Internal Model Principle for Distributed Parameter Systems

L. Paunonen and S. Pohjolainen Tampere University of Technology, Finland lassi.paunonen@tut.fi

24th August 2009 European Control Conference '09

2 Problem Description & Main Results

The Internal Model Principle

Theorem (Francis & Wonham, 1970's)

A stabilizing feedback controller solves the robust output regulation problem if and only if it incorporates a suitably reduplicated model of the signal generator.

Feedback Controller

L. Paunonen Internal Model Principle for Distributed Parameter Systems

The p-Copy Internal Model Principle

Introduction Robust Output Regulation Problem Problem Description & Main Results The Signal Generator Outline of the Proof Conclusions Main Result: The Internal Model Principle

Main Problem

Problem

Generalize the p-copy Internal Model Principle for distributed parameter systems and infinite-dimensional signal generators.

Introduction Robust Output Regulation Problem Problem Description & Main Results The Signal Generator Outline of the Proof Conclusions Main Result: The Internal Model Principle

Main Problem

Problem

Generalize the p-copy Internal Model Principle for distributed parameter systems and infinite-dimensional signal generators.

- (i) Infinite-dimensional signal generator;
- (ii) Definition of the p-copy Internal Model;
- (iii) The p-copy Internal Model Principle.

Introduction Robust Output Regulation Problem Problem Description & Main Results The Signal Generator Outline of the Proof Conclusions Main Result: The Internal Model Principle

Earlier Work

- B. A. Francis & W. M. Wonham The finite-dimensional Internal Model Principle, 1970's
- M. K. P. Bhat Extension for distributed parameter systems, 1976
- E. Immonen Partial extension for infinite-dimensional signal generators, 2006

Introduction Robust Output Regulation Problem Problem Description & Main Results Outline of the Proof Conclusions Main Result: The Internal Model Principle

The System

System $\Sigma(A, B, C, D, E, F)$ on X with regulation error $e \in Y$

$$\dot{x} = Ax + Bu + Ev, \quad x(0) = x_0$$
$$e = Cx + Du + Fv$$

The signal generator on W

$$\dot{v} = Sv, \quad v(0) = v_0,$$

The error feedback controller $(\mathcal{G}_1, \mathcal{G}_2, K)$ on Z

$$\dot{z} = \mathcal{G}_1 z + \mathcal{G}_2 e, \quad z(0) = z_0$$

 $u = Kz$

Introduction Robust Output Regulation Problem Problem Description & Main Results Outline of the Proof Conclusions Main Result: The Internal Model Principle

The Closed-Loop System

The closed-loop system with state $(x(t),z(t))^T \in X \times Z$ is given by

$$\dot{x}_e = A_e x_e + B_e v, \qquad x_e(0) = (x_0, z_0)^T$$
$$e = C_e x_e + D_e v$$

where $C_e = \begin{bmatrix} C & DK \end{bmatrix}$, $D_e = F$,

$$A_e = \begin{bmatrix} A & BK \\ \mathcal{G}_2 C & \mathcal{G}_1 + \mathcal{G}_2 DK \end{bmatrix} \quad \text{ and } \quad B_e = \begin{bmatrix} E \\ \mathcal{G}_2 F \end{bmatrix}.$$

Robust Output Regulation Problem The Signal Generator p-Copy Internal Model Main Result: The Internal Model Principle

Robust Output Regulation Problem

Problem (Robust Output Regulation Problem)

Choose controller parameters $(\mathcal{G}_1, \mathcal{G}_2, K)$ such that

(i) The closed-loop system operator A_e generates a strongly stable C_0 -semigroup on $X \times Z$;

Robust Output Regulation Problem The Signal Generator p-Copy Internal Model Main Result: The Internal Model Principle

Robust Output Regulation Problem

Problem (Robust Output Regulation Problem)

Choose controller parameters $(\mathcal{G}_1, \mathcal{G}_2, K)$ such that

- (i) The closed-loop system operator A_e generates a strongly stable C₀-semigroup on X × Z;
- (ii) For all initial states x_0, z_0 and v_0 the regulation error e(t) decays to zero as $t \to \infty$;

