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Main Objectives
Study a mathematical model of plasticity of a single biological
neuron in a rodent brain
Plasticity describes the cell’s ability to “learn"
Model introduced by Kim, Hawes, Gillani, Wallace &
Blackwell in 2013
The model is comprehensive, but too complex for network
simulations consisting of large numbers of neurons
Motivation: Demand for increase of computational efficiency

Main contributions
Model reduction for the model by Kim et. al.
Introduction of new model reduction techniques in
computational neuroscience.

Challenges:
The model is nonlinear and has time-dependent dynamics.
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The Plasticity Model

The model:

ẋ(t) = (A0 + A1Ca(t) + A2Ca(t)2 + A3Glu(t))x(t)

+ F (x(t)) + B ·Glu(t)

Main characteristics:
x(t) ∈ Rn with n = 44.
Has two external stimuli, Ca(t) and Glu(t)
Ca(t) and Glu(t) appear bilinearly (and Glu(t) also linearly)
The nonlinearity F (x(t)) is quadratic
x(t) includes 5 biologically interesting quantities (= outputs)
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The Plasticity Model
The model is mathematically challenging due to bilinearity.
In this study: Model reduction is completed for fixed and
biologically motivated stimulus functions Ca(t) and Glu(t) of form

f(t) =


0 0 ≤ t ≤ 5
sinusoidal oscillation 5 < t < 10
0 t ≥ 10

The model has the form
ẋ(t) = A(t)x(t) + F (x(t)) + B ·Glu(t)

Specific aims:
Reduce dimension of the system and the computational
complexity of simulations.
Compare the outputs (biologically interesting quantities) for
the original and reduced systems.
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Reduction Methods — POD and DEIM

In the model reduction, we combine two reduction techniques:

Proper Orthogonal Decomposition (POD)
and

Discrete Empirical Interpolation Method (DEIM)
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Proper Orthogonal Decomposition (POD)

A well-known and widely used method for model reduction
ODEs, PDEs, and dynamical systems.
Based on the procedure

Simulate the full-order system
Choose “snapshots” S = [x(t1), . . . , x(tN )]
Form the SVD of S, and project the system onto the space of
the k largest singular values

Results in a reduced system capturing the dominant dynamics
Computational burden reduced significantly if k � n = 44
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Discrete Empirical Interpolation Method (DEIM)

POD results in a reduced order model

ẋk(t) = V ∗
k A(t)Vkxk(t) + V ∗

k F (Vkxk(t)) + V ∗
k B ·Glu(t).

The main computational complexity results from evaluating

F (Vkxk(t)) ∈ Rn

(F (·) has n = 44 component functions) at each time-step.

DEIM is a method developed to reduce this complexity.
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Discrete Empirical Interpolation Method (DEIM)

Main steps for simplifying V ∗
k F (Vkxk(t)):

The idea is to choose a subset {j1, . . . , jm} of indices
{1, . . . , n}, and choose the component functions of F (·) that
are most relevant for the dynamics.
Can replace F (Vkxk(t)) with Fm(Vkxk(t)) where Fm has only
m� n = 44 components
The indices {j1, . . . , jm} are chosen using an algorithm
[Chaturantabut & Sorensen, 2011], and the “snapshots” in
the POD reduction.
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Discrete Empirical Interpolation Method (DEIM)

Benefits of simplifying V ∗
k F (Vkxk(t)):

Results in a significant improvement in reduction of
computation times.
No additional simulations needed, since the “snapshots” can
be collected at the same time as the simulation for POD is
completed.
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Summary of the Reduction Methods

To summarize:

(1) POD is used to reduce the dimension of the system

(2) DEIM is used to improve the bottle-neck of POD that results
from needing to compute the nonlinear term F (Vkxk(t))

The combination results in significant computational savings:
Demonstrated in the literature especially for reduction of
numerical approximations of nonlinear PDEs.
Here we apply it in computational neuroscience.
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Simulation Results
Setup:

Consider changes in computational performance and error of
the solution of

ẋ(t) = A(t)x(t) + F (x(t)) + B ·Glu(t)

and especially the 5 chosen biologically interesting variables.
Compare simulation times for different sizes of the POD and
DEIM approximations

The stimuli Ca(t) and Glu(t) are chosen to have form

f(t) =


0 0 ≤ t ≤ 5
sinusoidal oscillation 5 < t < 10
0 t ≥ 10
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Simulation times vs. POD and DEIM dimensions
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After dimP OD = 15, POD dimension makes little difference.
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Good accuracy with significant improvement in computational
efficiency (≈ 35% of the original simulation time).
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Crucial restriction: Model not accurate for time-intervals
longer than the simulation used in the POD approximation.
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Can be compensated by increasing the sizes of the POD and
DEIM approximations ⇒ Loss of computational savings.
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Conclusions: Drawbacks and Restrictions

The performance of the reduced model can be guarangeed for
the stimulus signals Ca(t) and Glu(t) used in forming the
POD+DEIM reduction

Can be improved: POD can be formed using simulations for
several signals, and reduced model works for combinations of
these basic signals.
⇒ Approximation works for a larger class of stimuli

Performance can only be guaranteed on the time-interval used
in forming of the POD.

Can be improved by increasing the size of the approximation,
but cancels computational savings.
⇒ important to guarantee sufficiently long time interval for
POD approximation.
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Conclusions

In this presentation:
Model reduction techniques for improving computational
efficiency of a biological neuron model.
Model has quadratic nonlinearity and bilinear features.
Reduction methods combine

Proper Orthogonal Decomposition (POD) and
Discrete Empirical Interpolation Method (DEIM)

Illustration of performance gains with simulations.

Thank You!
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