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Introduction
Problem
Study robust output regulation of linear PDE models.

linear PDE
u(t)

wdist(t)

y(t)

Output Regulation = Tracking + Disturbance Rejection:
Design a controller such that the output y(t) of the system
converges to a reference signal despite the disturbance wdist(t), i.e.,

‖y(t)− yref (t)‖ → 0, as t→∞

Robustness: The controller is required to tolerate uncertainty in
the parameters of the system.
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Applications

Applications of regulation for PDEs:
Temperature tracking control, e.g., in manufacturing processes
Tracking control of flexible robotic manipulators
Rejection of unwanted periodic noises or vibrations

Robustness:
Tolerance to the unavoidable uncertainty in models.
Allows reliable use of approximate controller parameters.
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Outline

Part I:
Introduction and background
General controller design methods

Part II:
Reduced-order controllers for parabolic PDEs
Regulation of thermal fluid flows
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The Reference and Disturbance Signals
The reference and disturbance signals are of the form

yref (t) =
q∑

k=0
ak cos(ωkt+ θk)

wdist(t) =
q∑

k=0
bk cos(ωkt+ ϕk)

with known frequencies 0 = ω0 < ω1 < · · · < ωq and unknown
amplitudes and phases.
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The Dynamic Error Feedback Controller

PC
yyref

wdist

ue

−

We consider a dynamic error feedback controller which is a (ideally
finite-dimensional) linear system.

Result
The Robust Output Regulation Problem is solvable if the system

is stabilizable and detectable
does not have transmission zeros at the frequencies ±iωk of
yref(t) and wdist(t).

L. Paunonen Robust Output Regulation for PDEs



Robust Output Regulation for PDEs
Reduced-Order Controllers

The Internal Model Principle
Controller Design

The Internal Model Principle

Pωkωk

yyref

wdist

ue

−

Theorem (Francis–Wonham, Davison 1970’s, . . . )
The following are equivalent:

The controller solves the robust output regulation problem.
Closed-loop system is stable and the controller has an internal
model of the frequencies {ωk}k of wdist(t) and yref(t).

“Internal Model”: For every k, the complex frequencies
±iωk must be eigenmodes of the controller dynamics with
at least p = dimY independent eigenvectors.
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Internal Model Based Controller Design

The robust output regulation problem can be solved in two parts:

Step 1◦ Include a suitable internal model into the controller

Step 2◦ Use the rest of the controller’s parameters to stabilize
the closed-loop system.

Internal model has fixed structure (easy), the closed-loop stability
can be achieved in several ways (often the main challenge).
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Historical Highlights Related to PDEs

Internal Model Principle (characterization of controllers) for PDEs:

Starting point: IMP for linear finite-dimensional systems
Francis–Wonham ’75, Davison ’76:

Extension to PDEs with distributed control and observation
Bhat ’76: Geometric approach, PhD with Koivo and Wonham
Immonen ’05–’07: Approach using Sylvester equations
P.–Pohjolainen ’10: The “classical” form of the IMP

Extension to PDEs with boundary control and observation
P. ’14, ’16: The class of Regular Linear Systems
Humaloja–Kurula–P. ’19: Boundary Control Systems

Frequency domain extensions of the IMP
Nett ’84, Yamamoto–Hara ’88, Vidyasagar ’88, Laakkonen ’13
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Developments: Internal Model based control design for PDEs
Classes of linear PDEs with distributed/boundary control

Pohjolainen ’83, Logemann–Townley ’97,
Hämäläinen–Pohjolainen ’00, ’06, ’10, Rebarber–Weiss ’03,
Boulite et. al. ’09, Harkort–Deutscher ’11, ’17, P. ’16, ’17

Parabolic PDEs
Chentouf et. al. ’08, ’10, Deutscher ’13, ’15, ’16, Guo-Meng
’20, Huhtala–P.–Hu ’22, . . .

Hyperbolic PDEs
Guo–Guo ’13, ’16, Guo–Krstic ’17, ’18, Deutscher–Gabriel
’18–21, Wang et. al. ’18, ’21, Guo-Meng ’21, ’22, . . .

PIDEs, Coupled systems, Networks, . . .

In addition: Controllers for regulation without robustness
Schumacher ’83, Byrnes et. al. ’00, Boulite–Saij et. al. ’13, ’18,
Natarajan et. al. ’14, Xu–Dubljevic ’16, ’17, . . .
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Internal Model Based Control for PDEs
The robust output regulation problem in two parts:

Step 1◦ Include a suitable internal model into the controller

Step 2◦ Use the rest of the controller’s parameters to stabilize
the closed-loop system.

For controlling a PDE model, there are (at least) two approaches:

“PDE-based”: Construct a controller directly based on the
individual PDE model.

