On Perturbation of Strongly Stable Riesz-Spectral Operators

Lassi Paunonen Department of Mathematics Tampere University of Technology

July 20th, 2009

Motivation Main Problem

Main Problem

Problem

Assume

- $A: \mathcal{D}(A) \subset X \to X$ generates a strongly stable C_0 -semigroup
- $B = \langle \cdot, g \rangle b \in \mathcal{L}(X).$

Motivation Main Problem

Main Problem

Problem

Assume

• $A: \mathcal{D}(A) \subset X \to X$ generates a strongly stable C_0 -semigroup

•
$$B = \langle \cdot, g \rangle b \in \mathcal{L}(X).$$

When is the C_0 -semigroup generated by A + B strongly stable?

Motivation Main Problem

Main Problem

Problem

Assume

A: D(A) ⊂ X → X generates a strongly stable C₀-semigroup
B = ⟨·, q⟩b ∈ L(X).

When is the C_0 -semigroup generated by A + B strongly stable?

Special case: $\sigma(A) \subset \mathbb{C}^-$ and $\operatorname{Re} \lambda \to 0$ only as $|\operatorname{Im} \lambda| \to \infty$.

Motivation Main Problem

Motivation

Robust output regulation & an infinite-dimensional signal generator.

Motivation Main Problem

Motivation

Robust output regulation & an infinite-dimensional signal generator.

Strong stabilization of the internal model leads to an operator with spectrum approaching $i\mathbb{R}$ asymptotically.

Motivation Main Problem

Motivation

Robust output regulation & an infinite-dimensional signal generator.

Strong stabilization of the internal model leads to an operator with spectrum approaching $i\mathbb{R}$ asymptotically.

Robustness properties?

Main Problem

Problem

Consider an operator

$$A = \sum_{k \in \mathbb{Z}} \lambda_k \langle \cdot, \phi_k \rangle \phi_k, \quad \mathcal{D}(A) = \left\{ x \mid \sum_{k \in \mathbb{Z}} |\lambda_k|^2 |\langle x, \phi_k \rangle|^2 < \infty \right\}$$

- $\{\phi_k\}$ is an orthonormal basis of a Hilbert space X
- $\{\lambda_k\} \subset \mathbb{C}^-$ and has no finite accumulation points
- $\operatorname{Re} \lambda_k \to 0$ as $|\operatorname{Im} \lambda_k| \to \infty$.

Main Problem

Problem

Consider an operator

$$A = \sum_{k \in \mathbb{Z}} \lambda_k \langle \cdot, \phi_k \rangle \phi_k, \quad \mathcal{D}(A) = \left\{ x \mid \sum_{k \in \mathbb{Z}} |\lambda_k|^2 |\langle x, \phi_k \rangle|^2 < \infty \right\}$$

- $\{\phi_k\}$ is an orthonormal basis of a Hilbert space X
- $\{\lambda_k\} \subset \mathbb{C}^-$ and has no finite accumulation points
- $\operatorname{Re} \lambda_k \to 0$ as $|\operatorname{Im} \lambda_k| \to \infty$.

Determine sets $M, N \subset X$ such that if $b \in M$ and $g \in N$, then a) $\sigma(A + \langle \cdot, g \rangle b) \subset \mathbb{C}^$ b) $A + \langle \cdot, g \rangle b$ generates a strongly stable C_0 -semigroup.

Motivation Main Problem

Earlier Work

- G. M. Sklyar & A. V. Rezounenko (Robustness of a strongly stabilizing feedback)
- S. Caraman (Robustness of strong stability of compact C₀-semigroups)
- Pole placement (Sun Shun-Hua, etc.)

