Stability of Waves with Boundary Damping: Sharpening the Observability Knife

Lassi Paunonen

Tampere University, Finland

joint work with R. Chill, D. Seifert, R. Stahn, Y. Tomilov and N. Vanspranghe.

January 31st, 2025

Goal of the Talk

Objective: Investigate energy decay in 2-dimensional wave equations with boundary damping.

Steps:

- Discuss the PDE problem
- Introduce abstract tools based on observability estimates
- New results for sharpening the observability results for waves
- Discussion on sub-optimality due to overdamping

Damped Wave Equations

Consider the wave equation on a "nice" domain $\Omega \subset \mathbb{R}^2$,

$$\begin{split} \ddot{w}(\xi,t) - \Delta w(\xi,t) + d(\xi)\dot{w}(\xi,t) &= 0, \qquad \xi \in \Omega, \quad t > 0 \\ w(\xi,t) &= 0 \qquad \qquad \xi \in \partial \Omega \end{split}$$

Then the stability of the wave equation depends on geometry of Ω and $\omega := \{ \xi \in \Omega \mid d(\xi) > 0 \}$:

Wave Equations with Boundary Damping

Consider the wave equation on a domain $\Omega \subset \mathbb{R}^2$, with boundary Γ ,

$$\ddot{w}(\xi, t) - \Delta w(\xi, t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0 \qquad \qquad \xi \in \Gamma$$

Then the stability of the wave equation again depends on Ω and now on $\omega := \{ \xi \in \Gamma \mid d(\xi) > 0 \}$ [Bardos, Lebeau, Rauch '92]:

Wave Equations with Boundary Damping

Wave equation with boundary damping:

- $\ddot{w}(\xi,t) \Delta w(\xi,t) = 0, \qquad \xi \in \Omega$
- $\nu\cdot\nabla w(\xi,t)+d(\xi)\dot{w}(\xi,t)=0,\quad \xi\in\Gamma$

- Lack of exponential stability understood in the non-GCC case
- Concrete decay rates in the non-GCC have not been investigated much (unlike for in-domain dampings!)
- Recent abstract results yield rates based on observability estimates

Abstract Formulation

The wave equation on Ω can be formulated as an "abstract damped wave equation"

$$\begin{cases} \ddot{w}(t) + Lw(t) + DD^* \dot{w}(t) = 0\\ w(0) = w_0, \quad \dot{w}(0) = w_1 \end{cases}$$

on the Hilbert space $H = L^2(\Omega)$ with $L = -\Delta_{\text{Neu}} \ge 0$. In boundary damping, D is "unbounded" in the sense that $\operatorname{Ran}(D) \not\subset L^2(\Omega)$, but instead $D \in \mathcal{L}(U, \operatorname{Dom}(L^{1/2})^*)$.

Problem

Formulate conditions on (L, D) such that for all initial conditions

$$\|L^{1/2}w(t)\| + \|\dot{w}(t)\| \to 0$$
 as $t \to \infty$

and especially study the **rate** of the convergence. ($\sim \sqrt{E(t)}$)

Polynomial and Non-Uniform Stability

 $\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$

Definition (Non-Uniform Stability)

There exists an increasing unbounded $M(\cdot):[t_0,\infty)\to(0,\infty)$ s.t.

$$\|L^{1/2}w(t)\| + \|\dot{w}(t)\| \le \frac{1}{M(t)} \left(\|Lw_0 + DD^*w_1\| + \|L^{1/2}w_1\| \right),$$

for $t \ge t_0$ and for all initial conditions $w_0 \in H$, $w_1 \in \text{Dom}(L^{1/2})$ satisfying $Lw_0 + DD^*w_1 \in H$.

- w_0, w_1 correspond to classical solutions of the PDE.
- In Uniform Exponential Stability all (mild) solutions decay at an exponential rate for all $w_0 \in \text{Dom}(L^{1/2})$ and $w_1 \in H$.
- In Polynomial Stability $M(t) = ct^{\beta}$ for some $\beta, c > 0$.

Polynomial and Non-Uniform Stability

 $\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$

Definition (Non-Uniform Stability)

$$||L^{1/2}w(t)|| + ||\dot{w}(t)|| \le \frac{1}{M(t)} \left(||Lw_0 + DD^*w_1|| + ||L^{1/2}w_1|| \right),$$

where $w_0 \in H$, $w_1 \in \text{Dom}(L^{1/2})$ satisfy $Lw_0 + DD^*w_1 \in H$.

