Robust Output Regulation of Regular Linear Systems

Lassi Paunonen

Tampere University of Technology, Finland

July 7th, 2017

Funded by Academy of Finland grants 298182 (2016-2019) and 310489 (2017-2021)

Main Objectives

Problem

Study the **robust output regulation problem** for infinite-dimensional systems with unbounded input and output operators.

Main Objectives

Problem

Study the **robust output regulation problem** for infinite-dimensional systems with unbounded input and output operators.

Objective: Design a controller such that the output y(t) of the system converges to a reference signal

$$\|y(t) - y_{ref}(t)\| \to 0, \quad \text{as} \quad t \to \infty$$

despite disturbance signals $w_{dist}(t)$.

The controller is required to be **robust** in the sense that it tolerates small perturbations in the parameters of the system.

Main Objectives

Problem

Study the **robust output regulation problem** for infinite-dimensional systems with unbounded input and output operators.

Main results:

- Robust controller design
- Study of closed-loop stability properties.
- Special emphasis on **passive** systems.

The Infinite-Dimensional System

Consider a system

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + B_d w_{dist}(t), \qquad x(0) = x_0 \in X\\ y(t) &= C_\Lambda x(t) + Du(t) \end{split}$$

In this presentation

- X is a Banach space
- A generates a semigroup T(t)
- $u(t) \in U$ input, $y(t) \in Y$ output, $w_{\textit{dist}}(t) \in U_d$ disturbance
- Assume $\dim Y = p < \infty$ (for $\dim Y = \infty$ with modifications)

• Let
$$w_{dist}(t) \equiv 0$$
 (for simplicity)

The Infinite-Dimensional Plant

Consider a plant

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + B_d w_{dist}(t), \qquad x(0) = x_0 \in X\\ y(t) &= C_\Lambda x(t) + Du(t) \end{split}$$

Assumptions on B and C:

- $B \in \mathcal{L}(\mathbb{C}^m, X_{-1})$ and $C \in \mathcal{L}(X_1, \mathbb{C}^p)$ are admissible
- (A, B, C, D) is regular, i.e., for one/all $\lambda \in \rho(A)$

$$P(\lambda) = C_{\Lambda} R(\lambda, A_{-1})B + D$$

is well-defined and $P(\lambda)u \to Du$ as $\lambda \to \infty$ for all $u \in U$.

The Robust Output Regulation Problem Controller Design Methods Conclusion The Controller and the Closed-Loop System The Internal Model Principle

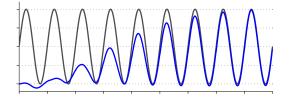
Problem (The Robust Output Regulation Problem) Choose a control law in such a way that

• The output y(t) tracks a given reference signal $y_{\rm ref}(t)$ asymptotically, i.e.

$$\|y(s) - y_{ref}(s)\| \to 0$$
 as $t \to \infty$

for all initial states $x_0 \in X$.

• The above property is robust with respect to "small" perturbations in the operators (A, B, B_d, C, D) of the plant.



Problem Formulation The Controller and the Closed-Loop System The Internal Model Principle

The Reference Signals

The reference signals we consider are of the form

$$y_{\rm ref}(t) = \sum_{k \in \mathcal{I}} y_r^k e^{i\omega_k t}, \qquad (y_r^k)_k \in \ell^1(Y)$$

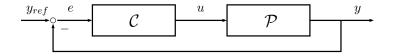
 $y_{ref}(t)$ contains the frequencies $(i\omega_k)_{k\in\mathcal{I}}\in i\mathbb{R}$ (no acc. points).

The set $\mathcal{I} \subset \mathbb{Z}$ may be

- Finite, $\mathcal{I} = \{1, \dots, q\}$, finite number of frequency components
- Infinite, e.g., $\mathcal{I} = \mathbb{Z}$, and $\omega_k = \frac{2\pi k}{\tau}$, τ -periodic functions.
- Infinite, uniformly continuous, almost periodic functions.