Motivation Main Problem

Asymptotic behaviour of $\sigma(A)$

Assumption (Geometric assumption on $\sigma(A)$)

There exist constants $c, \alpha > 0$ and $y_0 > 0$ such that

$$\operatorname{Re}\lambda_k \leq -\frac{c}{|\operatorname{Im}\lambda_k|^{\alpha}} \quad \text{if} \quad |\operatorname{Im}\lambda_k| \geq y_0$$

Introduction Main Results Extensions Example: Wave Equation Main Results Extensions Semigroup Stability

Main Results

Definition

For $\beta \geq 0$ define a Hilbert space $(M_{\beta}, \|\cdot\|_{\beta})$ such that

$$M_{\beta} = \left\{ x \in X \mid \sum_{k \in \mathbb{Z}} |\lambda_k|^{2\beta} |\langle x, \phi_k \rangle|^2 < \infty \right\}$$
$$\|\cdot\|_{\beta} = \left(\sum_{k \in \mathbb{Z}} |\lambda_k|^{2\beta} |\langle \cdot, \phi_k \rangle|^2 \right)^{\frac{1}{2}}$$

For $n \in \mathbb{N}_0$ we have $M_n = \mathcal{D}(A^n)$ and $||x||_n = ||A^n x||$.

Perturbation of the Spectrum Uniform Boundedness Semigroup Stability

Perturbation of the Spectrum

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$. If $b \in M_{\beta}$ and $g \in M_{\gamma}$ for some $\beta, \gamma \ge 0$ such that $\beta + \gamma \ge \alpha$,

then there exist $\delta_{\beta}, \delta_{\gamma} > 0$ such that

 $\sigma(A+\langle \cdot,g\rangle b)\subset \mathbb{C}^-$

whenever $\|b\|_{\beta} < \delta_{\beta}$ and $\|g\|_{\gamma} < \delta_{\gamma}$.

Perturbation of the Spectrum Uniform Boundedness Semigroup Stability

Perturbation of the Spectrum

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$.

If $b \in M_{\beta}$ and $g \in M_{\gamma}$ for some $\beta, \gamma \ge 0$ such that $\beta + \gamma \ge \alpha$, then there exist $\delta_{\beta}, \delta_{\gamma} > 0$ such that

 $\sigma(A+\langle\cdot,g\rangle b)\subset\mathbb{C}^-$

whenever $\|b\|_{\beta} < \delta_{\beta}$ and $\|g\|_{\gamma} < \delta_{\gamma}$.

Proof.

Using the first Weinstein-Aronszajn formula.

Corollary

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$. If $b \in \mathcal{D}(A^n)$ and $g \in \mathcal{D}(A^m)$ for some $n, m \in \mathbb{N}_0$ such that $n + m \ge \alpha$, then there exist $\delta_n, \delta_m > 0$ such that

 $\sigma(A + \langle \cdot, g \rangle b) \subset \mathbb{C}^-$

whenever $||A^nb|| < \delta_n$ and $||A^mg|| < \delta_m$.

Preservation of Uniform Boundedness

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$.

Denote by $T_B(t)$ the C_0 -semigroup generated by $A + \langle \cdot, g \rangle b$. Then

- If b ∈ M_α, there exits δ > 0 such that T_B(t) is uniformly bounded whenever ||b||_α < δ;
- If g ∈ M_α, there exits δ > 0 such that T_B(t) is uniformly bounded whenever ||g||_α < δ.

Perturbation of the Spectrum Uniform Boundedness Semigroup Stability

Outline of the Proof

Lemma (Casarino & Piazzera)

Let A generate a uniformly bounded C_0 -semigroup T(t) on X and let $B \in \mathcal{L}(X)$. If there exists 0 < C < 1 such that for all $t \ge 0$ and $x \in X$

$$\int_0^t \|BT(s)x\| ds \le C \|x\|,$$

then the semigroup generated by A + B is uniformly bounded.

Perturbation of the Spectrum Uniform Boundedness Semigroup Stability

Outline of the Proof

Lemma (Casarino & Piazzera)

Let A generate a uniformly bounded C_0 -semigroup T(t) on X and let $B \in \mathcal{L}(X)$. If there exists 0 < C < 1 such that for all $t \ge 0$ and $x \in X$

$$\int_0^t \|BT(s)x\| ds \le C \|x\|,$$

then the semigroup generated by A + B is uniformly bounded.

```
Apply this to A + B and A^* + B^*.
```

Preservation of Strong Stability

Proposition

Let $\sigma(A)$ satisfy the geometric assumption for some $\alpha > 0$.