Borichev–Tomilov 2010, Rozendaal–Seifert–Stahn '19: Non-uniform stability and M are characterised by resolvent bounds $\|(is - A)^{-1}\| \lesssim N(s) \text{ for the semigroup generator } A$

$$A = \begin{bmatrix} 0 & I \\ -L & -DD^* \end{bmatrix}$$

and $M\approx N^{-1}.$ E.g., if $N(s)=1+s^{\alpha},$ then $\ M(t)=ct^{1/\alpha}.$

Deriving Non-Uniform Decay Rates

Deriving Non-Uniform Decay Rates

- "Observability estimates" aim to reduce the derivation of resolvent estimates to a simpler problem.
- Instead of the damped problem, these involve the undamped equation "with an output"
- Earlier for NU stability: Ammari–Tucsnak 2001, Ammari et. al., Anantharaman–Léautaud 2014, Joly–Laurent 2019

Main Results

Main Results: The Plan

- I'll present two observability-type conditions, both lead to energy decay rates.
- Since we are interested in **boundary damping**, we highlight features that arise from *D* being unbounded.
- $\bullet\,$ First step: we define a non-decreasing $\mu:\mathbb{R}_+\to\mathbb{R}_+$ such that

$$1 + s \|D^*((1 + is)^2 - L)^{-1}D\| \le \mu(s), \qquad s \ge 0.$$

For the boundary damped wave equation, μ is **unbounded**.

• The resolvent identity implies that $\mu(s) \lesssim 1+s^2$ always, but in reality growth can be much slower.

A Non-Uniform (Schrödinger) Hautus Test Consider the Hautus-type condition [Miller 2012]

$$||w||^2 \le M_0(s)||(s^2 - L)w||^2 + m_0(s)||D^*w||^2, \quad w \in \text{Dom}(L), s \ge 0$$

for some non-decreasing $M_0, m_0 \colon [0, \infty) \to [r_0, \infty)$.

A Non-Uniform (Schrödinger) Hautus Test Consider the Hautus-type condition [Miller 2012]

$$||w||^2 \le M_0(s)||(s^2 - L)w||^2 + m_0(s)||D^*w||^2, \quad w \in \text{Dom}(L), s \ge 0$$

for some non-decreasing $M_0, m_0 \colon [0, \infty) \to [r_0, \infty)$.

Theorem (Chill–P–Seifert–Stahn–Tomilov '23) If the condition holds and $N(s) := M_0(s)m_0(s)\mu(s)^2(1+s^2)$, then $\|L^{1/2}w(t)\| + \|\dot{w}(t)\| \le \frac{C}{N^{-1}(t)} \left(\|Lw_0 + DD^*w_1\| + \|L^{1/2}w_1\|\right),$

for some $C, t_0 > 0$.

- Recall that $1 + s \|D^*((1 + is)^2 L)^{-1}D\| \leq \mu(s)$
- Generalises Anantharaman–Léautaud 2014, Joly–Laurent 2019

A "Wavepacket Condition"

Operator $L^{1/2} \ge 0$ has spectral projections $P_{(a,b)}$ (for $(a,b) \subset \mathbb{R}_+$). Assume

 $\|D^*w\| \ge \gamma(s)\|w\|, \qquad w \in \operatorname{Ran}(P_{(s-\delta(s),s+\delta(s))}), \ s>0$

for some non-increasing $\delta,\gamma\colon [0,\infty)\to (0,r_0].$

Such w are "wavepackets" of $L^{1/2},\, {\rm previously}$ used for exact observability.

A "Wavepacket Condition"

Operator $L^{1/2} \ge 0$ has spectral projections $P_{(a,b)}$ (for $(a,b) \subset \mathbb{R}_+$). Assume

 $\|D^*w\| \ge \gamma(s)\|w\|, \qquad w \in \operatorname{Ran}(P_{(s-\delta(s),s+\delta(s))}), \ s>0$

for some non-increasing $\delta,\gamma\colon [0,\infty)\to (0,r_0].$

Such w are "wavepackets" of $L^{1/2},\,{\rm previously}$ used for exact observability.