Robust Output Regulation Problem The Signal Generator p-Copy Internal Model Main Result: The Internal Model Principle

Robust Output Regulation Problem

Problem (Robust Output Regulation Problem)

Choose controller parameters $(\mathcal{G}_1, \mathcal{G}_2, K)$ such that

- (i) The closed-loop system operator A_e generates a strongly stable C₀-semigroup on X × Z;
- (ii) For all initial states x_0, z_0 and v_0 the regulation error e(t) decays to zero as $t \to \infty$;
- (iii) Property (ii) is robust with respect to a class of perturbations preserving the strong stability of the closed-loop system.

Introduction Problem Description & Main Results Outline of the Proof Conclusions Main Result: The Internal Model Princip

A Signal Generator with Infinite Number of Jordan Blocks

$$\begin{bmatrix} i\omega_{-1} & 1 & 0 \\ & i\omega_{-1} & 1 \\ & & i\omega_{-1} \end{bmatrix}$$

$$\begin{bmatrix} i\omega_0 & 1 \\ & & i\omega_0 \end{bmatrix}$$

$$\begin{bmatrix} i\omega_1 & 1 & 0 \\ & & i\omega_1 & 1 \\ & & & i\omega_1 \end{bmatrix}$$

Introduction Robust Output Regulation Problem Description & Main Results Outline of the Proof Conclusions Main Result: The Internal Model Principle

The System Operator

Define

$$W = \overline{\operatorname{span}} \{ \phi_k^l \mid k \in \mathbb{Z}, \ l = 1, \dots, n_k \}, \qquad \langle \phi_k^l, \phi_n^m \rangle = \delta_{kn} \delta_{lm}.$$

Let $\{i\omega_k\}_{k\in\mathbb{Z}}\subset i\mathbb{R}$ and define "Jordan blocks" $S_k\in\mathcal{L}(W)$ as

$$S_k = i\omega_k \langle \cdot, \phi_k^1 \rangle \phi_k^1 + \sum_{l=2}^{n_k} \langle \cdot, \phi_k^l \rangle \left(i\omega_k \phi_k^l + \phi_k^{l-1} \right)$$

The System Operator

Define

$$W = \overline{\operatorname{span}} \{ \phi_k^l \mid k \in \mathbb{Z}, \ l = 1, \dots, n_k \}, \qquad \langle \phi_k^l, \phi_n^m \rangle = \delta_{kn} \delta_{lm}.$$

Let $\{i\omega_k\}_{k\in\mathbb{Z}}\subset i\mathbb{R}$ and define "Jordan blocks" $S_k\in\mathcal{L}(W)$ as

$$S_k = i\omega_k \langle \cdot, \phi_k^1 \rangle \phi_k^1 + \sum_{l=2}^{n_k} \langle \cdot, \phi_k^l \rangle \left(i\omega_k \phi_k^l + \phi_k^{l-1} \right)$$

Define the system operator of the signal generator as

$$Sv = \sum_{k \in \mathbb{Z}} S_k v, \quad \mathcal{D}(S) = \big\{ v \in W \mid \sum_{k \in \mathbb{Z}} \|S_k v\|^2 < \infty \big\}.$$

Introduction Robust Output Regulation Problem Problem Description & Main Results Outline of the Proof Conclusions Main Result: The Internal Model Principle

Finite-Dimensional p-Copy Internal Model

Let $p = \dim Y = \operatorname{dim} p$ of the output space

In classical finite-dimensional control theory:

Definition (p-Copy Internal Model)

A controller $(\mathcal{G}_1, \mathcal{G}_2)$ incorporates a *p*-Copy Internal Model of the exosystem S if

whenever $s\in\sigma(S)$ is an eigenvalue of S such that d(s) is the dimension of the largest Jordan block associated to s, then

- $s \in \sigma(\mathcal{G}_1)$ and
- G_1 has at least p Jordan blocks of dimension greater or equal to d(s) associated to s.

