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The System To Be Controlled

P
u(t) y(t)

The System P: Abstract linear differential equation
Linear ordinary and partial differential equations
Delay equations, etc.

Goal: For a given reference signal yref (t),
choose input u(t) in such a way that output y(t) satisfies

‖y(t)− yref (t)‖ → 0 as t →∞.
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The System To Be Controlled

P
u(t) y(t)

Main tools:
Linear functional analysis

Theory of semigroups, stability
Spectral theory of linear operators
Sylvester operator equations

Complex analysis, function theory, PDE’s
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The System To Be Controlled

The controlled system on the Banach space X is of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) + Du(t)

Here

x(t) is the state, u(t) the input, and y(t) the output

A generates a strongly continuous semigroup eAt on X

operators A, B, C , and D are linear and bounded
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The System To Be Controlled

The controlled system on the Banach space X is of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) + Du(t)

State x(t) can be expressed using the semigroup eAt :

x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds
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An Example of a Controlled System: A Heat Equation

Consider a one-dimensional heat equation on (0, 1). Choose
X = L2(0, 1) and (with appropriate b.c.’s)

d
dt x(t, z) = d2

dz2 x(t, z) + b(z)u(t)

y(t) =
∫ 1

0
c(z)x(t, z)dz

control b(z)

measurement c(z)
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An Example of a Controlled System: A Heat Equation

Consider a one-dimensional heat equation on (0, 1). Choose
X = L2(0, 1) and (with appropriate b.c.’s)

d
dt x(t, z) = d2

dz2 x(t, z) + b(z)u(t)

y(t) =
∫ 1

0
c(z)x(t, z)dz

Now x(t) = x(t, ·) ∈ L2(0, 1), u(t), y(t) ∈ C, and the operators

A = d2

dz2 , Bu = b(·)u, Cf =
∫ 1

0
c(z)f (z)dz
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A Finite-Dimensional System

In a simpler case, A, B, C , and D are matrices

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) + Du(t)

Then

The system is a linear ordinary differential equation

The eigenvalues of A determine asymptotic behavior of eAt

In particular, if Reλ < 0 for all λ ∈ σ(A), then ‖eAt‖ → 0
exponentially fast as t →∞.
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The Exosystem

P
u(t) y(t)

S
yref (t)

Goal:

Choose u such that y satisfies ‖y(t)− yref (t)‖ → 0 as t →∞.
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The Exosystem (Signal Generator)
The reference signals are generated by the exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W
yref (t) = Fv(t)

on the space W . Operator S generates a group eSt .

S
yref (t)

Example
For W = Cq , signals are combinations of trigonometric functions.
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The Exosystem (Signal Generator)
The reference signals are generated by the exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W
yref (t) = Fv(t)

on the space W . Operator S generates a group eSt .

S
yref (t)

Example
With dim W =∞ we can consider continuous periodic functions.
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Feedback Controller

PCS
yyref ue

−

The error feedback controller on a Banach space Z is of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z
u(t) = Kz(t),

where G1 generates a semigroup and G2 and K are bounded.

L. Paunonen Control of infinite-dimensional systems



Introduction
Selected Results on The ORP

Conclusion

The Plant and the Exosystem
The Closed-Loop System
The Output Regulation Problem

PCS
yue

−

�
�

�
�

yref

L. Paunonen Control of infinite-dimensional systems



Introduction
Selected Results on The ORP

Conclusion

The Plant and the Exosystem
The Closed-Loop System
The Output Regulation Problem

The Closed-Loop System

The closed-loop system with state (x(t), z(t))T ∈ X × Z

ẋe(t) = Aexe(t) + Bev(t), xe(0) = (x0, z0)T

e(t) = Cexe(t) + Dev(t).

e(t) = y(t)− yref (t) is the regulation error

v(t) is the state of the exosystem v̇ = Sv.
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Output Regulation Problem

Problem (Output Regulation Problem)
Choose controller parameters (G1,G2,K ) such that

(i) The closed-loop system operator Ae generates a strongly
stable C0-semigroup on X × Z ;

(i.e., ‖eAetx‖ → 0 for all x ∈ Xe)

(ii) For all initial states x0, z0 and v0 the regulation error
e(t) = y(t)− yref (t) decays to zero as t →∞;
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Theorem (Characterization of solvability of the ORP)
Assume the controller (G1,G2,K ) stabilizes the closed-loop system
strongly and that the Sylvester equation

ΣS = AeΣ + Be

has a bounded solution Σ.

Then the controller solves the ORP if and only if Σ satisfies

CeΣ + De = 0.
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The Idea of The Proof

If the Sylvester equation

ΣS = AeΣ + Be

has a bounded solution Σ, it can be used to express the
regulation error e(t)

If eAet is stable, then it turns out

e(t) −→ 0 ∀v0 ∈W ⇔ CeΣ + De = 0.
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The Sylvester Equation

Comments on the Sylvester equation

ΣS = AeΣ + Be (1)

for unbounded operator S (of the exosystem).

1 (FACT) the operator G1 (controller) must contain the
eigenvalues of S .

2 Operator S may have an infinite number of imaginary
eigenvalues.

3 In this case the operator Ae can not be exponentially stable
(i.e., ‖eAet‖ → 0 exponentially fast as t →∞)

4 ⇒ no general results on solvability of (1).
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The Sylvester Equation

Results on the Sylvester equation

ΣS = AeΣ + Be (1)

for unbounded operator S (of the exosystem).

Solvability for particular types of ∞-dimensional exosystems
S diagonal, block diagonal
S = iS0, where S0 self-adjoint operator.

Uniqueness for exosystems generating periodic and almost
periodic reference signals
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Other Types of Exosystems

S
yref (t)
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Further/Other Research Directions

S
yref (t)

A periodic exosystem

v̇(t) = S(t)v(t), v(0) = v0

yref (t) = F(t)v(t)

where S(·) and F(·) are periodic functions.

Leads to the use of theory of nonautonomous infinite-dimensional
systems and evolution families.
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Further/Other Research Directions

The closed-loop system becomes time-dependent

ẋe(t) = Ae(t)xe(t) + Be(t)u(t), xe(0) = xe0.

The state can be expressed using the strongly continuous evolution
family Ue(t, s) as

xe(t) = Ue(t, 0)xe0 +
∫ t

0
Ue(t, s)Be(s)u(s)ds.

L. Paunonen Control of infinite-dimensional systems



Introduction
Selected Results on The ORP

Conclusion
Other Research Directions
A Recap

Further/Other Research Directions

The closed-loop system becomes time-dependent

ẋe(t) = Ae(t)xe(t) + Be(t)u(t), xe(0) = xe0.

The Sylvester equation ΣS = AeΣ + Be in the theory is replaced
by an infinite-dimensional Sylvester differential equation

Σ̇(t) + Σ(t)S(t) = Ae(t)Σ(t) + Be(t).
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In This Presentation

Output regulation theory for infinite-dimensional systems

Comments on the main mathematical tools

Solvability of the associated Sylvester equations
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