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Abstract Cauchy Problems

An abstract Cauchy problem (ACP) is a linear initial value problem

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

on a Banach space X .

A is a possibly unbounded operator on X with domain D(A),
i.e., A : D(A) ⊂ X → X .
Solution x(·) : [0,∞)→ X
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Abstract Cauchy Problems

An abstract Cauchy problem (ACP) is a linear initial value problem

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

on a Banach space X .

The (ACP) may have different types of solutions, most notably
Classical solution: x(·) ∈ C 1(0,∞; X)
Mild/(weak) solution: x(·) ∈ C (0,∞; X) satisfies

x(t) = A
∫ t

0
x(s)ds + x0
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Strongly Continuous Semigroups
The abstract Caucy problem

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

is well-posed if and only if the operator A generates a strongly
continuous semigroup eAt on X .

This is a mapping t 7→ eAt : [0,∞)→ L(X) with properties
eA0 = I
eA(t+s) = eAteAs

eAtx → eAt0x as t → t0 for every x ∈ X (strong continuity)
d
dt eAtx = AeAtx = eAtAx for every x ∈ D(A).

NOTE: eAt generalizes the matrix exponential function.
L. Paunonen Polynomial Stability of Abstract Differential Equations



Introduction
Stability Properties

Conclusions
The Abstract Cauchy Problem
Examples

Solution of the (ACP)

If the operator A generates a strongly stable semigroup eAt , then
the (ACP)

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

has a unique mild solution given by

x(t) = eAtx0, ∀t ≥ 0.

Moreover, if x0 ∈ D(A), then x(·) is a classical solution (i.e.,
x(·) ∈ C 1).
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A Linear Heat Equation

Consider a 1D heat equation (on the interval [0, 1])

dw
dt (z, t) = d2w

dz2 (z, t)

w(0, t) = w(1, t) = 0
w(z, 0) = w0(z) ∈ L2(0, 1).

This PDE can be written as an (ACP) on X = L2(0, 1) by choosing

(Ax)(z) = d2x
dz2 (z),

D(A) =
{

x ∈ L2(0, 1)
∣∣∣ x, dx

dz abs. cont., x(0) = x(1) = 0
}
.
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A Damped Wave Equation

Consider a 2D wave equation (on a square Ω = [0, 1]× [0, 1])

vtt(z, t) = ∆v(z, t)− a(z)vt(z, t)

v(z, t) = 0 z ∈ ∂Ω
v(z, 0) = v0(z), vt(z, 0) = v1(z)

where the function a(·) in the damping term is essentially bounded.

To form the (ACP), denote

H 1
0 (Ω) =

{
v ∈ L2(Ω)

∣∣∣ dv
dz ∈ L2(Ω), v(z) = 0 for z ∈ ∂Ω

}
.

L. Paunonen Polynomial Stability of Abstract Differential Equations



Introduction
Stability Properties

Conclusions
The Abstract Cauchy Problem
Examples

A Damped Wave Equation

The wave equation can be written as an (ACP) on a Hilbert space

X = H 1
0 (Ω)× L2(Ω)

by choosing

A =
(

0 I
∆ −a(z)

)
, D(A) =

{(x1
x2

) ∣∣ x2 ∈ H 1
0 (Ω), ∆x1 ∈ L2(Ω)

}
.

Then the PDE becomes an (ACP)

d
dt

(
v(z)
vt(z)

)
=
(

0 I
∆ −a(z)

)(
v(z)
vt(z)

)
,

(
v(z)
vt(z)

)
=
(

v0
v1

)
.
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Stability of Abstract Cauchy Problems
Problem
Study the behaviour of the solutions of the (ACP)

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

as t →∞.

