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Main Objectives
Problem
Consider different types of coupled PDE systems from the point
of view of control theory.

Focus on non-uniform stability, but exponential stability included.

Motivation:
Coupling of stable and unstable PDEs and ODEs often leads
to rational decay of energy, i.e., polynomial stability.

Main results:
Discussion and a (hopefully new) viewpoint.
New stability results for coupled PDEs.
Disclaimer: Will not solve all your problems!
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Outline

(1) “Passive feedback structures” in coupled PDE systems
Highlight parallels in coupled PDEs and linear systems

(2) Conversion from coupled PDEs to coupled systems
Examples on “how to set it up”.

(3) What do we get?
General conditions for polynomial and nonuniform stability of
coupled PDEs and systems.
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Coupled PDE-PDE and PDE-ODE systems appear in models of
Fluid-structure interactions
Thermo-elasticity
Mechanical systems, e.g., beams with tip masses
Magnetohydrodynamics
Acoustics

Especially:
Networks of 1D PDEs of mixed types (wave/heat/beam/
transport) with coupling BCs at vertices.

Couplings may either be
Through the boundary (Fluid-structure, acoustics), or
inside a shared domain (Thermo-elasticity, MHD)

We will focus on couplings that are passive (details later).
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Example: Coupled Wave–Heat Systems

Models for fluid–structure and heat–structure interactions:

∂2u

∂t2
(x, t) = ∆u(x, t)

l
coupling BCs
l

∂w

∂t
(x, t) = ∆w(x, t)

heat equation

wave eqn

References: Avalos & Triggiani, Duyckaerts, Mercier, Nicaise, Ammari,
Zuazua, Guo, Ng & Seifert, and many others.
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback
structure
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback
structure

System 1

System 2
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Coupled Wave–Heat Systems

wave equation

heat equation

feedback
structure

System 1

System 2

Unstable

Stable
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Inputs and Outputs

inputs/outputs

wave equation

heat equation

inputs/outputs

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)
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Problem
Use the properties of the two systems to deduce stability of the
coupled PDE.

System 1
u1(t) y1(t)

System 2
y2(t) u2(t)

Unstable

Stable
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Analysis of Networks of PDEs of mixed types

Types of PDEs: “UNSTABLE” and “STABLE”
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Analysis of Networks of PDEs of mixed types

“UNSTABLE” system vs. “STABLE” system
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Analysis of Networks of PDEs of mixed types

Inputs and ouputs defined at the previously shared vertices.
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Linear Control Systems

Consider the linear control system:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

where X is Hilbert, A generates a semigroup, and B and C are
either bounded or unbounded.
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“Passive” Systems
To keep things simple, we only focus on systems

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = B∗x(t)

where X is Hilbert, A generates a contraction semigroup, and
B ∈ L(U, V ∗) for some suitable spaces U and V ∗ ⊇ X.

Such systems are “impedance passive”, which in particular means
they have “no internal sources of energy”,

d

dt
‖x(t)‖2 ≤ 2 Re〈u(t), y(t)〉Y

Examples:
Many mechanical systems, RLC circuits, . . .
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Feedback Theory of Passive Systems

Property: “Power-preserving interconnection” preserves passivity!

−

y1u1

u2y2

S1

S2

⇒ Closed-loop semigroup contractive on Hilbert X1 ×X2.

Some results exist on exponential stability, here we focus on
non-uniform stability → decay rates for total energy.
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Coupled Passive Systems

If for k = 1, 2 we let

ẋk(t) = Akxk(t) +Bkuk(t), xk(0) ∈ Xk

yk(t) = B∗
kxk(t),

then the “power-preserving interconnection” leads to

d

dt

[
x1(t)
x2(t)

]
=
[

A1 B1B
∗
2

−B2B
∗
1 A2

]
︸ ︷︷ ︸

=: A

[
x1(t)
x2(t)

]

Question
How to choose U , B1, and B2?
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How to Set It Up?
Heat-Wave Systems

Example: 1D Wave–Heat Model


vtt(ξ, t) = vξξ(ξ, t), ξ ∈ (−1, 0), t > 0,
wt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1), t > 0,

vξ(0, t) = wξ(0, t), vt(0, t) = w(0, t), t > 0,

[Xu Zhang & Zuazua, Batty, Paunonen & Seifert, (2D version:
Avalos, Triggiani & Lasiecka)]

Known: Non-uniform stability with α = 1/2.
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Example: 1D Wave–Heat Model
vtt(ξ, t) = vξξ(ξ, t), ξ ∈ (−1, 0), t > 0,
wt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1), t > 0,
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wave
{

heat

u
ut

w

−1 1

The wave equation The heat equation
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How to Set It Up?
Heat-Wave Systems

Example: 1D Wave-Heat — Open-Loop Splitting

Wave system on (−1, 0):

vtt(ξ, t) = vξξ(ξ, t)
y1(t) = vξ(0, t)
u1(t) = vt(0, t)

Unstable

Heat system on (0, 1):

wt(ξ, t) = wξξ(ξ, t)
y2(t) = w(0, t)
u2(t) = −wξ(0, t)

Stable

The systems are impedance passive. We have U = C and B1 and
B2 are unbounded.
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Polynomial and Non-Uniform Stability

Theorem (Borichev & Tomilov ’10)
Let T (t) be a uniformly bounded C0-semigroup on a Hilbert space
X. Let A be the generator of T (t) and σ(A) ∩ iR = ∅.

For any constant α > 0, the following are equivalent:

‖T (t)x0‖ ≤
M

t1/α
‖Ax0‖ for some M > 0

‖(is−A)−1‖ ≤MR(1 + |s|α), for some MR > 0

General: Batty & Duyckaerts ’08, Rozendaal, Seifert & Stahn ’17.