The Robust Output Regulation Problem Controller Design Methods Conclusion The Controller and the Closed-Loop System The Internal Model Principle

The Dynamic Error Feedback Controller



We consider an error feedback controller $(\mathcal{G}_1, \mathcal{G}_2, K)$ of the form

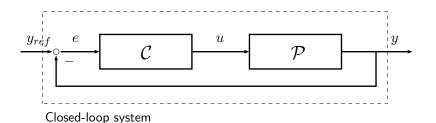
$$\begin{split} \dot{z}(t) &= \mathcal{G}_1 z(t) + \mathcal{G}_2(y_{\text{ref}}(t) - y(t)) \qquad z(0) = z_0 \in Z, \\ u(t) &= K z(t) + D_c(y_{\text{ref}}(t) - y(t)), \end{split}$$

which is a regular linear system on a Banach Z.

 D_c is equivalent to output feedback in the plant \rightarrow can be used in "pre-stabilizing" an unstable system.

Problem Formulation The Controller and the Closed-Loop System The Internal Model Principle

The Closed-Loop System



"Closed-loop stability" means that the internal dynamics of the closed-loop system are stable.

The Closed-Loop System

The closed-loop system with state $(x(t), z(t))^T \in X \times Z$ is

$$\begin{aligned} \dot{x}_e(t) &= A_e x_e(t) + B_e y_{\text{ref}}(t), \qquad x_e(0) = x_{e0} = (x_0, z_0)^T \\ e(t) &= C_e x_e(t) + D_e y_{\text{ref}}(t). \end{aligned}$$

The closed-loop system is regular (under mild assumptions), A_e generates a semigroup $T_e(t)$.

The Control Problem

Problem (Robust Output Regulation)

Choose a control law in such a way that

- The closed-loop semigroup $T_e(t)$ is stable.
- The output y(t) tracks a given reference signal $y_{\rm ref}(t)$ asymptotically, i.e.

$$\lim_{t \to \infty} \int_t^{t+1} \|y(s) - y_{ref}(s)\| ds = 0$$

for all x_0 and z_0 .

• The above property is robust with respect to perturbations in the parameters (A, B, B_d, C, D) as long as the closed-loop stability is preserved.

The Internal Model Principle

Theorem (Francis & Wonham, 1970's, LP '10,'14)

A stabilizing feedback controller solves the robust output regulation problem if and only if it contains "**an internal model**" of the frequencies $\{i\omega_k\}_k$ of the reference signal $y_{ref}(t)$.

The **internal model** for signals with frequencies $\{i\omega_k\}_{k\in\mathcal{I}}$ Every frequency $i\omega_k$ must be an eigenvalue of \mathcal{G}_1 with plinearly independent eigenvectors associated to it, i.e.,

 $\dim \mathcal{N}(i\omega_k - \mathcal{G}_1) \ge p$

Here $p = \dim Y$, the number of outputs.

Controller Design

Due to the internal model principle, robust output regulation problem can be solved in two parts:

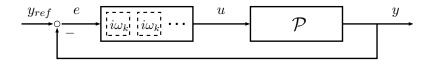
Step $1^\circ\,$ Include a suitable internal model into the controller

Step 2° Use the rest of the controller's parameters to stabilize the closed-loop system.

Internal model has fixed structure, the closed-loop stability can be achieved using one of several alternative ways.

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

The p-Copy Internal Model Principle



Earlier Work (State Space Techniques)

Robust feedback controllers:

- Hämäläinen-Pohjolainen '96, '00, '10,
- Logemann-Townley '97
- Weiss-Häfele '99,
- Rebarber-Weiss '03,
- Immonen-Pohjolainen '06,
- Boulite-Hadd-Nounou-Nounou '09,
- LP '16,'17.

Regulation without robustness requirement (similar techniques):

• Schumacher '83, Byrnes *et. al.* '00, Natarajan-Gilliam-Weiss '14, Deutcher '15, Xu-Dubljevic '16 etc.

