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Main Objectives
Problem
Consider di�erent types of coupled PDE systems from the point

of view of feedback structures and control theory.

Focus on polynomial/non-uniform stability, where

ÎT (t)xÎ ≥ 1
t—

, x œ D(A), t Ø t0.
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Consider di�erent types of coupled PDE systems from the point

of view of feedback structures and control theory.

Focus on polynomial/non-uniform stability, where

ÎT (t)xÎ ≥ 1
t—

, x œ D(A), t Ø t0.

Motivation:

Coupling of stable and unstable PDEs and ODEs often leads
to rational decay of energy, i.e., polynomial stability.

Main results:

New stability results for coupled PDEs.
Disclaimer: Won’t solve all problems (just the important ones)
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Passive Feedback Structures

Coupled PDE-PDE and PDE-ODE systems appear in models of
Fluid-structure interactions
Thermo-elasticity
Mechanical systems, e.g., beams with tip masses
Magnetohydrodynamics
Acoustics
Networks of 1D PDEs of mixed types (wave/heat/beam/
transport) with coupling BCs at vertices.

Couplings may either be
Through the boundary (Fluid-structure, acoustics), or
inside a shared domain (Thermo-elasticity, MHD)
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Passive Feedback Structures

Outline

(1) “Feedback structures” in coupled PDE systems
Motivating examples

(2) Basic properties and conversion
Examples on how to identify feedback structures

(3) Benefits
General tools for proving non-uniform stability of coupled
PDEs.
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Part I
Motivating examples
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Example class: Coupled Wave–Heat Systems

Models for fluid–structure and heat–structure interactions:

ˆ2v

ˆt2 (x, t) = �v(x, t)

Ï
coupling BCs

Ï
ˆw

ˆt
(x, t) = �w(x, t)

heat equation

wave eqn

References: Avalos & Triggiani, Duyckaerts, Mercier, Nicaise, Ammari,
Zhang & Zuazua, Guo, Ng & Seifert, and many others.

L. Paunonen Stability of Coupled PDEs



Introduction

Main Results

Applications and Discussion

Introduction

Motivating Examples

Passive Feedback Structures

1D Wave–Heat Model
Y
____]

____[

vtt(›, t) = v››(›, t), ≠1 < › < 0, t > 0,

wt(›, t) = w››(›, t), 0 < › < 1, t > 0,

v›(0, t) = w›(0, t), vt(0, t) = w(0, t), v›(≠1, t) = w(1, t) = 0

wave
)

heat

v
vt
w

≠1 1

The wave equation The heat equation
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1D Wave–Heat Model

Y
__]

__[

vtt(›, t) = v››(›, t), › œ (≠1, 0), t > 0,

wt(›, t) = w››(›, t), › œ (0, 1), t > 0,

v›(0, t) = w›(0, t), vt(0, t) = w(0, t), t > 0,

Total energy:

E(t) = 1
2

⁄ 0

≠1
|u›(›, t)|2 + |ut(›, t)|2 d› + 1

2

⁄ 1

0
|w(›, t)|2 d›

Theorem (Zhang–Zuazua ’04, Batty–P–Seifert ’16)
Total energy E(t) of every classical solution decays at the rate t≠4

.
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback

structure
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback

structure

System 1

System 2
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback

structure

System 1

System 2

Unstable

Stable
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Inputs and Outputs

inputs/outputs

wave equation

heat equation

inputs/outputs

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)
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Problem
Use the properties of the two systems to deduce stability of the

coupled PDE.

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)

Unstable

Stable

Benefits:

“Divide and conquer”
Reduce to well-known parts
Modularity
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“Impedance Passive” Systems
We focus on systems of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 œ X

y(t) = Búx(t)

where X is Hilbert, A generates a contraction semigroup, and
B œ L(U, V ú) for some suitable spaces U and V ú ´ X.

