Non-Uniform Stability of Damped Hyperbolic PDEs

Lassi Paunonen

Tampere University, Finland

joint work with R. Chill, D. Seifert, R. Stahn and Y. Tomilov.

Tampere, Finland

January 5th 2022

Goal of the Talk

Consider the asymptotic behaviour of solutions of the "abstract (damped) wave equation"

$$\begin{cases} \ddot{w}(t) + Lw(t) + DD^* \dot{w}(t) = 0\\ w(0) = w_0, \quad \dot{w}(0) = w_1 \end{cases}$$

on a Hilbert space H.

Problem

Formulate conditions on (L, D) such that for all initial conditions

$$\|w(t)\| o 0$$
 as $t o \infty$

and especially study the **rate** of the convergence.

Assumptions

 $\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$

Throughout the presentation:

• $L: Dom(L) \subset H \to H$ is self-adjoint, positive, and boundedly invertible. Operator D is bounded, $D \in \mathcal{L}(U, H)$.

Example

In the case of the $n {\rm D}$ wave equation with viscous damping $d \geq 0$

$$\begin{split} \ddot{w}(\xi,t) - \Delta w(\xi,t) + d(\xi)\dot{w}(\xi,t) &= 0, \qquad \xi \in \Omega, \quad t > 0\\ w(\xi,t) &= 0 \qquad \qquad \xi \in \partial \Omega \end{split}$$

•
$$H = L^2(\Omega)$$
, $w(t) := w(\cdot, t)$, and $L = -\Delta$ (Dirichlet BC's)
• $U = H$ and $(Du)(\xi) = \sqrt{d(\xi)}u(\xi)$.

• $w_0 \in \mathrm{Dom}(L^{1/2})$ and $w_1 \in H$ (\leadsto mild/weak solutions)

Fundamental Properties

The solutions of

$$\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$$

can be studied using the theory of **strongly continuous semigroups** (which generalise the concept of matrix exponentials).

Definition (Stability)

The abstract wave equation is stable if

$$\|L^{1/2}w(t)\| + \|\dot{w}(t)\| \to 0, \quad \text{as} \quad t \to \infty$$
 (*)

for all initial conditions $w_0 \in \text{Dom}(L^{1/2})$ and $w_1 \in H$.

For PDEs, the quantity in (*) is typically proportional to the square root of the **energy** of the solution w(t).

Non-Uniform Stability

$$\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$$

Definition (Non-Uniform Stability)

There exists an increasing unbounded $M(\cdot):[t_0,\infty)\to(0,\infty)$ s.t.

$$||L^{1/2}w(t)|| + ||\dot{w}(t)|| \le \frac{1}{M(t)} \left(||Lw_0|| + ||L^{1/2}w_1|| \right), \quad t \ge t_0$$

for all initial conditions $w_0 \in \text{Dom}(L)$, $w_1 \in \text{Dom}(L^{1/2})$.

- w_0, w_1 correspond to classical solutions of the PDE.
- In Uniform Exponential Stability all (mild) solutions decay at an exponential rate for all $w_0 \in \text{Dom}(L^{1/2})$ and $w_1 \in H$.

Damped Wave Equations

Non-uniform stability is encoutered in wave/beam/plate equations with **partial** or **weak** dampings. In the 2D wave equation

$$\begin{split} \ddot{w}(\xi,t) - \Delta w(\xi,t) + d(\xi)\dot{w}(\xi,t) &= 0, \qquad \xi \in \Omega, \quad t > 0\\ w(\xi,t) &= 0 \qquad \qquad \xi \in \partial \Omega \end{split}$$

stability depends on geometry of Ω and $\omega := \{ \xi \in \Omega \mid d(\xi) > 0 \}$:

Our Results

Introduce general conditions for non-uniform stability of abstract damped wave equations.

Motivation:

- "Non-uniform" stability is encountered in wave/beam/plate equations with weak or partial dampings
- Most of the current literature based on case-by-case analysis

Main results:

• General **observability-type** sufficient conditions for (L, D) to guarantee non-uniform stability and to identify the decay rate.

Observability-Type Conditions vs. Stability

 $\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$

Exact observability \Leftrightarrow Exponential stability

Approximate observability \Leftrightarrow "Weak"/"Strong" stability

[Slemrod, Levan, Russell, Benchimol, Guo–Luo, Lasiecka–Triggiani, Curtain–Weiss . . .] Observability-Type Conditions vs. Stability

 $\ddot{w}(t) + Lw(t) + DD^*\dot{w}(t) = 0, \qquad w(0) = w_0, \quad \dot{w}(0) = w_1$

Exact observability \Leftrightarrow Exponential stability

"Non-uniform observability" \Leftrightarrow Non-Uniform stability

Approximate observability ⇔ "Weak"/"Strong" stability

[Slemrod, Levan, Russell, Benchimol, Guo–Luo, Lasiecka–Triggiani, Curtain–Weiss . . .]

Earlier work: Ammari–Tucsnak 2001, Ammari et. al., Anantharaman–Leataud 2014, Joly–Laurent 2019

Main Results

A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

$$||w||^2 \le M_0(s)||(s^2 - L)w||^2 + m_0(s)||D^*w||^2, \quad w \in \text{Dom}(L), s \ge 0$$

for some non-decreasing $M_0, m_0 \colon [0, \infty) \to [r_0, \infty).$

A Non-Uniform Hautus Test

Consider the Hautus-type condition [Miller 2012]

$$||w||^2 \le M_0(s)||(s^2 - L)w||^2 + m_0(s)||D^*w||^2, \quad w \in \text{Dom}(L), s \ge 0$$

for some non-decreasing $M_0, m_0 \colon [0, \infty) \to [r_0, \infty)$.