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Closed-Loop Stability

To achieve closed-loop stability, two objectives need to be completed:

(1) Stabilization of the possibly unstable plant

(2) Stabilization of the completely unstable internal model

Objective (1) can be approached with observer-based methods. Hämäläinen-Pohjolainen '10, LP-Pohjolainen '12, '13, LP '15-'17

If the plant is initially stable (or pre-stabilizable), we can concentrate on (2).

 \longrightarrow "Simple" controllers whose dynamics contain \boldsymbol{only} the internal model.

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Simple Controllers

Idea: If the plant is stable (or pre-stabilizable), we can use a **simple** controller where G_1 contains **only** the internal model of $\{i\omega_k\}_k$

To achieve $\dim \mathcal{N}(i\omega_k - \mathcal{G}_1) = \dim Y = p$ for all k, we can choose

$$\mathcal{G}_1 = \operatorname{diag}(i\omega_1 I_{p imes p}, \dots, i\omega_q I_{p imes p}) \quad \text{or} \quad \mathcal{G}_1 = \operatorname{diag}(i\omega_k I_{p imes p})_{k \in \mathbb{Z}}.$$

on $Z=Y^q=\mathbb{C}^{pq}$ or $Z=\ell^2(Y),$ respectively.

• Ukai-Iwazumi '90, Hämäläinen-Pohjolainen '96, '00, Logemann-Townley '97, Rebarber-Weiss '03 etc.

Closed-Loop Stabilization for Simple Controllers

Goal: Let
$$Z = Y^q = \mathbb{C}^{pq}$$
 or $Z = \ell^2(Y)$,

$$\mathcal{G}_1 = \operatorname{diag}(i\omega_1 I_p, \dots, i\omega_q I_p)$$
 or $\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_{k \in \mathbb{Z}}$

and stabilize the closed-loop by choosing \mathcal{G}_2 and \boldsymbol{K} in

$$\begin{split} \dot{z}(t) &= \mathcal{G}_1 z(t) + \mathcal{G}_2 (y_{\text{ref}}(t) - y(t)) \qquad z(0) = z_0 \in Z, \\ u(t) &= K z(t) + D_c (y_{\text{ref}}(t) - y(t)) \end{split}$$

Closed-Loop Stabilization for Simple Controllers

Goal: Let
$$Z = Y^q = \mathbb{C}^{pq}$$
 or $Z = \ell^2(Y)$,

$$\mathcal{G}_1 = \operatorname{diag}(i\omega_1 I_p, \dots, i\omega_q I_p)$$
 or $\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_{k \in \mathbb{Z}}$

and stabilize the closed-loop by choosing \mathcal{G}_2 and ${\it K}$ in

$$\begin{split} \dot{z}(t) &= \mathcal{G}_1 z(t) + \varepsilon \, \mathcal{G}_2(y_{\text{ref}}(t) - y(t)) \qquad z(0) = z_0 \in Z, \\ u(t) &= K z(t) \end{split}$$

Method 1: "Low-gain": Insert an " ε " \rightarrow stability for small $\varepsilon > 0$.

- Powerful for exponentially stable plants, finite sets $\{i\omega_k\}_k$
- Required perturbation argument breaks down for strongly stable plants, nonsmooth $y_{ref}(t)$.

Closed-Loop Stabilization for Simple Controllers

Goal: Let

 $\mathcal{G}_1 = \operatorname{diag}(i\omega_1 I_n, \dots, i\omega_n I_n)$ or $\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_n)_{k \in \mathbb{Z}}$

and stabilize the closed-loop by choosing \mathcal{G}_2 and K in

$$\begin{split} \dot{z}(t) &= \mathcal{G}_1 z(t) + \mathcal{G}_2(y_{\text{ref}}(t) - y(t)) \qquad z(0) = z_0 \in Z, \\ u(t) &= K z(t) + D_c(y_{\text{ref}}(t) - y(t)), \end{split}$$

Method 2: If the plant is "**passive**", choose $(\mathcal{G}_1, \mathcal{G}_2, K)$ passive.