Definition
The (ACP) (and the semigroup eAt) is called stable if

x(t) = eAtx0 → 0 as t →∞

for every x0 ∈ X .
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Stability of Finite-Dimensional Equations
On a finite-dimensional space X = Cn : An abstract Cauchy
problem where A is an n × n matrix

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

The semigroup eAt is stable if
and only if

Reλ < 0

for all eigenvalues λ of A.
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Stability of Finite-Dimensional Equations

On a finite-dimensional space X = Cn : An abstract Cauchy
problem where A is an n × n matrix

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

If eAt is stable, then solutions decay at a uniform exponential rate:

There exists ω,M > 0 such that

‖x(t)‖ = ‖eAtx0‖ ≤ Me−ωt‖x0‖

for all x0 ∈ X .
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The Banach Space Case
For (ACP)

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

on a Banach space X , there are different types of stability:

The strongest type (same as in finite-dimensional case):

Definition (Exponential Stability)
The semigroup eAt is exponentially stable if there exist ω,M > 0
such that

‖x(t)‖ = ‖eAtx0‖ ≤ Me−ωt‖x0‖ ∀t ≥ 0

for every x0 ∈ X .
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The Banach Space Case

For (ACP)

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

on a Banach space X , there are different types of stability:

Weaker type, no uniform rate required.

Definition (Strong Stability)
The semigroup eAt is strongly stable if

‖x(t)‖ = ‖eAtx0‖ −→ 0 as t →∞

for every x0 ∈ X .
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The Banach Space Case
For (ACP)

d
dt x(t) = Ax(t), x(0) = x0 ∈ X

on a Banach space X , there are different types of stability:

Intermediate, decay rate is not for every x0 ∈ X .

Definition (Polynomial Stability)
The semigroup eAt is polynomially stable if there exist α,M > 0
such that

‖x(t)‖ = ‖eAtx0‖ ≤
M

t1/α ‖Ax0‖ ∀t ≥ 0

for every x0 ∈ D(A).
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Stability of the Heat Equation

The 1D heat equation

dw
dt (z, t) = d2w

dz2 (z, t)

w(0, t) = w(1, t) = 0
w(z, 0) = w0(z) ∈ L2(0, 1).

is exponentially stable, the solutions satisfy

‖w(·, t)‖L2 ≤ e−πt‖w0(·)‖L2 .

for every initial state w0 ∈ L2(0, 1).
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Stability of the 2D Wave Equation on Ω = [0, 1]× [0, 1]

vtt(z, t) = ∆v(z, t)− a(z)vt(z, t)

v(z, t) = 0 z ∈ ∂Ω
v(z, 0) = v0(z), vt(z, 0) = v1(z)

depends on the function a(·) in the damping term:
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Stability of the 2D Wave Equation on Ω = [0, 1]× [0, 1]

vtt(z, t) = ∆v(z, t)− a(z)vt(z, t)

v(z, t) = 0 z ∈ ∂Ω
v(z, 0) = v0(z), vt(z, 0) = v1(z)

a(z) > 0

If a(z) > 0

uniformly in Ω, then the equa-
tion is exponentially stable, i.e.,

‖v(·, t)‖L2
t→∞−→ 0

exponentially fast.
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Stability of the 2D Wave Equation on Ω = [0, 1]× [0, 1]

vtt(z, t) = ∆v(z, t)− a(z)vt(z, t)

v(z, t) = 0 z ∈ ∂Ω
v(z, 0) = v0(z), vt(z, 0) = v1(z)

a(z) > 0

If a(z) > 0

uniformly in a region of Ω, then
the equation is strongly stable,

‖v(·, t)‖L2
t→∞−→ 0
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Stability of the 2D Wave Equation on Ω = [0, 1]× [0, 1]

vtt(z, t) = ∆v(z, t)− a(z)vt(z, t)

v(z, t) = 0 z ∈ ∂Ω
v(z, 0) = v0(z), vt(z, 0) = v1(z)

a(z) > 0

If a(z) > 0

uniformly in a strip, then the
equation is polynomially stable

‖v(·, t)‖L2 ≤ M̃
t1/2

t→∞−→ 0

for IC’s v0 ∈ H 2
0 , v1 ∈ H 1

0 .
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Comparison of Stability Types

Exponential Polynomial Strong

+ Very good

+ Some useful

− Very few
properties

properties

properties

− Often

+ Often

+ Very often
unachievable

achievable

achievable
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Comparison of Stability Types

Exponential Polynomial Strong

+ Very good + Some useful − Very few
properties properties properties

− Often + Often + Very often
unachievable achievable achievable
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Conclusions

In this presentation:
Uniform presentation for linear PDE’s in abstract form.
Introduction and comparison of stability types.

Thank You!
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