Theorem

If the above condition holds and $N(s):=M_0(s)m_0(s)(1+s^2)\mbox{,}$ then

$$||L^{1/2}w(t)|| + ||\dot{w}(t)|| \le \frac{C}{N^{-1}(t)} \left(||Lw_0|| + ||L^{1/2}w_1|| \right), \quad t \ge t_0$$

for some $C, t_0 > 0$ and for all $w_0 \in \text{Dom}(L)$, $w_1 \in \text{Dom}(L^{1/2})$.

• Generalises Anantharaman–Leataud 2014, Joly–Laurent 2019

A "Wavepacket Condition"

Operator $L^{1/2}>0$ has spectral projections $P_{(a,b)}$ (for $(a,b)\subset \mathbb{R}_+$). Assume

 $\|D^*w\| \ge \gamma(s)\|w\|, \qquad w \in \operatorname{Ran}(P_{(s-\delta(s),s+\delta(s))}), \ s>0$

for some non-increasing $\delta, \gamma \colon [0, \infty) \to (0, r_0].$

Such w are "wavepackets" of $L^{1/2}$, previously used for exact observability.

A "Wavepacket Condition"

Operator $L^{1/2} > 0$ has spectral projections $P_{(a,b)}$ (for $(a,b) \subset \mathbb{R}_+$). Assume

 $\|D^*w\| \ge \gamma(s)\|w\|, \qquad w \in \operatorname{Ran}(P_{(s-\delta(s),s+\delta(s))}), \ s > 0$

for some non-increasing $\delta, \gamma \colon [0, \infty) \to (0, r_0].$

Such w are "wavepackets" of $L^{1/2},\, {\rm previously}$ used for exact observability.

Theorem

If $N(s):=\gamma(s)^{-2}\delta(s)^{-2}$ has "positive increase", then $\exists C,t_0>0$,

$$\|L^{1/2}w(t)\| + \|\dot{w}(t)\| \le \frac{C}{N^{-1}(t)} \left(\|Lw_0\| + \|L^{1/2}w_1\|\right), \quad t \ge t_0$$

The results are presented in:

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, "Non-Uniform Stability of Damped Contraction Semiroups," *Analysis & PDE*, accepted (https://arxiv.org/abs/1911.04804)

Additional results:

- Additional and alternative observability-type conditions
- Analogous theory for first-order systems

$$\dot{x}(t) = (A - BB^*)x(t), \qquad x(0) = x_0$$

• Unbounded $D \in \mathcal{L}(U, \operatorname{Dom}(L^{1/2})^*)$ (\rightsquigarrow boundary damping)

Examples: 2D Wave Equations

A wave equation with viscous damping on a convex $\Omega\subset\mathbb{R}^2$ with Lipschitz boundary, $d\in L^\infty(\Omega),\,d\ge 0$

$$\begin{split} w_{tt}(\xi,t) &- \Delta w(\xi,t) + d(\xi)w_t(\xi,t) = 0, & \xi \in \Omega, \ t > 0, \\ w(\xi,t) &= 0, & \xi \in \partial\Omega, \ t > 0, \\ w(\cdot,0) &= w_0(\cdot) \in H^2(\Omega) \cap H^1_0(\Omega), & w_t(\cdot,0) = w_1(\cdot) \in H^1_0(\Omega). \end{split}$$

- Several results exist for our Hautus-type condition with constant $M_0(s)$ and $m_0(s)$ (Jaffard '90, Burq–Zworski '19) for rectangles/tori. Leads to rational decay $1/\sqrt{t}$.
- Precise lower bounds on *d* lead to non-uniform stability using the Hautus-type condition with [Burq–Zuily 2016].
- In general our results are sub-optimal, since conditions do not take into account the smoothness of d! (Burq-Hitrik '07)

1D Wave Equations

Consider a wave equation with weak damping (and Dirichlet BC)

$$w_{tt}(\xi,t) - w_{\xi\xi}(\xi,t) + d(\xi) \int_0^1 d(r)w_t(r,t)dr = 0, \quad \xi \in (0,1), \ t > 0,$$

• The wavepacket condition characterises (optimal) stability via lower bounds of the sine Fourier coefficients, e.g., $(c, \alpha > 0)$

$$\left|\int_0^1 d(\xi)\sin(n\pi\xi)d\xi\right| \ge \frac{c}{n^{\alpha}}$$

- Pointwise damping possible (formally $d(\xi) = \delta(\xi \xi_0)$).
- Analogous results for Euler–Bernoulli / Timoshenko beams

Application: Water Waves System

In the reference

Su–Tucsnak–Weiss "Stabilizability properties of a linearized water waves system," *Systems & Control Letters*, 2020.

the results were applied to prove non-uniform stabilizability of a "**water waves system**" in a 2D domain.

- The PDE system models small amplitude water waves
- Stability and convergence rate proved using the "Wavepacket condition"
- $\delta(s) \to 0$ so that $(s-\delta(s),s+\delta(s))$ reduce to 1D spectral subspaces.
- The stability result is likely to be optimal.

Conclusions

In this presentation:

- General sufficient conditions for non-uniform stability of abstract damped wave equations
- Discussion of PDE examples and optimality of the results

R. Chill, LP, D. Seifert, R. Stahn, Y. Tomilov, "Non-Uniform Stability of Damped Contraction Semiroups," *Analysis & PDE*, accepted (https://arxiv.org/abs/1911.04804)

Contact: lassi.paunonen@tuni.fi