On Perturbation of Strongly Stable Riesz-Spectral Operators

Lassi Paunonen Department of Mathematics Tampere University of Technology

January 5th, 2010

Abstract Cauchy Problem

Consider an abstract differential equation

$$\dot{x}(t) = Ax(t), \qquad x(0) = x_0 \in X$$
 (ACP)

on a Hilbert space X, where $A : \mathcal{D}(A) \subset X \to X$ is linear.

Main Problem Motivation

Abstract Cauchy Problem

Consider an abstract differential equation

$$\dot{x}(t) = Ax(t), \qquad x(0) = x_0 \in X$$
 (ACP)

on a Hilbert space X, where $A : \mathcal{D}(A) \subset X \to X$ is linear. If A is bounded:

$$x(t) = e^{At}x_0 = \sum_{n=0}^{\infty} \frac{t^n A^n x_0}{n!}$$

Main Problem Motivation

Abstract Cauchy Problem

Consider an abstract differential equation

$$\dot{x}(t) = Ax(t), \qquad x(0) = x_0 \in X$$
 (ACP)

on a Hilbert space X, where $A : \mathcal{D}(A) \subset X \to X$ is linear. If A is bounded:

$$x(t) = e^{At}x_0 = \sum_{n=0}^{\infty} \frac{t^n A^n x_0}{n!}$$

If A generates a strongly continuous semigroup T(t):

$$x(t) = T(t)x_0.$$

Main Problem Motivation

Strongly Continuous Semigroup

Definition

A family $(T(t))_{t\geq 0} \subset \mathcal{L}(X)$ is a strongly continuous semigroup if

- $\bullet T(0) = I$
- $\ \ \, {\bf @} \ \ T(s+t)=T(s)T(t) \ {\rm for \ all} \ s,t\geq 0$

 $\ \, { { o } } \ \, T(\cdot) \ \, { is strongly continuous at } t=0, \ \, { i.e. } \ \,$

$$\lim_{t \to 0+} \|T(t)x - x\| = 0 \qquad \forall x \in X.$$

Main Problem Motivation

Strongly Continuous Semigroup

Definition

A family $(T(t))_{t\geq 0}\subset \mathcal{L}(X)$ is a strongly continuous semigroup if

- $\bullet T(0) = I$
- $\label{eq:constraint} {\bf @} \ T(s+t) = T(s)T(t) \mbox{ for all } s,t \geq 0$
- $\ \, { { o } } \ \, T(\cdot) \ \, { is strongly continuous at } t=0, \ \, { i.e. } \ \,$

$$\lim_{t \to 0+} \|T(t)x - x\| = 0 \qquad \forall x \in X.$$

Definition

Generator of a semigroup is a linear operator $A: \mathcal{D}(A) \subset X \to X$

$$Ax = \lim_{t \to 0+} \frac{T(t)x - x}{t}, \quad \mathcal{D}(A) = \big\{ \, x \ \big| \ \lim_{t \to 0+} \frac{T(t)x - x}{t} \text{ exists} \, \big\}$$

Main Problem Motivation

Stability of Solutions

The semigroup is called *strongly stable* if for all $x_0 \in X$

 $\|T(t)x_0\|\to 0\qquad \text{as}\quad t\to\infty,$

i.e. the sol's of (ACP) satisfy $||x(t)|| \to 0$ as $t \to \infty$.

Main Problem Motivation

Stability of Solutions

The semigroup is called *strongly stable* if for all $x_0 \in X$

$$\|T(t)x_0\| \to 0 \qquad \text{as} \quad t \to \infty,$$

i.e. the sol's of (ACP) satisfy $||x(t)|| \to 0$ as $t \to \infty$.

Lemma (Sufficient condition for strong stability)

•
$$\sigma(A) \subset \mathbb{C}^-$$
 (open left half-plane of \mathbb{C});

Main Problem Motivation

Perturbed Abstract Cauchy Problem

Consider the abstract differential equation

$$\dot{\tilde{x}}(t) = (A+B)\tilde{x}(t), \qquad \tilde{x}(0) = \tilde{x}_0 \in X.$$
 (pACP)

where B is a bounded linear operator on X.

Perturbation B can represent modelling error, uncertainty etc.

Main Problem Motivation

Main Problem

Problem

Assume

A: D(A) ⊂ X → X generates a strongly stable C₀-semigroup
B ∈ L(X).

Main Problem Motivation

Main Problem

Problem

Assume

A: D(A) ⊂ X → X generates a strongly stable C₀-semigroup
B ∈ L(X).

When is the C_0 -semigroup generated by A + B strongly stable?

