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Goal of the Talk

Consider the asymptotic behaviour of solutions of the “abstract
(damped) wave equation”{

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0
w(0) = w0, ẇ(0) = w1

on a Hilbert space H.

Problem
Formulate conditions on (L,D) such that for all initial conditions

‖w(t)‖ → 0 as t→∞

and especially study the rate of the convergence.
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Assumptions

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, w(0) = w0, ẇ(0) = w1

Throughout the presentation:
L : Dom(L) ⊂ H → H is self-adjoint, positive, and
boundedly invertible. Operator D is bounded, D ∈ L(U,H).

Example
In the case of the nD wave equation with viscous damping d ≥ 0

ẅ(ξ, t)−∆w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Ω, t > 0
w(ξ, t) = 0 ξ ∈ ∂Ω

H = L2(Ω), w(t) := w(·, t), and L = −∆ (Dirichlet BC’s)
U = H and (Du)(ξ) =

√
d(ξ)u(ξ).

w0 ∈ Dom(L1/2) and w1 ∈ H (; mild/weak solutions)
L. Paunonen Non-Uniform Stability of Damped Hyperbolic PDEs
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Fundamental Properties
The solutions of

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, w(0) = w0, ẇ(0) = w1

can be studied using the theory of strongly continuous
semigroups (which generalise the concept of matrix exponentials).

Definition (Stability)
The abstract wave equation is stable if

‖L1/2w(t)‖+ ‖ẇ(t)‖ → 0, as t→∞ (∗)

for all initial conditions w0 ∈ Dom(L1/2) and w1 ∈ H.

For PDEs, the quantity in (∗) is typically proportional to the
square root of the energy of the solution w(t).
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Non-Uniform Stability

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, w(0) = w0, ẇ(0) = w1

Definition (Non-Uniform Stability)
There exists an increasing unbounded M(·) : [t0,∞)→ (0,∞) s.t.

‖L1/2w(t)‖+ ‖ẇ(t)‖ ≤ 1
M(t)

(
‖Lw0‖+ ‖L1/2w1‖

)
, t ≥ t0

for all initial conditions w0 ∈ Dom(L), w1 ∈ Dom(L1/2).

w0, w1 correspond to classical solutions of the PDE.
In Uniform Exponential Stability all (mild) solutions decay
at an exponential rate for all w0 ∈ Dom(L1/2) and w1 ∈ H.
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Damped Wave Equations
Non-uniform stability is encoutered in wave/beam/plate
equations with partial or weak dampings. In the 2D wave equation

ẅ(ξ, t)−∆w(ξ, t) + d(ξ)ẇ(ξ, t) = 0, ξ ∈ Ω, t > 0
w(ξ, t) = 0 ξ ∈ ∂Ω

stability depends on geometry of Ω and ω := { ξ ∈ Ω | d(ξ) > 0 }:

d(ξ) > 0

Exponential stability

d(ξ) > 0

Non-uniform stability

d(ξ) > 0

Geometric Control
Condition
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Our Results

Introduce general conditions for non-uniform stability
of abstract damped wave equations.

Motivation:
“Non-uniform” stability is encountered in wave/beam/plate
equations with weak or partial dampings
Most of the current literature based on case-by-case analysis

Main results:
General observability-type sufficient conditions for (L,D) to
guarantee non-uniform stability and to identify the decay rate.
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Observability-Type Conditions vs. Stability

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, w(0) = w0, ẇ(0) = w1

Exact observability ⇔ Exponential stability

“Non-uniform observability” ⇔ Non-Uniform stability

Approximate observability ⇔ “Weak”/“Strong” stability

[Slemrod, Levan, Russell, Benchimol, Guo–Luo, Lasiecka–Triggiani,
Curtain–Weiss . . . ]

Earlier work: Ammari–Tucsnak 2001, Ammari et. al.,
Anantharaman–Leataud 2014, Joly–Laurent 2019
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A Non-Uniform Hautus Test
Consider the Hautus-type condition [Miller 2012]

‖w‖2 ≤M0(s)‖(s2 − L)w‖2 +m0(s)‖D∗w‖2, w ∈ Dom(L), s ≥ 0

for some non-decreasing M0,m0 : [0,∞)→ [r0,∞).