Such systems are “impedance passive”, which in particular means
they have “no internal sources of energy”,

d

dt
Îx(t)Î2 Æ 2 ReÈu(t), y(t)ÍY

This class contains models with “collocated” input and output
Examples: Many mechanical systems, RLC circuits, . . .
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Feedback Theory of Passive Systems

Property: “Power-preserving interconnection” preserves passivity!

≠

y1u1

u2y2

System 1

System 2

∆ Closed-loop semigroup contractive on Hilbert X1 ◊ X2.
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Coupled Passive Systems
If for k = 1, 2 we let

ẋk(t) = Akxk(t) + Bkuk(t), xk(0) œ Xk

yk(t) = Bú
kxk(t),

then the “power-preserving interconnection” leads to

d

dt

C
x1(t)
x2(t)

D

=
C

A1 B1Bú
2

≠B2Bú
1 A2

D

¸ ˚˙ ˝
=: A

C
x1(t)
x2(t)

D

Question
How to choose U , B1, and B2?
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The Feedback Structure Based on the Coupling

Coupling BCs: Power-preserving Feedback:

I
vt(0, t) = w(0, t)
v›(0, t) = w›(0, t)

vs. u1(t) = y2(t)
u2(t) = ≠y1(t)

<
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Coupling BCs: Power-preserving Feedback:

I
–vt(0, t) = –w(0, t)
—v›(0, t) = —w›(0, t)

Ω≠≠≠≠≠≠≠æ
Ω≠≠≠≠≠≠≠æ
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Example: 1D Wave-Heat — Open-Loop Splitting

Wave system on (≠1, 0):

vtt(›, t) = v››(›, t)
u1(t) = vt(0, t)
y1(t) = v›(0, t)

Unstable

Heat system on (0, 1):

wt(›, t) = w››(›, t)
u2(t) = ≠w›(0, t)
y2(t) = w(0, t)

Stable

The systems are impedance passive. We have U = C and B1 and
B2 are unbounded.
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Networks of Wave and Heat Equations

Wave equations and heat equations
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Networks of Wave and Heat Equations

Power-preserving interconnection Ωæ Kircho�-type couplings
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Part II
Stability Analysis
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Polynomial and Non-Uniform Stability

Theorem (Borichev & Tomilov ’10)
Let T (t) be a uniformly bounded C0-semigroup on a Hilbert space

X. Let A be the generator of T (t) and ‡(A) fl iR = ÿ.

For any constant – > 0, the following are equivalent:

ÎT (t)x0Î Æ M

t1/–
ÎAx0Î for some M > 0

Î(is ≠ A)≠1Î Æ MR(1 + |s|–), for some MR > 0

General: Batty & Duyckaerts ’08, Rozendaal, Seifert & Stahn ’17.

Application: E(t) ≥ ÎT (t)x0Î2 for many PDE systems.
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Polynomial and Non-Uniform Stability

Since our coupled systems are contractive by default,

“Polynomial stability only requires a resolvent estimate”

Î(is ≠ A)≠1Î Æ M(s), s œ R
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Problem
Derive a resolvent estimate of the form Î(is ≠ A)≠1Î Æ M(s) for

A :=
C

A1 B1Bú
2

≠B2Bú
1 A2

D

in terms of the properties of

(A1, B1, Bú
1) [Unstable]

(A2, B2, Bú
2) [Exp. Stable]

Assumption
A1 is skew-adjoint and has compact resolvent.

A2 generates an exponentially stable semigroup.
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Problem
Derive a resolvent estimate for

A :=
C

A1 B1Bú
2

≠B2Bú
1 A2

D

(A1, B1, Bú
1) [Unstable] and (A2, B2, Bú

2) [Exp. Stable]

Overview of results:

Î(is ≠ A)≠1Î . M1(|s|)M2(|s|)

M1(·) from “observability properties” of (Bú
1 , A1) (next slide)

When P2(is) = Bú
2(is ≠ A2)≠1B2 is the “transfer function”,

M2(s) ≥ Î
#
Re P2(is)

$≠1Î
3

M2(s) ≥ 1
Re P2(is)

4
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Observability-Type Conditions on (Bú
1 , A1)

Goal
Î(is ≠ A)≠1Î . M1(|s|)M2(|s|)

Assumed: ‡p(A1) = {isk} has no finite accumulation points and

A1 =
ÿ

kœZ
iskÈ·, „kÍ„k.