Theorem (Chill-P-Seifert-Stahn-Tomilov '23)

If $N(s):=\mu(s)^2/(\gamma(s)^2\delta(s)^2)$ has "positive increase", then

$$\|L^{1/2}w(t)\| + \|\dot{w}(t)\| \le \frac{C}{N^{-1}(t)} \left(\|Lw_0 + DD^*w_1\| + \|L^{1/2}w_1\| \right),$$

Results: Summary

We get decay rates $\sim 1/N^{-1}(t)$ from both conditions, where

$$\begin{cases} N(s) := M_0(s)m_0(s)\mu(s)^2(1+s^2) & \text{Schrödinger Hautus test} \\ N(s) := \frac{\mu(s)^2}{\delta(s)^2\gamma(s)^2} & \text{Wavepacket condition} \end{cases}$$

That is, we get energy decay rates based on

- The observability condition parameters: (M_0,m_0) or (δ,γ)
- The function μ s.t. $1+s\|D^*((1+is)^2-L)^{-1}D\|\leq \mu(s)$
- If we don't have a good estimate for μ , we can use $\mu(s)^2 \lesssim 1 + s^4$. But this may result in a significant loss of optimality, and the "observability knife is very blunt".
- The presence of μ in the conditions is not a technicality, but examples illustrate that **it cannot be omitted**.

Discussion on Observability Conditions

In the observability condition approach we analyse

$$\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0,$$

by studying its **undamped** version, but equipped with an **input** u and **output** y:

$$\begin{split} \ddot{w}(t) + Lw(t) &= Du(t), \\ y(t) &= D^* \dot{w}(t). \end{split}$$

- We get the damped equation with "feedback" u(t) = -y(t).
- Motivation: The equation without damping is simpler.

Discussion on Observability Conditions

"Observability" measures (roughly) how well the state $(w(t),\dot{w}(t))$ can be reconstructed based on the output signal y in

$$\ddot{w}(t) + Lw(t) = 0,$$

$$y(t) = D^* \dot{w}(t)$$

- (M_0,m_0) and (δ,γ) measure the observability properties.
- The growth of $\mu(s)$ (i.e. $s \|D^*((1+is)^2 L)^{-1}D\|$) measures the level of unboundedness of D.
- The role of μ in the results can be interpreted roughly as: "stronger unboundedness of D may cause worse overdamping"

Sharpening the Knife: Accurate Estimation of μ

Summary of main results:

- The "baseline estimate" $\mu(s)^2 \lesssim 1 + s^4$ can be dramatically improved for actual PDE models \rightsquigarrow improved decay rates.
- New tools for deriving these (frequency-domain) estimates based on time-domain estimates

The Wave Equation with Boundary Damping

The wave equation on $\Omega\subset \mathbb{R}^2$ with boundary $\Gamma,\,d\in L^\infty,\,d\geq 0$

$$\begin{split} \ddot{w}(\xi,t) - \Delta w(\xi,t) &= 0, \qquad \xi \in \Omega, \quad t > 0 \\ \nu \cdot \nabla w(\xi,t) + d(\xi) \dot{w}(\xi,t) &= 0 \qquad \xi \in \Gamma. \end{split}$$

Estimate $1 + s \|D^*((1 + is)^2 - L)^{-1}D\| \le \mu(s)$.

The Wave Equation with Boundary Damping

The wave equation on $\Omega\subset \mathbb{R}^2$ with boundary $\Gamma,\,d\in L^\infty,\,d\geq 0$

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$\nu\cdot\nabla w(\xi,t)+d(\xi)\dot{w}(\xi,t)=0\qquad \quad \xi\in\Gamma.$$

Estimate $1 + s \|D^*((1 + is)^2 - L)^{-1}D\| \le \mu(s)$.

Proposition (LP, D. Seifert, N. Vanspranghe, '24)

We have $\mu(s) = 1 + s^{\eta}$ in the following cases:

$\eta = 1/2 + \varepsilon$	for Ω rectangle
$\eta = 1/2$	when Γ is smooth and flat
$\eta = 1/3$	when Γ is smooth and concave
$\eta = 2/3$	when Γ is smooth

The Wave Equation with Boundary Damping

The wave equation on $\Omega \subset \mathbb{R}^2$ with boundary $\Gamma, \, d \in L^\infty, \, d \geq 0$

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \xi \in \Omega, \quad t > 0$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0 \qquad \quad \xi \in \Gamma.$$

Corollary (LP, D. Seifert, N. Vanspranghe, '24)