Theorem
If the above condition holds and N(s) := M0(s)m0(s)(1 + s2),
then

‖L1/2w(t)‖+ ‖ẇ(t)‖ ≤ C

N−1(t)
(
‖Lw0‖+ ‖L1/2w1‖

)
, t ≥ t0

for some C, t0 > 0 and for all w0 ∈ Dom(L), w1 ∈ Dom(L1/2).

Generalises Anantharaman–Leataud 2014, Joly–Laurent 2019
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A “Wavepacket Condition”
Operator L1/2 > 0 has spectral projections P(a,b) (for (a, b) ⊂ R+).
Assume
‖D∗w‖ ≥ γ(s)‖w‖, w ∈ Ran(P(s−δ(s),s+δ(s))), s > 0

for some non-increasing δ, γ : [0,∞)→ (0, r0].

σ(L1/2) δ(s)

s R

Such w are “wavepackets” of
L1/2, previously used for exact
observability.

Theorem
If N(s) := γ(s)−2δ(s)−2 has “positive increase”, then ∃C, t0 > 0,

‖L1/2w(t)‖+ ‖ẇ(t)‖ ≤ C

N−1(t)
(
‖Lw0‖+ ‖L1/2w1‖

)
, t ≥ t0
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N−1(t)
(
‖Lw0‖+ ‖L1/2w1‖

)
, t ≥ t0

L. Paunonen Non-Uniform Stability of Damped Hyperbolic PDEs



Introduction
Main Results

Conditions for Non-Uniform Stability
PDE Examples

The results are presented in:

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, “Non-Uniform
Stability of Damped Contraction Semiroups,” Analysis & PDE,
accepted (https://arxiv.org/abs/1911.04804)

Additional results:
Additional and alternative observability-type conditions
Analogous theory for first-order systems

ẋ(t) = (A−BB∗)x(t), x(0) = x0

Unbounded D ∈ L(U,Dom(L1/2)∗) (; boundary damping)
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Examples: 2D Wave Equations
A wave equation with viscous damping on a convex Ω ⊂ R2 with
Lipschitz boundary, d ∈ L∞(Ω), d ≥ 0

wtt(ξ, t)−∆w(ξ, t) + d(ξ)wt(ξ, t) = 0, ξ ∈ Ω, t > 0,
w(ξ, t) = 0, ξ ∈ ∂Ω, t > 0,
w(·, 0) = w0(·) ∈ H2(Ω) ∩H1

0 (Ω), wt(·, 0) = w1(·) ∈ H1
0 (Ω).

Several results exist for our Hautus-type condition with
constant M0(s) and m0(s) (Jaffard ’90, Burq–Zworski ’19)
for rectangles/tori. Leads to rational decay 1/

√
t.

Precise lower bounds on d lead to non-uniform stability using
the Hautus-type condition with [Burq–Zuily 2016].
In general our results are sub-optimal, since conditions do not
take into account the smoothness of d! (Burq–Hitrik ’07)
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1D Wave Equations

Consider a wave equation with weak damping (and Dirichlet BC)

wtt(ξ, t)− wξξ(ξ, t) + d(ξ)
∫ 1

0
d(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0,

The wavepacket condition characterises (optimal) stability via
lower bounds of the sine Fourier coefficients, e.g., (c, α > 0)∣∣∣∣∫ 1

0
d(ξ) sin(nπξ)dξ

∣∣∣∣ ≥ c

nα

Pointwise damping possible (formally d(ξ) = δ(ξ − ξ0)).
Analogous results for Euler–Bernoulli / Timoshenko beams
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Application: Water Waves System
In the reference

Su–Tucsnak–Weiss “Stabilizability properties of a linearized water
waves system,” Systems & Control Letters, 2020.

the results were applied to prove non-uniform
stabilizability of a “water waves system” in
a 2D domain.

Control/
damping

The PDE system models small amplitude water waves
Stability and convergence rate proved using the “Wavepacket
condition”
δ(s)→ 0 so that (s− δ(s), s+ δ(s)) reduce to 1D spectral
subspaces.
The stability result is likely to be optimal.
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Conclusions

In this presentation:
General sufficient conditions for non-uniform stability of
abstract damped wave equations
Discussion of PDE examples and optimality of the results

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, “Non-Uniform
Stability of Damped Contraction Semiroups,” Analysis & PDE,
accepted (https://arxiv.org/abs/1911.04804)

Contact: lassi.paunonen@tuni.fi
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