Controller often has a “PDE part” which acts as an observer.
“Abstract”: Represent the PDE as an infinite-dimensional
linear system and use existing results for controller design.

Controller is an abstract system with PDE-type dynamics
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The Abstract Approach: Preliminaries

In the “abstract approach”, the PDE is reformulated as

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

on a Banach or Hilbert space X.
A generates a strongly continuous semigroup on X.
u(t) ∈ U input, y(t) ∈ Y output, wdist(t) ∈ Ud disturbance
input operators B and Bd and output operator C are either
bounded (distributed I/O) or unbounded (boundary I/O).
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PDE-Based vs. Abstract Routes

PDE
model

PDE
controller

• IM-based structure
• Observer design
• Prove regulation+robustness
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PDE-Based vs. Abstract Routes

PDE
model

PDE
controller

Abstract
representation Abstract

system

Abstract
controllerPDE

interpretation

• Existing controllers
• Parameter tuning for
closed-loop stability
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Why Take the “Abstract Detour”?

Pros:
+ No need to prove regulation and robustness
+ Several existing controller design methods, used as black-box
+ Avoids repetition in the parts of the design which are common

to all IM-based controllers (e.g., IM-structure, observer form),
and “zooms in” on the parts that matter.

+ The Robust Output Regulation Problem has a lot of
structure and the abstract approach reduces controller design
to particular PDE stabilization problems.

PDE
model

Abstract
system

Abstract
controller

PDE
controller
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Why Take the “Abstract Detour”?

Cons:
− Abstract representation can require deep knowledge of

abstract systems, and can still be challenging
+ Representation know for many important PDEs!
+ Exact knowledge typically not required!

− PDE interpretation of the controller can require effort
+ Making this easier is an important topic for future research!

PDE
model

Abstract
system

Abstract
controller

PDE
controller
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When to Take the Abstract Route?
When do the Pros outweigh the Cons?

PDE has distributed inputs and outputs ; abstract
representation and PDE interpretation are “easy”.
PDE is on 1D domain ; abstract representation often already
known, and PDE interpretation is straightforward
PDE is parabolic (on nD domain) ; can often be represented
as “regular linear systems”
PDE is exponentially stable ; A very simple ODE controller.

When do the Cons outweigh the Pros?
The PDE is on a multi-dimensional domain, has boundary
inputs and outputs, and is not parabolic
; Abstract representation can be challenging (if not known)
; If the system is not externally well-posed, existing abstract

designs may not be applicable.
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An Example: 2D Boundary Controlled Heat Equation

xt(ξ, t) = ∆x(ξ, t), x(ξ, 0) = x0(ξ)
∂x

∂n
(ξ, t) = u(t), ξ ∈ Γ1

∂x

∂n
(ξ, t) = wdist(t), ξ ∈ Γ2

∂x

∂n
(ξ, t) = 0, ξ ∈ Γ0

y(t) =
∫

Γ3

x(ξ, t)dξ.

disturbance

input

output

Theorem (Byrnes–Gilliam–Weiss 2002)
The PDE can be represented abstractly as a regular linear system

; can employ existing abstract control designs for RLS
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Step 1: Abstract Representation of the PDE
Abstract system on X = L2(Ω) has the form

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0 ∈ X
y(t) = CΛx(t).

Theorem (P. 2016, 2017)
The Robust Output Regulation Problem is solvable if the system

is stabilizable using state feedback and output injection
does not have transmission zeros at the frequencies ±iωk of
yref(t) and wdist(t).

Good news: Our heat equation has both properties!
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Step 2: Abstract Controller Design
Abstract system on X = L2(Ω) has the form

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0 ∈ X
y(t) = CΛx(t).

Theorem (P. 2016)
The Robust Output Regulation Problem can be solved with
controller

ż1(t) = G1z1(t) +G2(y(t)− yref(t))
˙̂x(t) = Ax̂(t) +Bu(t) + L(ŷ(t)− y(t) + yref(t))
ŷ(t) = CΛx̂(t)
u(t) = K1z1(t) +K2x̂(t)

with matrices G1, G2 and bounded operators L, K1, and K2.
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Step 2: Abstract Controller Design

yref (t) =
q∑

k=0
ak cos(ωkt+ θk), wdist(t) =

q∑
k=0

bk cos(ωkt+ ϕk)

Matrices G1, G2: Explicit expressions based on {ωk}k and dimY .

