Operator methods in the control of infinite-dimensional systems

L. Paunonen

Tampere University of Technology

with S. Pohjolainen

January 4th, 2012

Introduction Selected Results on The ORP Conclusion The Output Regulation Probler

Introduction and the Output Regulation Problem

- The classes of abstract linear systems
- Introduction to main mathematical tools

Selected results on output regulation

- Sylvester-type regulator equations
- S Conclusions and further research directions

Introduction Selected Results on The ORP Conclusion The Plant and the Exosystem The Closed-Loop System The Output Regulation Problem

The System To Be Controlled

 \bullet The System $\mathcal{P}:$ Abstract linear differential equation

- Linear ordinary and partial differential equations
- Delay equations, etc.

Introduction Selected Results on The ORP Conclusion **The Plant and the Exosystem** The Closed-Loop System The Output Regulation Problem

The System To Be Controlled

- \bullet The System $\mathcal{P}:$ Abstract linear differential equation
 - Linear ordinary and partial differential equations
 - Delay equations, etc.
- Goal: For a given reference signal $y_{ref}(t)$,

choose input u(t) in such a way that output y(t) satisfies

$$\|y(t) - y_{ref}(t)\| o 0$$
 as $t o \infty$.

The System To Be Controlled

Main tools:

- Linear functional analysis
 - Theory of semigroups, stability
 - Spectral theory of linear operators
 - Sylvester operator equations
- Complex analysis, function theory, PDE's

The System To Be Controlled

The controlled system on the Banach space X is of the form

$$\begin{aligned} \dot{x}(t) &= Ax(t) + Bu(t), \quad x(0) = x_0 \in X\\ y(t) &= Cx(t) + Du(t) \end{aligned}$$

Here

- x(t) is the *state*, u(t) the *input*, and y(t) the *output*
- A generates a strongly continuous semigroup e^{At} on X
- \bullet operators $A,\ B,\ C,$ and D are linear and bounded

The System To Be Controlled

The controlled system on the Banach space X is of the form

$$\begin{aligned} \dot{x}(t) &= Ax(t) + Bu(t), \quad x(0) = x_0 \in X \\ y(t) &= Cx(t) + Du(t) \end{aligned}$$

State x(t) can be expressed using the semigroup e^{At} :

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)}Bu(s)ds$$

An Example of a Controlled System: A Heat Equation

Consider a one-dimensional heat equation on (0,1). Choose $X = L^2(0,1)$ and (with appropriate b.c.'s)

$$\frac{d}{dt}x(t,z) = \frac{d^2}{dz^2}x(t,z) + b(z)u(t)$$
$$y(t) = \int_0^1 c(z)x(t,z)dz$$

An Example of a Controlled System: A Heat Equation

Consider a one-dimensional heat equation on (0,1). Choose $X=L^2(0,1)$ and (with appropriate b.c.'s)

$$\frac{d}{dt}x(t,z) = \frac{d^2}{dz^2}x(t,z) + b(z)u(t)$$
$$y(t) = \int_0^1 c(z)x(t,z)dz$$

 $\begin{array}{c|c} & \text{measurement } c(z) \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ control \ b(z) \end{array}$

An Example of a Controlled System: A Heat Equation

Consider a one-dimensional heat equation on (0,1). Choose $X = L^2(0,1)$ and (with appropriate b.c.'s)

$$\frac{d}{dt}x(t,z) = \frac{d^2}{dz^2}x(t,z) + b(z)u(t)$$
$$y(t) = \int_0^1 c(z)x(t,z)dz$$

Now $x(t)=x(t,\cdot)\in L^2(0,1)\text{, }u(t),y(t)\in\mathbb{C}\text{, and the operators}$

$$A = \frac{d^2}{dz^2}, \qquad Bu = b(\cdot)u, \qquad Cf = \int_0^1 c(z)f(z)dz$$

A Finite-Dimensional System

In a simpler case, A, B, C, and D are matrices

$$\begin{aligned} \dot{x}(t) &= Ax(t) + Bu(t), \quad x(0) = x_0 \in X \\ y(t) &= Cx(t) + Du(t) \end{aligned}$$

Then

- The system is a linear ordinary differential equation
- The eigenvalues of A determine asymptotic behavior of e^{At}
- In particular, if $\operatorname{Re} \lambda < 0$ for all $\lambda \in \sigma(A)$, then $||e^{At}|| \to 0$ exponentially fast as $t \to \infty$.

The Plant and the Exosystem The Closed-Loop System The Output Regulation Problem

The Exosystem

Goal:

Choose u such that y satisfies $||y(t) - y_{ref}(t)|| \to 0$ as $t \to \infty$.

The Exosystem (Signal Generator)

The reference signals are generated by the exosystem

$$\dot{v}(t) = Sv(t), \qquad v(0) = v_0 \in W$$

 $y_{ref}(t) = Fv(t)$

on the space W. Operator S generates a group e^{St} .

Example For $W = \mathbb{C}^q$, signals are combinations of trigonometric functions.

Introduction The Plant and the Exosystem Selected Results on The ORP Conclusion The Closed-Loop System Conclusion The Output Regulation Problem

The Exosystem (Signal Generator)

The reference signals are generated by the exosystem

$$\dot{v}(t) = Sv(t), \qquad v(0) = v_0 \in W$$

 $y_{ref}(t) = Fv(t)$

on the space W. Operator S generates a group e^{St} .