Infinite-Dimensional p-Copy Internal Model

For our infinite-dimensional exosystem $\dot{v} = Sv$:

 $\sigma(S)=\sigma_p(S)=\{i\omega_k\}_k$

 $d_k :=$ dimension of the largest Jordan block S_k associated to $i\omega_k$.

Definition (p-Copy Internal Model)

A controller $(\mathcal{G}_1, \mathcal{G}_2)$ incorporates a *p*-Copy Internal Model of the exosystem S if for all $k \in \mathbb{Z}$

- $i\omega_k \in \sigma_p(\mathcal{G}_1)$ and
- G₁ has at least p independent Jordan chains of length greater or equal to d_k associated to the eigenvalue iω_k.

The Internal Model Principle

Theorem (p-Copy Internal Model Principle)

Let dim $Y < \infty$ and $\sigma(A_e) \cap \sigma(S) = \emptyset$. The controller $(\mathcal{G}_1, \mathcal{G}_2)$ solves the robust output regulation problem if and only if for all $k \in \mathbb{Z}$ we have

- $i\omega_k \in \sigma_p(\mathcal{G}_1)$
- \mathcal{G}_1 has at least dim Y independent Jordan chains of length greater or equal to d_k associated to the eigenvalue $i\omega_k$.

Introduction Step 1: Internal Model Structure Problem Description & Main Results Step 2: *G*-Conditions Outline of the Proof Conclusions Summary

Outline of the Proof

Step 1: Internal Model Structure Step 2: *G*-Conditions Step 3: p-Copy Internal Model Summary

Internal Model Structure

Theorem (E. Immonen)

The controller $(\mathcal{G}_1, \mathcal{G}_2)$ solves the robust output regulation problem if and only if it has Internal Model Structure, i.e.

$$\forall \Lambda, \Delta : \qquad \Lambda S = \mathcal{G}_1 \Lambda + \mathcal{G}_2 \Delta \quad \Rightarrow \quad \Delta = 0, \tag{IMS}$$

where $\Lambda \in \mathcal{L}(W, Z)$ is such that $\Lambda(\mathcal{D}(S)) \subset \mathcal{D}(\mathcal{G}_1)$ and $\Delta \in \mathcal{L}(W, Y)$.

$\mathcal{G}\text{-}\mathsf{Conditions}$

Theorem (LP, S. Pohjolainen)

Let $\sigma(A_e) \cap \sigma(S) = \emptyset$. The controller $(\mathcal{G}_1, \mathcal{G}_2)$ has Internal Model Structure if and only if the following \mathcal{G} -conditions are satisfied:

$$\mathcal{R}(i\omega_k I - \mathcal{G}_1) \cap \mathcal{R}(\mathcal{G}_2) = \{0\}, \qquad \forall k \in \mathbb{Z}$$
$$\mathcal{N}(\mathcal{G}_2) = \{0\}$$

and

$$\mathcal{N}(i\omega_k I - \mathcal{G}_1)^{d_k - 1} \subset \mathcal{R}(i\omega_k I - \mathcal{G}_1) \quad \forall k \in \mathbb{Z}.$$

Introduction Step 1: In Problem Description & Main Results Step 2: Q Outline of the Proof Step 3: p Conclusions Summary

Step 1: Internal Model Structure Step 2: *G*-Conditions Step 3: p-Copy Internal Model Summary

p-Copy Internal Model

Theorem (LP, S. Pohjolainen)

Let dim $Y < \infty$ and $\sigma(A_e) \cap \sigma(S) = \emptyset$. The controller $(\mathcal{G}_1, \mathcal{G}_2)$ satisfies the \mathcal{G} -conditions if and only if for all $k \in \mathbb{Z}$ we have

- $i\omega_k \in \sigma_p(\mathcal{G}_1)$
- G₁ has at least dim Y independent Jordan chains of length greater or equal to d_k associated to the eigenvalue iω_k.

Conclusions

In this presentation:

• Generalization of the classical p-copy Internal Model Principle of Francis and Wonham for distributed parameter systems.

Remarks:

• The G-Conditions generalize the p-copy Internal Model and are meaninful in the case $\dim Y = \infty$.

Future research:

• A nonlinear signal generator $\dot{w} = s(w)$.