Main Problem Motivation

Problem (Assumptions)

•
$$A = \sum_{k \in \mathbb{Z}} \lambda_k \langle \cdot, \phi_k \rangle \phi_k$$
, $\mathcal{D}(A) = \left\{ x \mid \sum_{k \in \mathbb{Z}} |\lambda_k|^2 |\langle x, \phi_k \rangle|^2 < \infty \right\}$

•
$$B = \langle \cdot, g \rangle b \in \mathcal{L}(X).$$

Main Problem Motivation

Problem (Assumptions)

•
$$A = \sum_{k \in \mathbb{Z}} \lambda_k \langle \cdot, \phi_k \rangle \phi_k$$
, $\mathcal{D}(A) = \left\{ x \mid \sum_{k \in \mathbb{Z}} |\lambda_k|^2 |\langle x, \phi_k \rangle|^2 < \infty \right\}$

•
$$B = \langle \cdot, g \rangle b \in \mathcal{L}(X).$$

Determine sets $M, N \subset X$ such that if $b \in M$ and $g \in N$, then (a) $\sigma(A + \langle \cdot, g \rangle b) \subset \mathbb{C}^-$ (b) $A + \langle \cdot, g \rangle b$ generates a strongly stable C_0 -semigroup.

Main Problem Motivation

Asymptotic behaviour of $\sigma(A)$

Assumption (Geometric assumption on $\sigma(A)$)

There exist constants $c, \alpha > 0$ and $y_0 > 0$ such that

$$\operatorname{Re} \lambda_k \leq -\frac{c}{|\operatorname{Im} \lambda_k|^{\alpha}} \quad \text{if} \quad |\operatorname{Im} \lambda_k| \geq y_0$$

Main Problem Motivation

Motivation

<u>Robust Output Regulation</u>: Strong stabilization leads to an operator with spectrum approaching $i\mathbb{R}$ asymptotically.

Robustness properties?

Main Results

Definition

For $\beta \geq 0$ define a Hilbert space $(M_{\beta}, \|\cdot\|_{\beta})$ such that

$$M_{\beta} = \left\{ x \in X \mid \sum_{k \in \mathbb{Z}} |\lambda_k|^{2\beta} |\langle x, \phi_k \rangle|^2 < \infty \right\}$$
$$\|\cdot\|_{\beta} = \left(\sum_{k \in \mathbb{Z}} |\lambda_k|^{2\beta} |\langle \cdot, \phi_k \rangle|^2 \right)^{\frac{1}{2}}$$

Actually $M_{\beta} = \mathcal{D}((-A)^{\beta})$ and $||x||_{\beta} = ||(-A)^{\beta}x||$ since -A is sectorial.

Perturbation of the Spectrum Uniform Boundedness Semigroup Stability

Perturbation of the Spectrum

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$. If $\beta + \gamma \ge \alpha$, there exists $\delta > 0$ such that

 $\sigma(A + \langle \cdot, g \rangle b) \subset \mathbb{C}^-$

whenever $b \in M_{\beta}$ and $g \in M_{\gamma}$ with $||b||_{\beta} < \delta$ and $||g||_{\gamma} < \delta$.

Perturbation of the Spectrum

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$. If $\beta + \gamma \ge \alpha$, there exists $\delta > 0$ such that

$$\sigma(A + \langle \cdot, g \rangle b) \subset \mathbb{C}^-$$

whenever $b \in M_{\beta}$ and $g \in M_{\gamma}$ with $\|b\|_{\beta} < \delta$ and $\|g\|_{\gamma} < \delta$.

Proof.

Using the first Weinstein-Aronszajn formula.

Perturbation of the Spectrum Uniform Boundedness Semigroup Stability

Corollary

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$. If $n, m \in \mathbb{N}_0$ are such that $n + m \ge \alpha$, then there exists $\delta > 0$ such that

$$\sigma(A + \langle \cdot, g \rangle b) \subset \mathbb{C}^-$$

whenever $b \in \mathcal{D}(A^n)$ and $g \in \mathcal{D}(A^m)$ with $||A^nb|| < \delta$ and $||A^mg|| < \delta$.

Preservation of Uniform Boundedness

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$.

Denote by $T_B(t)$ the C_0 -semigroup generated by $A + \langle \cdot, g \rangle b$. There exists $\delta > 0$ such that

- $T_B(t)$ is uniformly bounded whenever $b \in M_{\alpha}$ with $||b||_{\alpha} < \delta$;
- $T_B(t)$ is uniformly bounded whenever $g \in M_{\alpha}$ with $||g||_{\alpha} < \delta$.

Preservation of Strong Stability

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$.