Bounded operators L, K1 and K2: Chosen so that the
semigroups generated by

A+ LC and
[
G1 G2CΛ
0 A

]
+
[

0
B

] [
K1,K2

]
are exponentially stable. Alternatives:

Rewrite as a stabilization problem for a PDE-ODE cascade.
Numerical approximations and LQR/LQG (Banks–Ito 1997)
“Forwarding” (P. 2016) + numerics (P.–Humaloja 2022)
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Step 3: From Abstract to PDE Controller

Theorem (P.–Humaloja CDC 2022)
The state of the controller is the weak solution of the ODE-PDE
system

ż1(t) = G1z1(t) +G2(y(t)− yref(t))

x̂t(ξ, t) = ∆x̂(ξ, t) + L(ξ)
(∫

Γ3
x̂(ξ, t)dξ − y(t) + yref(t)

)
∂x̂

∂n
(ξ, t) = K1z1(t) +K2x̂(·, t) on Γ1,

∂x̂

∂n
(ξ, t) = 0 elsewhere on ∂Ω

u(t) = K1z1(t) +K2x̂(·, t).
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Example: Numerical Simulation

Simulation code available at https://github.com/lassipau/
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Example: Numerical Simulation

RORPack – Matlab/Python libraries for Robust Output Regulation
Routines for internal model based controller design
Simulation and visualisation of results
Several different types of PDE test cases implemented

Available at https://github.com/lassipau/rorpack-matlab/
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Part II:
Reduced-Order Controllers for Parabolic PDEs
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The Parabolic Linear System

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

A generates an analytic semigroup on the Hilbert space X
Convection-diffusion-reaction PDEs
Beams and plates with Kelvin-Voigt damping

u(t) ∈ U input, y(t) ∈ Y output, wdist(t) ∈ Ud disturbance
B ∈ L(U,X), C ∈ L(X,Y ), Bd ∈ L(Ud, X) with U,Ud, Y
finite-dimensional.

Problem
Achieve Robust Output Regulation ‖y(t)− yref(t)‖ → 0 as t→∞
using a finite-dimensional (ODE) controller.
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Earlier Work
System unstable, finite-dimensional controller:

Schumacher 1983, Curtain 1983 (quite strict conditions)
Deutscher 2011, 2013 (no robustness, “spillover” possible)
Lhachemi–Prieur 2022 (uses eigenmodes)

Main Result (Paunonen-Phan IEEE TAC 2020)
Our controller design:

Internal model based robust design
For general parabolic systems
Direct: Uses Galerkin approximation and LQR/LQG methods
Model reduction step ensures low order

Extension to PDEs with boundary control in Phan–Paunonen 2021.
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Galerkin Approximations – Assumptions

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

Assumption
There exists a sesquilinear form a(·, ·) : V × V → C such that

〈−Aφ,ψ〉 = a(φ, ψ), ∀φ ∈ D(A), ψ ∈ V

and a(·, ·) bounded and coercive, i.e., ∃c1, c2, λ0 > 0 s.t.
|a(φ, ψ)| ≤ c1‖φ‖V ‖ψ‖V (boundedness)

Re a(φ, φ) ≥ c2‖φ‖2V − λ0‖φ‖2X (coercivity)

⇒ A− λ0I generates an analytic semigroup on X
Typical for nD convection-diffusion-reaction equations
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Galerkin Approximations
Assumption

〈−Aφ,ψ〉 = a(φ, ψ), ∀φ ∈ D(A), ψ ∈ V

Assumption (Approximating Subspaces VN)
There are subspaces (VN )N ⊂ V , dimVN <∞, such that any
φ ∈ V can be approximated by φN ∈ VN in the sense

‖φ− φN‖V → 0, as N →∞.

VN define Galerkin approximations (AN , BN , CN ) of (A,B,C),

〈−ANφ, ψ〉 = a(φ, ψ), ∀φ, ψ ∈ VN ,
〈BNu, φ〉 = 〈u,B∗φ〉, ∀u ∈ U, φ ∈ VN ,

CN = C|VN
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The Low Order Robust Controller

Aim: Use the approximations (AN , BN , CN ) in controller design.

The end result: A finite-dimensional robust controller

ż1(t) = G1z1(t) +G2(y(t)− yref (t))
ż2(t) = ArLz2(t) +Br

Lu(t) + Lr(yref (t)− y(t))
u(t) = KN

1 z1(t) +Kr
2z2(t)
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The Low Order Robust Controller

Aim: Use the approximations (AN , BN , CN ) in controller design.

The end result: A finite-dimensional robust controller

ż1(t) = G1z1(t) +G2(y(t)− yref (t))
ż2(t) = ArLz2(t) +Br

Lu(t) + Lr(yref (t)− y(t))
u(t) = KN

1 z1(t) +Kr
2z2(t)

and a design algorithm for (G1, G2, A
r
L, B

r
L,K

N
1 ,K

r
2 , L

r) based on:

The frequencies {ωk}k of wdist(t) and yref (t).
The Galerkin approximation (AN , BN , CN , D) (no Bd!).
A dimension parameter r ∈ N for the model reduction step.
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The Low Order Robust Controller

Aim: Use the approximations (AN , BN , CN ) in controller design.