With the observability estimates, decay rate $\sim 1/N^{-1}(t)$ where $N(s) = M_0(s)m_0(s)(1 + s^{2+2\eta})$ or $N(s) = (1 + s^{2\eta})/(\delta(s)\gamma(s))^2$

$\eta = 1/2 + \varepsilon$	for Ω rectangle
$\eta = 1/2$	when Γ is smooth and flat
$\eta = 1/3$	when Γ is smooth and concave
$\eta = 2/3$	when Γ is smooth

Wave Equation on a Rectangle

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \xi \in \Omega$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0, \quad \xi \in \Gamma$$

Proposition

Assume that Ω is a rectangle and there exists $\omega \subset \Gamma$ such that $\operatorname{ess\,sup}_{\xi \in \omega} d(\xi) > 0$. Then for any $\varepsilon > 0$ we have

$$\|\nabla w(\cdot,t)\|_{L^2} + \|\dot{w}(\cdot,t)\|_{L^2} = o\left(\frac{1}{t^{1/\alpha}}\right)$$

with $\alpha = 3 + \varepsilon$ for all classical solutions.

Previous [Abbas–Nicaise '15]: $\alpha = 2$ if damping on single edge

Wave Equation on a Rectangle

$$\ddot{w}(\xi,t) - \Delta w(\xi,t) = 0, \qquad \qquad \xi \in \Omega$$

$$\nu \cdot \nabla w(\xi, t) + d(\xi) \dot{w}(\xi, t) = 0, \quad \xi \in \Gamma$$

Proposition

Assume that Ω is a rectangle and $\exists \omega \subset \Gamma$ s.t. $\operatorname{ess\,sup}_{\xi \in \omega} d(\xi) > 0$. Then for any $\varepsilon > 0$ we have $\|\nabla w(\cdot, t)\|_{L^2} + \|\dot{w}(\cdot, t)\|_{L^2} = o(t^{-1/\alpha})$ with $\alpha = 3 + \varepsilon$ for all classical solutions.

Proof.

The "Schrödinger group (D^*, iL) " is "exactly observable", and thus M_0 and m_0 can be chosen as constants. We have $\mu(s) = 1 + s^{1/2+\varepsilon}$ and thus $N(s) \lesssim 1 + s^{2+1+2\varepsilon}$.

Where Do The Values of η Come From?

An abstract result connecting $\boldsymbol{\mu}$ to time-domain input-output estimates for

$$\begin{cases} \ddot{w}(t) + Lw(t) = Du(t), & w_0 = 0, \ w_1 = 0\\ y(t) = D^* \dot{w}(t). \end{cases}$$
(*)

Theorem (LP, D. Seifert, N. Vanspranghe, '24) Let $\eta \in [0,1]$. Then $1 + s \|D^*((1+is)^2 - L)^{-1}D\| \leq 1 + s^{2\eta}$ if and only if there exist M, T > 0 s.t. the solutions of (*) satisfy

 $\|y\|_{H^{-2\eta}(0,T;U)} \le M \|u\|_{L^2(0,T;U)}, \qquad u \in L^2(0,T;U).$

Such estimates the wave equation have been established by Lasiecka–Triggiani '91 and Tataru '98 \sim The concrete values of η .

Comments on (Sub-)Optimality

- The optimal rate in the rectangle case is most likely $\alpha = 2$.
- In our results, these observability estimates (M_0, m_0) and (δ, γ) and the measure μ of unboundedness are **decoupled**.
- This explains suboptimality in several cases:
 - The observability conditions need to prepare for the worst.
 - In reality, the "observability" and "unboundedness" aspects interact, and they may compensate for each other beneficially.

Despite these comments, the take-home message could be:

Observability estimates combined with accurate analysis of μ can lead to reasonably sharp energy decay rates in the 2D boundary damped wave equations.

Conclusion

In this presentation:

- General sufficient conditions for stability of boundary damped wave equations
- $\bullet\,$ New and improved decay rates based on estimation of the level of unboundedness of D in the results
- R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, "Non-Uniform Stability of Damped Contraction Semigroups," *Analysis & PDE*, 2023, https://arxiv.org/abs/1911.04804
- LP, D. Seifert, N. Vanspranghe, "Admissibility theory in abstract Sobolev scales and transfer function growth at high frequencies," arXiv, https://arxiv.org/abs/2412.14786

Contact: lassi.paunonen@tuni.fi, paunonenmath.com