If $\beta \geq \alpha$ or $\gamma \geq \alpha$, there exists $\delta > 0$ such that

 $A+\langle \cdot,g\rangle b$

generates a strongly stable C_0 -semigroup whenever $b \in M_\beta$ and $g \in M_\gamma$ with $\|b\|_\beta < \delta$ and $\|g\|_\gamma < \delta$.

Extensions

- $A = \sum \lambda_k \langle \cdot, \psi_k \rangle \phi_k$ is a Riesz spectral operator
 - Straightforward
 - Separate spaces $b \in M_{\beta}$ and $g \in N_{\gamma}$ corresponding to $\{\psi_k\}$ and $\{\phi_k\}$, respectively.

Extensions

- $A = \sum \lambda_k \langle \cdot, \psi_k \rangle \phi_k$ is a Riesz spectral operator
 - Straightforward
 - Separate spaces $b \in M_{\beta}$ and $g \in N_{\gamma}$ corresponding to $\{\psi_k\}$ and $\{\phi_k\}$, respectively.
- A general finite-rank perturbation $B = \sum_{j=1}^m \langle \cdot, g_j \rangle b_j$
 - Using Weinstein-Aronszajn determinant

Strongly Stabilized Wave Equation

Consider a wave equation on (0,1):

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t)$$
$$w(0,t) = w(1,t) = 0$$

where $b_0(z) = \sqrt{3}(1-z)$.

Strongly Stabilized Wave Equation

Consider a wave equation on (0,1):

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t)$$
$$w(0,t) = w(1,t) = 0$$

where $b_0(z) = \sqrt{3}(1-z)$.

Define
$$x = \begin{bmatrix} w \\ \frac{\partial w}{\partial t} \end{bmatrix}$$
 and $A_0 = -\frac{\partial^2}{\partial z^2}$ with domain
 $\mathcal{D}(A_0) = \{ w \in L^2(0,1) \mid w, w' \text{ abs. cont. } w'' \in L^2(0,1), w(0) = w(1) = 0 \}$

Linear system

$$\dot{x} = Ax + Bu, \qquad x(0) = x_0$$

on a Hilbert space $X=\mathcal{D}(A_0^{\frac{1}{2}})\times L^2(0,1)$ with

$$A = \begin{bmatrix} 0 & I \\ \frac{\partial^2}{\partial z^2} & 0 \end{bmatrix}, \qquad B = b = \begin{bmatrix} 0 \\ b_0 \end{bmatrix}.$$

Stabilization Perturbations

Strong Stabilization

Find feedback K such that A+BK is a Riesz-spectral operator with eigenvalues $\sigma(A+BK)=\{-\frac{\pi}{|n|^2}+in\pi\}_{\substack{n\in\mathbb{Z}\\n\neq 0}}$

Stabilization Perturbations

Geometric Assumption

The spectrum of A + BK satisfies the geometric assumption for

$$\alpha = 2$$
, $c = \pi^3$ and $y_0 = \pi$.

Perturbations

Consider perturbations

$$rac{\partial^2 w}{\partial t^2}(z,t) = rac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t) + d_0(z)\left(\langle w,g_1
angle_{L^2} + \langle rac{\partial w}{\partial t},g_2
angle_{L^2}
ight)$$

where $d_0, g_2 \in \mathcal{D}(A_0)$ (abs. cont. etc.) and $g_1 \in L^2(0, 1)$.

Perturbations

Consider perturbations

$$\begin{aligned} \frac{\partial^2 w}{\partial t^2}(z,t) &= \frac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t) + d_0(z) \left(\langle w, g_1 \rangle_{L^2} + \langle \frac{\partial w}{\partial t}, g_2 \rangle_{L^2} \right) \\ \text{where } d_0, g_2 \in \mathcal{D}(A_0) \text{ (abs. cont. etc.) and } g_1 \in L^2(0,1). \end{aligned}$$

$$\begin{aligned} \text{Then } \sigma(A + BK + \langle \cdot, g \rangle d) \subset \mathbb{C}^- \text{ whenever} \\ 13 \| d_0 \|_{L^2} + \| d'_0 \|_{L^2} < 1 \end{aligned}$$

$$\|g_1\|_{L^2}^2 + \|g_2\|_{L^2}^2 < \frac{\pi^2}{35^2}$$
$$\|g_1\|_{L^2}^2 + \pi^2 \|g_2\|_{L^2}^2 < \frac{\pi^2}{35^2}$$

Stabilization Perturbations

Conclusions

- Conditions for the preservation of the property $\sigma(A)\subset \mathbb{C}^-$ and the strong stability of a semigroup
- Application to a wave equation

Thank You!