The end result: A finite-dimensional robust controller

ż1(t) = G1z1(t) +G2(y(t)− yref (t))
ż2(t) = ArLz2(t) +Br

Lu(t) + Lr(yref (t)− y(t))
u(t) = KN

1 z1(t) +Kr
2z2(t)

The Design Algorithm for (G1, G2, A
r
L, B

r
L,K

N
1 ,K

r
2 , L

r):
Explicit formulas for G1, G2 based on {ωk}k
(ArL, Br

L,K
N
1 ,K

r
2 , L

r) obtained from (AN , BN , CN , D) by
1 Solving finite-dimensional LQR/LQG problems, and
2 Balanced Truncation for a stable ODE system
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The Main Result

ż1(t) = G1z1(t) +G2(y(t)− yref (t))
ż2(t) = ArLz2(t) +Br

Lu(t) + Lr(yref (t)− y(t))
u(t) = KN

1 z1(t) +Kr
2z2(t)

Theorem
Assume (A,B,C,D) is exponentially stabilizable and detectable
and its transmission zeros do not coincide with {±iωk}k ⊂ iR.

If N ∈ N and r ≤ N are sufficiently large, the controller solves the
robust output regulation problem. There exist M,α > 0 such that

‖y(t)− yref(t)‖ ≤Me−αt (‖x(0)‖+ ‖z(0)‖+ ‖yref‖∞ + ‖wdist‖∞)

for all initial states x(0) ∈ X and z(0) ∈ Z and yref(t), wdist(t).
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Discussion
Theorem
If N ∈ N and r ≤ N are sufficiently large, the controller solves the
robust output regulation problem. There exist M,α > 0 such that

‖y(t)− yref(t)‖ ≤Me−αt (‖x(0)‖+ ‖z(0)‖+ ‖yref‖∞ + ‖wdist‖∞)

for all initial states x(0) ∈ X and z(0) ∈ Z and yref(t), wdist(t).

Uniform exponential convergence of ‖y(t)− yref (t)‖ → 0, can
achieve rate α > 0 whenever (A+ αI,B,C) is stab/detect.
“N and r sufficiently large” inconvenient ; further research
Required size of r depends (roughly) on decay of the Hankel
singular values of (AN , BN , CN ) ; A fair amount of model
reduction is typically possible for PDEs.
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Control of Room Temperature Models

Problem
Achieve robust tracking of
temperature and flow velocity
in a 2D room with inlets and
outlets.

The PDE model determines the
temperature and velocity field of
the incompressible fluid/air.

Thesis work by Konsta Huhtala
(with Weiwei Hu).

measurementcontrol

inflow

outflow

disturb.
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Control of Room Temperature Models
Result 1: Temperature tracking only [Huhtala–P.–Hu ’20]

Temperature modelled by convection-diffusion equation,
where velocity field solved from steady-state Navier–Stokes
Distributed control and observation, boundary disturbance

Result 2: Temperature and velocity tracking [Huhtala–P.–Hu ’22]
Temperature and velocity modelled by linearised Boussinesq
equations with boundary control and observation
Actuators and sensors modelled with ODE systems ; the full
system has bounded input and output operators

Result 3: Flow tracking only [Huhtala–P. ’21]
Model for nonlinear fluid flow only (no temperature)
Nonlinear controller design based on Natarajan–Bentsman ’16
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Simulation example: Room Temperature Control

Temperature tracking:

yref (t) = sin(t) + 2 cos(2t),
wdist(t) = 1.5 cos(3t).

measurementcontrol

inflow

outflow

dist.

Reduced order controller design:
Frequencies {ωk}k = {1, 2, 3}, dimY = 1
FEM approximation with 2nd order basis ; N = 1549
Controller design using Matlab (are, balred / RORPack)
Controller dimension 6 + 10 = 16 (IM dim + r)
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Simulation
Higher order approximation (Nhigh = 6297) for the plant
Exponential convergence of the output with α ≈ 0.5
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The original PDE model is stable: Controller achieves
radically faster convergence than “minimal order” controllers:

Low-Gain controller: dim = 6, max α ≤ 0.1,
Our controller: dim = 16, α ≈ 0.5 (by design)
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A Curiosity/Hobby: An Experimental Setup
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Summary

Part I:
Introduction to robust output regulation for PDEs
Comments on abstract control design methods

Part II:
A low-order robust controller for parabolic systems based on
Galerkin approximations
Application to tracking of thermal fluid flows
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