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Encouragement of young researchers
CDC 2013 in Florence

L. Paunonen On Polynomial Stability of Hyperbolic PDEs



Introduction
Main Results

Introduction
Non-Uniform Stability

Goal of the Talk
Introduce general conditions for non-uniform stability

of damped hyperbolic PDEs.

Damped systems of the form

ẋ(t) = (A−BB∗)x(t) and ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0

Motivation:
Polynomial and non-uniform stability often arise in damped
wave/beam/plate equations with weak or partial dampings
Most of the current literature based on case-by-case analysis

Main results:
General observability-type sufficient conditions for stability
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ẋ(t) = (A−BB∗)x(t) and ẅ(t) +A0w(t) +B0B
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(B∗, A) exactly observable ⇔ A−BB∗ exponentially stable

(B∗, A) non-uniformly obs. ⇔ A−BB∗ non-uniformly stable

(B∗, A) approx. observable ⇔∗ A−BB∗ strongly/weakly stable

[Slemrod, Levan, Russell, Benchimol, Guo–Luo, Lasiecka–Triggiani,
Curtain–Weiss . . . ]

Earlier work: Ammari–Tucsnak 2001, Ammari et. al.
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Main Assumptions (roughly, to keep things simple)

A generates a contraction semigroup T (t) on X Hilbert
Either B ∈ L(U,X), or (A,B,B∗) is well-posed.
⇒ A−BB∗ generates a contraction semigroup TB(t)

Main case:

ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0, on X0

where A0 > 0, B0 ∈ L(U,D(A1/2
0 )∗) leads to

A =
[

0 I
A0 0

]
, B =

[
0
B0

]
, on X = D(A1/2

0 )×X0.

Well-posedness ⇔ λ 7→ λB∗0(λ2 +A0)−1B0 is bounded on Cε.
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Polynomial and Non-Uniform Stability
Definition
TB(t) generated by A−BB∗ is non-uniformly stable if there
exist an increasing MT : [t0,∞)→ R+ and C > 0 such that

‖TB(t)x‖ ≤ C

MT (t)‖(A−BB
∗)x‖ x ∈ D(A−BB∗), t > t0.

[. . . , Liu–Rao ’05, Batty–Duyckaerts ’08, Borichev–Tomilov ’10,
Rozendaal–Seifert–Stahn ’19]

Application: E(t) ∼ ‖TB(t)x0‖2 for many PDE systems.
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Theorem
Assume TB(t) is bounded, iR ⊂ ρ(A−BB∗), and

‖(is−A+BB∗)−1‖ ≤M(|s|), M non-decreasing.

If M(s) . 1 + sα, then MT (t) = t1/α

If M has “positive increase”, then MT (t) = M−1(t).
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Observability-Type Conditions for Stability
PDE Examples

Main Problem

Damped systems of the form

ẋ(t) = (A−BB∗)x(t) and ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0

Problem
How do (A,B) or (A0, B0) determine the stability of the system?

Main results:

Conditions based on observability-type
properties of (B∗, A) and (B∗0 , iA0).
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A “Non-uniform Hautus test”

Consider the Hautus-type condition [Miller 2012]

‖x‖2 ≤Mo(|s|)‖(is−A)x‖2 +mo(|s|)‖B∗x‖2, x ∈ D(A), s ∈ R,

for some non-decreasing Mo,mo : [0,∞)→ [r0,∞).

Theorem
If the above condition holds, then iR ⊂ ρ(A−BB∗). If
M(s) := Mo(s) +mo(s) has positive increase, then

‖TB(t)x‖ ≤ C

M−1(t)‖(A−BB
∗)x‖, x ∈ D(A−BB∗), t ≥ t0.
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Other Sufficient Conditions for Stability (An Overview)

For A skew-adjoint with spectral projection P(a,b) (for i(a, b) ⊂ iR)

‖B∗x‖ ≥ γ(|s|)‖x‖, x ∈ Ran(P(s−δ(|s|),s+δ(|s|))), s ∈ R

for some non-increasing δ, γ : [0,∞)→ (0, r0].

Such x are often called “wavepackets” of A.

(Used for exact observability, e.g., in Ramdani et. al. 2005, Miller 2012,
Tucsnak–Weiss 2009.)
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Other Sufficient Conditions for Stability (An Overview)

For

ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0, on X0

and MS ,mS : [0,∞)→ [r0,∞) consider (s ≥ 0)

‖w‖2 ≤MS(s)‖(s2 −A0)w‖2 +mS(s)‖B∗0w‖2, w ∈ D(A0)

This is observability of the “Schrödinger group” (B∗0 , iA0)
(generalises Anantharaman–Leataud 2014, Joly–Laurent 2019)
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Other Sufficient Conditions for Stability (An Overview)

Time-domain observability conditions:

If 0 ∈ ρ(A), τ, cτ , β > 0:

cτ‖(−A)−βx‖2 ≤
∫ τ

0
‖B∗T (t)x‖2dt, x ∈ D(A).

(cf. generalised observability conditions by Ammari–Tuscnak 2001,
Ammari–Bchatnia–El Mufti 2017)
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Examples: 2D Wave Equations
A wave equation with viscous damping on a convex Ω ⊂ R2 with
Lipschitz boundary, b ∈ L∞(Ω)

wtt(ξ, t)−∆w(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ Ω, t > 0,
w(ξ, t) = 0, ξ ∈ ∂Ω, t > 0,
w(·, 0) = w0(·) ∈ H2(Ω) ∩H1

0 (Ω), wt(·, 0) = w1(·) ∈ H1
0 (Ω).

Several results exist for the exact observability of the
Schrödinger group (b, i∆) (Jaffard ’90, Burq–Zworski ’19) for
rectangles/tori. Leads to polynomial decay 1/

√
t.

Precise lower bounds on b lead to generalised observability of
the Schrödinger group via Burq–Zuily 2016.
In general our results are sub-optimal, since conditions do not
take into account the smoothness of b! (Burq–Hitrik ’07)
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1D Wave Equations

Consider a wave equation with weak damping (and Dirichlet BC)

wtt(ξ, t)− wξξ(ξ, t) + b(ξ)
∫ 1

0
b(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0,

The wavepacket condition characterises (optimal) stability via
lower bounds of the sine Fourier coefficients, e.g., (c, α > 0)∣∣∣∣∫ 1

0
b(ξ) sin(nπξ)dξ

∣∣∣∣ ≥ c

nα

Pointwise damping possible (formally b(ξ) = δ(ξ − ξ0)).
Analogous results for Euler–Bernoulli / Timoshenko beams
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A Fractional Klein–Gordon Equation

For m > 0, 0 < β ≤ 1 and b ∈ L∞(R), consider

wtt(ξ, t) + (−∂ξξ)βw(ξ, t) +mw(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ R.

The wavepacket condition leads to optimal polynomial
stability (with knowlege of exponential stability if β = 1)
Interesting example, since the spectrum of A0 is not discrete
Considered in Malhi–Stanislavova ’18, Green ’19
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Conclusions

In this presentation:
General sufficient conditions for non-uniform stability of the
semigroup generated by A−BB∗.
Discussion of PDE examples and optimality of the results

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, “Non-Uniform
Stability of Damped Unitary Groups,” in preparation

L. Paunonen On Polynomial Stability of Hyperbolic PDEs