Proposition (Simple version)
If dgap := infk ”=l|sk ≠ sl| > 0 and if there exists “ : R æ (0, 1) s.t.

ÎBú
1„kÎ Ø “(sk)Î„kÎ, ’k œ Z,

then M1(s) . “(s)≠2
.

Classical: (Bú
1 , A1) is exactly observable i� supkÎBú

1„kÎ > 0.
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Observability-Type Conditions on (Bú
1 , A1)

A1 has spectral projections P(a,b) (for i(a, b) µ iR)

(ú) ÎBú
1xÎ Ø “(|s|)ÎxÎ, x œ R(P(s≠”(|s|),s+”(|s|))), s œ R

for some non-increasing ”, “ : R+ æ (0, 1).

Proposition (Full version)
If (ú) holds, then M1(s) . ”(s)≠2“(s)≠2

.

‡(A1)

”(|s|)
is

iR
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Main Result
Consider T (t) generated by A, where

A :=
C

A1 B1Bú
2

≠B2Bú
1 A2

D

, P2(⁄) = Bú
2(⁄ ≠ A2)≠1B2

Theorem (P. 2019)
Let ”, “, ÷ : R+ æ (0, 1) be decreasing so that

ÎBú
1xÎ Ø “(|s|)ÎxÎ, x œ R(P(s≠”(|s|),s+”(|s|)))

Re P2(is) Ø ÷(|s|)I for s ¥ sk.

Then

Î(is ≠ A)≠1Î . 1
”(|s|)2“(|s|)2÷(|s|) , s œ R.
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Important Special Case
Consider T (t) generated by

A :=
C

A1 B1Bú
2

≠B2Bú
1 A2

D

, P2(⁄) = Bú
2(⁄ ≠ A2)≠1B2

Proposition
Assume

(Bú
1 , A1) is exactly observable (… A1 ≠ B1Bú

1 exp. stable)
there exists – Ø 0 such that

Re P2(is) & 1
1 + |s|– I

Then T (t) is polynomially stable, Î(is ≠ A)≠1Î . 1 + |s|–,

ÎT (t)x0Î Æ M

t1/–
ÎAx0Î, x0 œ D(A).
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Comments:

Philosophy in line with “Dissipativity Theory” of Willems:
Deducing closed-loop properties from properties of component

systems.

Theorem requires some admissibility and well-posedness
assumptions (swept under the carpet here). Limits 2D-nD BC.

Optimality

Obtained rate is not always optimal, especially if A1 has no
spectral gap (2D, nD waves)
A nice way of getting (possibly) suboptimal rates easily.

L. Paunonen Stability of Coupled PDEs
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Example: 1D Wave-Heat System

Wave system on (≠1, 0):

fl(›)vtt(›, t) = (T (›)v›)›(›, t)
u1(t) = vt(0, t)
y1(t) = T (0)v›(0, t)

Heat system on (0, 1):

wt(›, t) = w››(›, t)
u2(t) = ≠w›(0, t)
y2(t) = w(0, t)

A1 skew-adjoint, (Bú
1 , A1) exactly observable.

P2(is) = Bú
2(is ≠ A2)≠1B2 satisfies Re P2(is) ≥ |s|≠1/2.

Thus the closed-loop system is polynomially stable,

Î(is ≠ A)≠1Î . 1 + |s|1/2 and ÎT (t)x0Î Æ M

t2 ÎAx0Î.