- For infinite-dimensional systems: Rebarber-Weiss '03.
- Very natural approach, no need for small gain parameter.

Passivity: A Very Brief Introduction

Passivity: No internal sources of energy, X Hilbert, U = Y,

$$\frac{d}{dt} \|x(t)\|^2 \le 2 \operatorname{Re}\langle u(t), y(t) \rangle_Y$$

Examples:

- Many mechanical systems, RLC circuits
- A generates a contraction semigroup, $C=B^*$ with D=0 or $\operatorname{Re} D\geq 0.$

Essential property: Under suitable controllability assumptions, can be stabilized with negative output feedback

$$u(t) = -Ky(t), \qquad K > 0.$$

Main Results

Rebarber-Weiss '03: Passive controller for

- exponentially stabilizable systems
- Smooth $y_{ref}(t)$ with finite $\{i\omega_k\}_k$

Here: Extensions: Passive controllers for

- Strongly stabilizable systems
- Nonsmooth $y_{\mathit{ref}}(t)$, infinite $\{i\omega_k\}_k$
- Detailed analysis of the closed-loop stability and $\|e(t)\| \rightarrow 0$

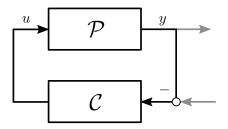
Reference:

LP, "Stability and Robust Regulation of Passive Linear Systems," http://arxiv.org/abs/1706.03224

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

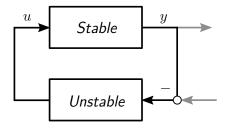
Using Passivity in Stabilization

Main goal: Use passivity to induce closed-loop stability.



A "power-preserving interconnection" \to Closed-loop semigroup contractive on the Hilbert space $X\times Z.$

Stability of The Closed-Loop System



• Rebarber-Weiss '03: Plant exponentially stabilizable, $\{i\omega_k\}_k$ finite \Rightarrow exponential closed-loop stability

New results: Cases when

- Plant only strongly stabilizable
- $y_{\mathit{ref}}(t)$ nonsmooth with infinite $\{i\omega_k\}_{k\in\mathbb{Z}}$

Stability of The Closed-Loop System

Assume throughout that

•
$$\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_k$$
, $\mathcal{G}_2 = K^*$, (K, \mathcal{G}_1) appr. obs., $D_c > 0$

- (A,B,C,D) passive, $\{i\omega_k\}_{k\in\mathbb{Z}}$ infinite
- Denote $\operatorname{Re} T = \frac{1}{2}(T + T^*)$.

Stability of The Closed-Loop System

Assume throughout that

•
$$\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_k$$
, $\mathcal{G}_2 = K^*$, (K, \mathcal{G}_1) appr. obs., $D_c > 0$

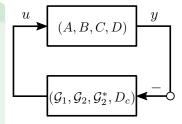
- (A,B,C,D) passive, $\{i\omega_k\}_{k\in\mathbb{Z}}$ infinite
- Denote $\operatorname{Re} T = \frac{1}{2}(T + T^*).$

Theorem

Assume

- T(t) is strongly stable, $i\mathbb{R}\subset\rho(A)$
- $\operatorname{Re} P(i\omega_k) > 0$ for all k

Then the closed-loop is strongly stable, $i\mathbb{R}\subset \rho(A_e).$



- New also for a finite $\{i\omega_k\}_k$.
- finite $\{i\omega_k\}_k \Rightarrow$ robust regulation

[cf. Zhao-Weiss '17]

$\mathsf{Stability} + \mathsf{IM} \Rightarrow \mathsf{Robust} \ \mathsf{Regulation}$

For a nonsmooth $y_{ref}(t)$ with an infinite $\{i\omega_k\}_{k\in\mathbb{Z}}$:

Theorem

Assume

- (A, B, C, D) is strongly stable, $i\mathbb{R} \subset \rho(A)$
- $\operatorname{Re} P(i\omega_k) > 0$ for all k

