
P. ’14, ’16: The class of Regular Linear Systems
Humaloja–Kurula–P. ’19: Boundary Control Systems

Frequency domain extensions of the IMP
Nett ’84, Yamamoto–Hara ’88, Vidyasagar ’88, Laakkonen ’13
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Developments: Internal Model based control design for PDEs
Classes of linear PDEs with distributed/boundary control

Pohjolainen ’83, Logemann–Townley ’97,
Hämäläinen–Pohjolainen ’00, ’06, ’10, Rebarber–Weiss ’03,
Boulite et. al. ’09, Harkort–Deutscher ’11, ’17, P. ’16, ’17

Parabolic PDEs
Chentouf et. al. ’08, ’10, Deutscher ’13, ’15, ’16, Guo-Meng
’20, Huhtala–P.–Hu ’22, . . .

Hyperbolic PDEs
Guo–Guo ’13, ’16, Guo–Krstic ’17, ’18, Humaloja–Kurula–P.
’18,’19, Deutscher–Gabriel ’18–21, Wang et. al. ’18, ’21,
Guo-Meng ’21, ’22, . . .

PIDEs, Coupled systems, Networks, . . .

In addition: Controllers for regulation without robustness
Schumacher ’83, Byrnes et. al. ’00, Boulite–Saij et. al. ’13, ’18,
Natarajan et. al. ’14, Xu–Dubljevic ’16, ’17, . . .
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Our “Abstract Approach” vs. “PDE-Based Approach”

In the “PDE-based approach”,
an IM controller is designed for
each PDE separately, followed
by proofs for closed-loop stabil-
ity, tracking and robustness.

In comparison, our “abstract
approach” avoids repetition
since regulation and robustness
are guaranteed by the IMP, and
do not need to be proved sep-
arately for each PDE!

PDE model

System (within a class)

IM Controller

Internal Model Principle

Robust Regulation

1. Introduce an IM controller 
    specific to the PDE
2. Prove CL stability
3. Prove output tracking
4. Prove controller robustness
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Conclusions

An overview of the “abstract approach” to internal model
control of linear PDEs.
Examples of the control design process.
An invitation to use the techniques in regulation of PDEs!
Here the examples were chosen to be simple, but in principle,
if you can stabilize, you can do internal model control.
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Things to Discuss

How could the abstract results be made more user-friendly?
How could we popularize internal model control?
Interesting applications?
Non-linear or semi-linear cases?
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