A mild generalisation of [Zhang–Zuazua, Batty–P–Seifert].
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Example: Wave equation with an Acoustic BC

fl(›)vtt(›, t) = (T (›)v›(›, t))›, ≠1 < › < 0,

m”tt(t) = ≠d”t(t) ≠ k”(t) ≠ —vt(0, t)
v›(0, t) = ”t(t), vt(≠1, t) = 0.

L. Paunonen Stability of Coupled PDEs
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1D Wave with an Acoustic Boundary Condition

Y
__]

__[

fl(›)vtt(›, t) = (T (›)v›(›, t))›, ≠1 < › < 0,

m”tt(t) = ≠k”(t) ≠ d”t(t) ≠ vt(0, t)
v›(0, t) = ”t(t), vt(≠1, t) = 0.

≠1

The wave equation Mass–spring–damper

m
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Example: Wave equation with an Acoustic BC
Wave system on (≠1, 0):

fl(›)vtt(›, t) = (T (›)v›)›(›, t)
u1(t) = T (0)v›(0, t)
y1(t) = vt(0, t)

The ODE part

m”̈(t) + k”(t) + d”̇(t) = —u2(t)
y2(t) = T (0)”̇(t).

A1 skew-adjoint, (Bú
1 , A1) exactly observable.

P2(is) = Bú
2(is ≠ A2)≠1B2 satisfies Re P2(is) ≥ s≠2.

Thus the closed-loop system is polynomially stable,

Î(is ≠ A)≠1Î . 1 + s2 and ÎT (t)x0Î Æ MÔ
t
ÎAx0Î.

Reproduces results of [Muños Rivera–Qin ’03, Abbas–Nicaise ’13]
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Result: Wave-Coleman-Gurtin System
Y
_____]

_____[

vtt(›, t) = v››(›, t), ≠1 < › < 0,

wt(›, t) = w››(›, t) +
⁄ Œ

0
g(s)w››(›, t ≠ s)ds, 0 < › < 1,

v›(0, t) = w›(0, t) +
⁄ Œ

0
g(s)w›(0, t ≠ s)ds, vt(0, t) = w(0, t)

wave
)

CG

v
vt
w

≠1 1

The wave equation The CG-system
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Result: Wave-Coleman-Gurtin System
Y
_____]

_____[

vtt(›, t) = v››(›, t), ≠1 < › < 0,

wt(›, t) = w››(›, t) +
⁄ Œ

0
g(s)w››(›, t ≠ s)ds, 0 < › < 1,

v›(0, t) = w›(0, t) +
⁄ Œ

0
g(s)w›(0, t ≠ s)ds, vt(0, t) = w(0, t)

Decomposition into two passive systems: Wave + CG
Analyse CG-part using the Dafermos history space formulation

Theorem (Dell’Oro–P–Seifert ’21)
Under a mild condition on the kernel g, we have Re P2(is) ≥ s≠1/2

and the coupled system is polynomially stable

Î(is ≠ A)≠1Î . 1 + |s|1/2
and ÎT (t)x0Î Æ M

t2 ÎAx0Î.
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Coupled PDEs on 2-Dimensional Domains

Comments on 2D wave-heat systems:
Studied in detail by Duyckaerts, Zhang–Zuazua,
Avalos–Lasiecka–Triggiani.
In the general results, the well-posedness conditions limit
applicability to boundary coupled systems in 2D (and nD),
but same principles hold.
The “observability” in the wave equation is related to the
Geometric Control Condition.
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2D Wave–Heat Systems

Ωæ
heat

wave heatwave

Optimal: – = 1 Optimal: – = 3

Polynomial stability:
Î(is ≠ A)≠1Î . 1 + |s|
[Avalos–Lasiecka–Triggiani 2016, . . . ]

Î(is ≠ A)≠1Î . 1 + |s|3

[Batty–P–Seifert 2019]
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Conclusions
In this presentation:

Discussion of coupled PDE and PDE-ODE systems from the
viewpoint of systems theory
General conditions for polynomial stability of coupled systems.
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