Then the closed-loop is strongly stable. The controller solves the robust output regulation problem for all $y_{ref}(t) = \sum_{k \in \mathbb{Z}} y_r^k e^{i\omega_k t}$ s.t.

$$\begin{split} \left(R(i\omega_k, A)BP(i\omega_k)^{-1}y_r^k \right)_k &\in \ell^1(X) \qquad \text{and} \\ \left(K_k^{-1}P(i\omega_k)^{-1}y_r^k \right)_k &\in \ell^2(Y). \end{split}$$

Here $K_k \in \mathcal{L}(Y)$ are the components of $K = (K_k)_k \in \mathcal{L}(Z, Y)$.

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Exponential Closed-Loop Stability

Assume

- $\mathcal{G}_1 = \mathrm{diag}(i\omega_k I_p)_k$, $\mathcal{G}_2 = K^*$, (K, \mathcal{G}_1) observable, $D_c > 0$
- (A, B, C, D) passive, $\{i\omega_k\}_{k\in\mathbb{Z}}$ infinite

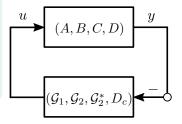
Theorem

Assume

- T(t) is exponentially stable
- $\operatorname{Re} P(i\omega_k) \ge d > 0$ for all k
- (K, \mathcal{G}_1) exactly obs. $(\mathcal{G}_2, K \text{ unbdd})$

Closed-loop is exponentially stable.

- Restrictive assumptions for both the plant and the controller
- If satisfied \Rightarrow robust regulation



Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Polynomial (Nonuniform) Closed-Loop Stability

Assume

- $\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_k$, $\mathcal{G}_2 = K^*$, (K, \mathcal{G}_1) observable, $D_c > 0$
- (A,B,C,D) passive, $\{i\omega_k\}_{k\in\mathbb{Z}}$ infinite, $\inf_{k\neq l}|\omega_k-\omega_l|>0$

Polynomial (Nonuniform) Closed-Loop Stability

Assume

- $\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_k$, $\mathcal{G}_2 = K^*$, (K, \mathcal{G}_1) observable, $D_c > 0$
- (A, B, C, D) passive, $\{i\omega_k\}_{k\in\mathbb{Z}}$ infinite, $\inf_{k\neq l} |\omega_k \omega_l| > 0$

Theorem

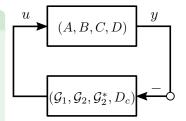
Assume K, \mathcal{G}_2 bounded,

- T(t) is exponentially stable
- $\operatorname{Re} P(i\omega) \ge c |\omega|^{-\beta}$ for large $|\omega|$
- $\|K_k^{-1}\|^2 \leq M_K |\omega_k|^\gamma$ for large |k|

Closed-loop is polynomially stable,

$$||T_e(t)x_{e0}|| \le \frac{M}{t^{1/\alpha}} ||A_e x_{e0}||,$$

for $x_{e0} \in \mathcal{D}(A_e)$ where $\alpha = \beta + \gamma$.



Polynomial (Nonuniform) Closed-Loop Stability

Assume

•
$$\mathcal{G}_1 = \operatorname{diag}(i\omega_k I_p)_k$$
, $\mathcal{G}_2 = K^*$, (K, \mathcal{G}_1) observable, $D_c > 0$

• (A,B,C,D) passive, $\{i\omega_k\}_{k\in\mathbb{Z}}$ infinite, $\inf_{k\neq l}|\omega_k-\omega_l|>0$

Theorem

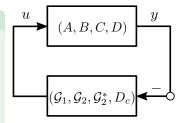
Assume K, \mathcal{G}_2 bounded,

- T(t) is exponentially stable
- $\operatorname{Re} P(i\omega) \ge c |\omega|^{-\beta}$ for large $|\omega|$
- $\|K_k^{-1}\|^2 \leq M_K |\omega_k|^\gamma$ for large |k|

Closed-loop is polynomially stable,

$$||T_e(t)x_{e0}|| \le \frac{M}{t^{1/\alpha}} ||A_e x_{e0}||,$$

for $x_{e0} \in \mathcal{D}(A_e)$ where $\alpha = \beta + \gamma$.



