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Introduction Main Objectives

The Plasticity Model

Main Objectives

@ Study a mathematical model of plasticity of a single biological
neuron in a rodent brain

@ Plasticity describes the cell's ability to “learn"

@ Model introduced by Kim, Hawes, Gillani, Wallace &
Blackwell in 2013

@ The model is comprehensive, but too complex for network
simulations consisting of large numbers of neurons

@ Motivation: Demand for increase of computational efficiency
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The Plasticity Model

Main Objectives

@ Study a mathematical model of plasticity of a single biological
neuron in a rodent brain

@ Plasticity describes the cell's ability to “learn"

@ Model introduced by Kim, Hawes, Gillani, Wallace &
Blackwell in 2013

@ The model is comprehensive, but too complex for network
simulations consisting of large numbers of neurons

@ Motivation: Demand for increase of computational efficiency

Main contributions
@ Model reduction for the model by Kim et. al.
@ Introduction of new model reduction techniques in
computational neuroscience.

Challenges:
@ The model is nonlinear and has time-dependent dynamics.



Introduction Main Objectives

The Plasticity Model

The Plasticity Model

The model:
z(t) = (Ap + A1Ca(t) + AgCa(t)2 + AsGlu(t))x(t)
+ F(xz(t)) + B - Glu(t)

Main characteristics:
e z(t) € R™ with n = 44.
@ Has two external stimuli, Ca(t) and Glu(t)
e Caf(t) and Glu(t) appear bilinearly (and Glu(t) also linearly)
@ The nonlinearity F'(x(t)) is quadratic
e x(t) includes 5 biologically interesting quantities (= outputs)
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Introduction Main Objectives

The Plasticity Model

The Plasticity Model

The model is mathematically challenging due to bilinearity.

In this study: Model reduction is completed for fixed and
biologically motivated stimulus functions C'a(t) and Glu(t) of form

0 0<t<5
f(t) = { sinusoidal oscillation 5 < ¢t < 10
0 t>10

The model has the form
z(t) = A(t)x(t) + F(x(t)) + B - Glu(t)

Specific aims:
@ Reduce dimension of the system and the computational
complexity of simulations.
e Compare the outputs (biologically interesting quantities) for
the original and reduced systems.
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Model Reduction Proper Orthogonal Decomposition (POD)

Discrete Empirical Interpolation Method (DEIM)

Reduction Methods — POD and DEIM

In the model reduction, we combine two reduction techniques:

Proper Orthogonal Decomposition (POD)
and

Discrete Empirical Interpolation Method (DEIM)
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Proper Orthogonal Decomposition (POD)

Model Reduction Discrete Empirical Interpolation Method (DEIM)

Proper Orthogonal Decomposition (POD)

o A well-known and widely used method for model reduction
ODEs, PDEs, and dynamical systems.

@ Based on the procedure

o Simulate the full-order system

o Choose “snapshots” S = [z(t1),...,z(tN)]

o Form the SVD of S, and project the system onto the space of
the k largest singular values

@ Results in a reduced system capturing the dominant dynamics
o Computational burden reduced significantly if £k < n =44
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Proper Orthogonal Decomposition (POD)

Model Reduction Discrete Empirical Interpolation Method (DEIM)

Discrete Empirical Interpolation Method (DEIM)

POD results in a reduced order model
Tr(t) = Vi A(t) iz (t) + Vi F (Vi (t)) + Vi B - Glu(t).
The main computational complexity results from evaluating
F(Vizg(t)) € R

(F(-) has n = 44 component functions) at each time-step.

DEIM is a method developed to reduce this complexity.
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Model Reduction Proper Orthogonal Decomposition (POD)

Discrete Empirical Interpolation Method (DEIM)

Discrete Empirical Interpolation Method (DEIM)

Main steps for simplifying V' F'(Viyxi(t)):

@ The idea is to choose a subset {ji,...,jmn} of indices
{1,...,n}, and choose the component functions of F'(-) that
are most relevant for the dynamics.

o Can replace F(Vix(t)) with Fy,(Viak(t)) where F, has only
m <& n = 44 components

@ The indices {ji,...,Jm} are chosen using an algorithm
[Chaturantabut & Sorensen, 2011], and the “snapshots” in
the POD reduction.
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Proper Orthogonal Decomposition (POD)

Model Reduction Discrete Empirical Interpolation Method (DEIM)

Discrete Empirical Interpolation Method (DEIM)

Benefits of simplifying V,* F/(Vi,z(t)):
@ Results in a significant improvement in reduction of
computation times.

@ No additional simulations needed, since the “snapshots” can
be collected at the same time as the simulation for POD is
completed.

L. Paunonen Order reduction for a signaling pathway model



Model Reduction Proper Orthogonal Decomposition (POD)

Discrete Empirical Interpolation Method (DEIM)

Summary of the Reduction Methods

To summarize:
(1) POD is used to reduce the dimension of the system

(2) DEIM is used to improve the bottle-neck of POD that results
from needing to compute the nonlinear term F(Viz(t))

The combination results in significant computational savings:

@ Demonstrated in the literature especially for reduction of
numerical approximations of nonlinear PDEs.

@ Here we apply it in computational neuroscience.
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Simulation Results

Simulation Results
Setup:

o Consider changes in computational performance and error of
the solution of

#(t) = A(t)x(t) + F(z(t)) + B - Glu(t)

and especially the 5 chosen biologically interesting variables.

@ Compare simulation times for different sizes of the POD and
DEIM approximations

The stimuli Ca(t) and Glu(t) are chosen to have form

0 0<t<5
f(t) = ¢ sinusoidal oscillation 5 <t < 10
0 t>10
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Simulation Results

Simulation times vs. POD and DEIM dimensions

Mean simulation times (20 runs)
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After dimpop = 15, POD dimension makes little difference.
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Simulation Results

Output variables (POD 10 DEIM 5)
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@ Good accuracy with significant improvement in computational
efficiency (= 35% of the original simulation time).
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Simulation Results

@ Crucial restriction: Model not accurate for time-intervals
longer than the simulation used in the POD approximation.
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Simulation Results

@ Crucial restriction: Model not accurate for time-intervals
longer than the simulation used in the POD approximation.
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@ Can be compensated by increasing the sizes of the POD and
DEIM approximations = Loss of computational savings.
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Simulation Results

Conclusions: Drawbacks and Restrictions

@ The performance of the reduced model can be guarangeed for
the stimulus signals Ca(t) and Glu(t) used in forming the
POD+DEIM reduction

e Can be improved: POD can be formed using simulations for
several signals, and reduced model works for combinations of
these basic signals.

e = Approximation works for a larger class of stimuli

@ Performance can only be guaranteed on the time-interval used
in forming of the POD.

o Can be improved by increasing the size of the approximation,
but cancels computational savings.

e = important to guarantee sufficiently long time interval for
POD approximation.
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Simulation Results

Conclusions

In this presentation:

@ Model reduction techniques for improving computational
efficiency of a biological neuron model.

@ Model has quadratic nonlinearity and bilinear features.
@ Reduction methods combine

o Proper Orthogonal Decomposition (POD) and
o Discrete Empirical Interpolation Method (DEIM)

@ lllustration of performance gains with simulations.

Thank You!
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