Example

With dim $W = \infty$ we can consider continuous periodic functions.

Feedback Controller

The error feedback controller on a Banach space Z is of the form

$$\dot{z}(t) = \mathcal{G}_1 z(t) + \mathcal{G}_2 e(t), \qquad z(0) = z_0 \in Z$$
$$u(t) = K z(t),$$

where \mathcal{G}_1 generates a semigroup and \mathcal{G}_2 and K are bounded.

Introduction The Plant and the Exosystem Selected Results on The ORP Conclusion The Output Regulation Problem

The Closed-Loop System

The closed-loop system with state $(x(t), z(t))^T \in X \times Z$

$$\dot{x}_e(t) = A_e x_e(t) + B_e v(t),$$
 $x_e(0) = (x_0, z_0)^T$
 $e(t) = C_e x_e(t) + D_e v(t).$

• $e(t) = y(t) - y_{ref}(t)$ is the regulation error

• v(t) is the state of the exosystem $\dot{v} = Sv$.

Output Regulation Problem

Problem (Output Regulation Problem)

Choose controller parameters $(\mathcal{G}_1, \mathcal{G}_2, K)$ such that

 (i) The closed-loop system operator A_e generates a strongly stable C₀-semigroup on X × Z;

(i.e.,
$$||e^{A_e t}x|| \to 0$$
 for all $x \in X_e$)

Output Regulation Problem

Problem (Output Regulation Problem)

Choose controller parameters $(\mathcal{G}_1, \mathcal{G}_2, K)$ such that

 (i) The closed-loop system operator A_e generates a strongly stable C₀-semigroup on X × Z;

(i.e.,
$$||e^{A_e t}x|| \to 0$$
 for all $x \in X_e$)

(ii) For all initial states x_0, z_0 and v_0 the regulation error $e(t) = y(t) - y_{ref}(t)$ decays to zero as $t \to \infty$;

Theorem (Characterization of solvability of the ORP)

Assume the controller $(\mathcal{G}_1, \mathcal{G}_2, K)$ stabilizes the closed-loop system strongly and that the Sylvester equation

 $\Sigma S = A_e \Sigma + B_e$

has a bounded solution Σ .

Then the controller solves the ORP if and only if Σ satisfies

 $C_e \Sigma + D_e = 0.$

The Idea of The Proof

• If the Sylvester equation

$$\Sigma S = A_e \Sigma + B_e$$

has a bounded solution $\Sigma,$ it can be used to express the regulation error $\boldsymbol{e}(t)$

The Idea of The Proof

• If the Sylvester equation

$$\Sigma S = A_e \Sigma + B_e$$

has a bounded solution $\Sigma,$ it can be used to express the regulation error $\boldsymbol{e}(t)$

• If $e^{A_e t}$ is stable, then it turns out

$$e(t) \longrightarrow 0 \quad \forall v_0 \in W \qquad \Leftrightarrow \qquad C_e \Sigma + D_e = 0.$$

The Sylvester Equation

Comments on the Sylvester equation

$$\Sigma S = A_e \Sigma + B_e \tag{1}$$

for unbounded operator S (of the exosystem).

- (FACT) the operator \mathcal{G}_1 (controller) must contain the eigenvalues of S.
- Operator S may have an infinite number of imaginary eigenvalues.
- In this case the operator A_e can not be exponentially stable (i.e., $||e^{A_e t}|| → 0$ exponentially fast as $t → \infty$)
- \Rightarrow no general results on solvability of (1).

The Sylvester Equation

Results on the Sylvester equation

$$\Sigma S = A_e \Sigma + B_e \tag{1}$$

for unbounded operator S (of the exosystem).

- $\bullet\,$ Solvability for particular types of $\infty\textsc{-dimensional}$ exosystems
 - S diagonal, block diagonal
 - $S = iS_0$, where S_0 self-adjoint operator.
- Uniqueness for exosystems generating periodic and *almost periodic* reference signals

Other Research Directions A Recap

Other Types of Exosystems

Further/Other Research Directions

A periodic exosystem

$$\begin{split} \dot{v}(t) &= S(t)v(t), \qquad v(0) = v_0 \\ y_{ref}(t) &= F(t)v(t) \end{split}$$

where $S(\cdot)$ and $F(\cdot)$ are periodic functions.

Leads to the use of theory of nonautonomous infinite-dimensional systems and *evolution families*.

Further/Other Research Directions

The closed-loop system becomes time-dependent

$$\dot{x}_e(t) = A_e(t)x_e(t) + B_e(t)u(t), \qquad x_e(0) = x_{e0}.$$

The state can be expressed using the strongly continuous evolution family $U_e(t,s)$ as

$$x_e(t) = U_e(t,0)x_{e0} + \int_0^t U_e(t,s)B_e(s)u(s)ds.$$

Further/Other Research Directions

The closed-loop system becomes time-dependent

$$\dot{x}_e(t) = A_e(t)x_e(t) + B_e(t)u(t), \qquad x_e(0) = x_{e0}.$$

The Sylvester equation $\Sigma S = A_e \Sigma + B_e$ in the theory is replaced by an infinite-dimensional *Sylvester differential equation*

$$\dot{\Sigma}(t) + \Sigma(t)S(t) = A_e(t)\Sigma(t) + B_e(t).$$

In This Presentation

- Output regulation theory for infinite-dimensional systems
- Comments on the main mathematical tools
- Solvability of the associated Sylvester equations