Based on:

Batty-Duyckaerts '08, Borichev-Tomilov '10. $||P(i_{1}, A_{1})|| \leq O(|v_{1}|^{\alpha})$

 $||R(i\omega, A_e)|| \le O(|\omega|^{\alpha}).$

$\mathsf{Stability} + \mathsf{IM} \Rightarrow \mathsf{Robust} \; \mathsf{Regulation}$

Theorem

Assume K, \mathcal{G}_2 bounded

 $\bullet \ (A,B,C,D) \ \textit{is exponentially stable}$

• Re $P(i\omega) \ge c|\omega|^{-\beta}$ and $||K_k^{-1}||^2 \le M_K |\omega_k|^{\gamma}$ for large $|\omega|, |k|$ Closed-loop is polynomially stable. The controller solves the

regulation problem and for signals $y_{ref}(t) = \sum_{k \in \mathbb{Z}} y_r^k e^{i\omega_k t}$ s.t.

$$\left(\omega_k R(i\omega_k, A) BP(i\omega_k)^{-1} y_r^k\right)_k \in \ell^1 \text{ and } \left(\omega_k K_k^{-1} P(i\omega_k)^{-1} y_r^k\right)_k \in \ell^2$$

$\mathsf{Stability} + \mathsf{IM} \Rightarrow \mathsf{Robust} \ \mathsf{Regulation}$

Theorem

Assume K, \mathcal{G}_2 bounded

 $\bullet \ (A,B,C,D) \ \textit{is exponentially stable}$

• Re $P(i\omega) \ge c|\omega|^{-\beta}$ and $||K_k^{-1}||^2 \le M_K |\omega_k|^{\gamma}$ for large $|\omega|, |k|$ Closed-loop is **polynomially stable**. The controller solves the regulation problem and for signals $y_{ref}(t) = \sum_{k \in \mathbb{Z}} y_r^k e^{i\omega_k t}$ s.t.

$$\left(\omega_{k}R(i\omega_{k},A)BP(i\omega_{k})^{-1}y_{r}^{k}\right)_{k} \in \ell^{1} \text{ and } \left(\omega_{k}K_{k}^{-1}P(i\omega_{k})^{-1}y_{r}^{k}\right)_{k} \in \ell^{2}$$
we have

$$\int_{t}^{t+1} \|y(s) - y_{\text{ref}}(s)\| ds = O\left(\frac{1}{t^{1/\alpha}}\right), \qquad \alpha = \beta + \gamma$$

for "suitable" initial states $x_{e0} \in X \times Z$ (~ classical solutions).

The Robust Output Regulation Problem Controller Design Methods Conclusion Controllers for Passive Systems

Example

$$w_{dist}(t)$$

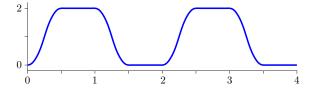
$$\begin{aligned} x_t(\xi,t) &= \Delta x(\xi,t), & y(t) \\ \frac{\partial x}{\partial n}(\xi,t)|_{\Gamma_1} &= u(t), & \frac{\partial x}{\partial n}(\xi,t)|_{\Gamma_0} &= 0 & \longleftarrow \\ y(t) &= \int_{\Gamma_1} x(\xi,t)d\xi, & u(t) \end{aligned}$$

Defines a regular linear system,

$$|P(i\omega)| = O(rac{1}{\sqrt{|\omega|}})$$
 for large $|\omega|$.

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Reference Signal $y_{ref}(t)$



Consider tracking of a nonsmooth 2-periodic reference signal

$$y_{ref}(t) = \sum_{k \in \mathbb{Z}} \hat{y}_{ref}(k) e^{i\pi kt}$$

where $\omega_k = \pi k$ for $k \in \mathbb{Z}$, and $|\hat{y}_{ref}(k)| = O(|k|^{-3})$.