Application: E(t) ∼ ‖T (t)x0‖2 for many PDE systems.
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Polynomial and Non-Uniform Stability

Since our coupled systems are contractive by default,

“Non-uniform stability only requires a resolvent estimate”

Limit case: Bounded resolvent

‖(is−A)−1‖ ≤MR, s ∈ R

implies exponential stability, i.e., ∃M,ω > 0 such that

‖T (t)x0‖ ≤Me−ωt‖x0‖, x0 ∈ X.
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Problem
Derive a resolvent estimate for

A :=
[

A1 B1B
∗
2

−B2B
∗
1 A2

]

in terms of the properties of
(A1, B1, B

∗
1) [Unstable]

(A2, B2, B
∗
2) [Stable]
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Problem
Derive a resolvent estimate for

A :=
[

A1 B1B
∗
2

−B2B
∗
1 A2

]
(A1, B1, B

∗
1) [Unstable] and (A2, B2, B

∗
2) [Stable]

Summary of results:

‖(is−A)−1‖ .M1(|s|)M2(|s|)

M1(·) increasing when (B∗
1 , A1) is not “exactly observable”

(limit case M1(·) ≡ const. if exactly observable)

When P2(is) = B∗
2(is−A2)−1B2 is the “transfer function”,

M2(s) ∼ ‖
[
ReP2(is)

]−1‖
(
M2(s) ∼ 1

ReP2(is)

)
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Important Special Case
Consider T (t) generated by

A :=
[

A1 B1B
∗
2

−B2B
∗
1 A2

]

Proposition
Assume (B∗

1 , A1) is exactly observable
Assume there exists α ≥ 0 such that

ReP2(is) & 1
1 + |s|α

Then T (t) is polynomially stable, ‖(is−A)−1‖ . 1 + |s|α,

‖T (t)x0‖ ≤
M

t1/α
‖Ax0‖, x0 ∈ D(A).
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The Observability Condition on (B∗1 , A1)

Proposition
Assume (B∗

1 , A1) is exactly observable

Technical definition: ∃τ, κ > 0 such that∫ τ

0
‖B∗

1T1(t)x‖2dt ≥ κ‖x‖2, x ∈ D(A).

Skew-adjointness of A1: Equivalent to

A1 −B1B
∗
1 generates an exponentially stable semigroup

and the system (A1, B1, B
∗
1) is “stabilized exponentially by

negative output feedback u(t) = −y(t)".
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Comments:
Theorem requires some admissibility and well-posedness
assumptions (swept under the carpet here). Limits 2D-nD BC.
The more general version details the effect of the lack of exact
observability of (B∗

1 , A1).

Optimality
Obtained rate is not always optimal, especially if

A1 has no spectral gap (2D, nD waves)
A nice way of getting (possibly) suboptimal rates easily.

References:

Paunonen (SIAM J. Control Optim. 2019)
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Example: 1D Wave-Heat

Wave system on (−1, 0):

ρ(ξ)vtt(ξ, t) = (T (ξ)vξ)ξ(ξ, t)
u1(t) = vt(0, t)
y1(t) = T (0)vξ(0, t)

Heat system on (0, 1):

wt(ξ, t) = wξξ(ξ, t)
y2(t) = w(0, t)
u2(t) = −wξ(0, t)

A1 skew-adjoint, (B∗
1 , A1) exactly observable.

P2(is) = B∗
2(is−A2)−1B2 satisfies ReP2(is) ∼ |s|−1/2.

Thus the closed-loop system is polynomially stable,

‖(is−A)−1‖ . 1 + |s|1/2 and ‖T (t)x0‖ ≤
M

t2
‖Ax0‖.

Generalises results of [Zhang-Zuazua, Batty-Paunonen-Seifert].
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Example: Wave equation with an Acoustic BC

Consider a wave equation with a dynamic BC at ξ = 1:

ρ(ξ)vtt(ξ, t) = (T (ξ)vξ(ξ, t))ξ, 0 < ξ < 1,
mδtt(t) = −dδt(t)− kδ(t)− βvt(1, t)
vξ(1, t) = δt(t), vt(0, t) = 0.

Studied by Beale, and Muños Rivera & Qin.
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Example: Wave equation with an Acoustic BC

Wave system on (0, 1):

ρ(ξ)vtt(ξ, t) = (T (ξ)vξ)ξ(ξ, t)
y1(t) = T (1)vξ(1, t)
u1(t) = vt(1, t)

The ODE part

mδ̈(t) + kδ(t) + dδ̇(t) = βuc(t)
yc(t) = T (1)δ̇(t).

A1 skew-adjoint, (B∗
1 , A1) exactly observable.

P2(is) = B∗
2(is−A2)−1B2 satisfies ReP2(is) ∼ s−2.

Thus the closed-loop system is polynomially stable,

‖(is−A)−1‖ . 1 + s2 and ‖T (t)x0‖ ≤
M√
t
‖Ax0‖.

L. Paunonen Stability of Coupled PDEs



Introduction
Discussion

Main Results

Non-Uniform Stability
Example Cases

Networks of PDEs of mixed types

TODO:
Results should be applicable for wave
and heat equations on networks.
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Conclusions

In this presentation:
Discussion of coupled PDE and PDE-ODE systems from the
viewpoint of systems theory
General conditions for non-uniform and polynomial stability of
coupled systems.

LP, “Stability and Robust Regulation of Passive Linear
Systems” SIAM J. Control Optim. 2019,
http://arxiv.org/abs/1706.03224

LP, “On polynomial stability of coupled partial differential
equations in 1D” Proceedings of SOTA 2018
https://arxiv.org/abs/1911.06715
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