The Robust Output Regulation Problem Controller Design Methods Conclusion

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Robust Controller Construction

Choose $Z = \ell^2(\mathbb{C})$, $\mathcal{G}_1 = \operatorname{diag}(ik\pi)_k$, $\mathcal{G}_2 = K^*$, $D_c > 0$

$$K = \left(\frac{1}{(1+|k|)^{1/2+\varepsilon}}\right)_k \in \mathcal{L}(\ell^2(\mathbb{C}), \mathbb{C}).$$

Then the controller is passive, \mathcal{G}_2 and K bounded, (K, \mathcal{G}_1) approximately controllable.

The Robust Output Regulation Problem Controller Design Methods Conclusion

Simple Controllers Closed-Loop Stability Controllers for Passive Systems

Robust Controller Construction

Choose $Z = \ell^2(\mathbb{C})$, $\mathcal{G}_1 = \operatorname{diag}(ik\pi)_k$, $\mathcal{G}_2 = K^*$, $D_c > 0$

$$K = \left(\frac{1}{(1+|k|)^{1/2+\varepsilon}}\right)_k \in \mathcal{L}(\ell^2(\mathbb{C}), \mathbb{C}).$$

Then the controller is passive, \mathcal{G}_2 and K bounded, (K, \mathcal{G}_1) approximately controllable.

Proposition

The closed-loop is strongly and polynomially stable so that

$$||T_e(t)x_{e0}|| \le \frac{M}{t^{1/\alpha}} ||A_e x_{e0}||, \quad \forall x_{e0} \in \mathcal{D}(A_e),$$

where $\alpha = 3/2 + 2\varepsilon$.

Proof.

$$|P(i\omega)|=O(|\omega|^{-1/2})$$
 and $|K_k|^2=O(|\omega_k|^{2(1/2+\varepsilon)})$

Convergence Rates for the Regulation Error

Proposition

If $0 < \varepsilon < 1/2$, then

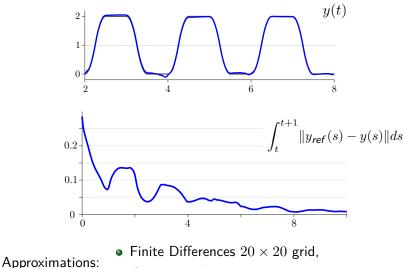
$$\int_t^{t+1} \|y(s) - y_{\text{ref}}(s)\| ds = O\left(\frac{1}{t^{1/\alpha}}\right), \qquad \alpha = 3/2 + 2\varepsilon$$

for "suitable" intial states $x_{e0} \in X \times Z$ (~ classical solutions).

Proof.

The reference signal $y_{ref}(t)$ satisfies

$$\Big(\underline{k}R(ik\pi,A)B\underbrace{P(ik\pi)^{-1}y_r^k}_{O(|k|^{-5/2})}\Big)_k \in \ell^1 \text{ and } \Big(\underline{k}\underbrace{K_k^{-1}P(ik\pi)^{-1}y_r^k}_{O(|k|^{-2+\varepsilon})}\Big)_k \in \ell^2$$



• \mathcal{G}_1 truncated to a 31×31 -matrix.

Property:

Proposition

If \mathcal{G}_2 , K bounded, and $x_0 \in \mathcal{D}(A)$, we can **choose** a "compatible" initial state $z_0 \in Z$ of the controller so that

$$\int_{t}^{t+1} \|y(s) - y_{\text{ref}}(s)\| ds = O\left(\frac{1}{t^{1/\alpha}}\right)$$

is guaranteed.

Conclusions

In this presentation:

- Simple controllers for robust output regulation of passive regular linear systems
- Separate conditions for strong (general), exponential (restrictive), and polynomial stability types
- Analysis of the subexponential convergence rates of the output
- Full closed-loop stability results can also be used in the analysis of coupled PDE-PDE or PDE-ODE systems.
- LP, "Stability and Robust Regulation of Passive Linear Systems," http://arxiv.org/abs/1706.03224