If $b \in M_{\beta}$ and $g \in M_{\gamma}$ for some $\beta, \gamma \ge 0$ such that $\beta \ge \alpha$ or $\gamma \ge \alpha$, then there exist $\delta_{\beta}, \delta_{\gamma} > 0$ such that

$$A + \langle \cdot, g \rangle b$$

generates a strongly stable C_0 -semigroup whenever $||b||_\beta < \delta_\beta$ and $||g||_\gamma < \delta_\gamma$.

Extensions

- $A = \sum \lambda_k \langle \cdot, \psi_k \rangle \phi_k$ is a Riesz spectral operator
 - Straightforward
 - Separate spaces $b \in M_{\beta}$ and $g \in N_{\gamma}$ corresponding to $\{\psi_k\}$ and $\{\phi_k\}$, respectively.

Extensions

- $A = \sum \lambda_k \langle \cdot, \psi_k \rangle \phi_k$ is a Riesz spectral operator
 - Straightforward
 - Separate spaces $b \in M_{\beta}$ and $g \in N_{\gamma}$ corresponding to $\{\psi_k\}$ and $\{\phi_k\}$, respectively.
- A general finite-rank perturbation $B = \sum_{j=1}^m \langle \cdot, g_j \rangle b_j$
 - Using Weinstein-Aronszajn determinant

Strongly Stabilized Wave Equation

Consider a wave equation on (0,1):

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t)$$
$$w(0,t) = w(1,t) = 0$$

where $b_0(z) = \sqrt{3}(1-z)$.

Strongly Stabilized Wave Equation

Consider a wave equation on (0,1):

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t)$$
$$w(0,t) = w(1,t) = 0$$

where $b_0(z) = \sqrt{3}(1-z)$.

Define
$$x = \begin{bmatrix} w \\ \frac{\partial w}{\partial t} \end{bmatrix}$$
 and $A_0 = -\frac{\partial^2}{\partial z^2}$ with domain
 $\mathcal{D}(A_0) = \{ w \in L^2(0,1) \mid w, w' \text{ abs. cont. } w'' \in L^2(0,1), w(0) = w(1) = 0 \}$

Linear system

$$\dot{x} = Ax + Bu, \qquad x(0) = x_0$$

on a Hilbert space $X=\mathcal{D}(A_0^{\frac{1}{2}})\times L^2(0,1).$ Here

$$A = \begin{bmatrix} 0 & I \\ -A_0 & 0 \end{bmatrix}, \qquad B = b = \begin{bmatrix} 0 \\ b_0 \end{bmatrix}$$

and

$$A = \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} in\pi \langle \cdot, \phi_n \rangle \phi_n,$$

where $\{\phi_n\}_n$ is an orthonormal basis of X.

Strong Stabilization

Find feedback K such that $\sigma(A + BK) = \{-\frac{\pi}{|n|^2} + in\pi\}_{\substack{n \in \mathbb{Z} \\ n \neq 0}}$

Now A + BK is a Riesz spectral operator with eigenvalues

$$\mu_n = -\frac{\pi}{|n|^2} + in\pi$$

and eigenfunctions

$$\varphi_n = \frac{\mu_n - \lambda_n}{\langle b, \phi_n \rangle} R(\mu_n, A) b = \sum_{k \neq 0} \frac{n}{k - in^2 k(n-k)} \phi_k$$

Geometric Assumption

The spectrum of A + BK satisfies the geometric assumption for $\alpha = 2$, $c = \pi^3$ and $y_0 = \pi$.

Perturbations

Consider perturbations

$$\frac{\partial^2 w}{\partial t^2}(z,t) = \frac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t) + d_0\left(\langle w, g_1 \rangle_{L^2} + \langle \frac{\partial w}{\partial t}, g_2 \rangle_{L^2}\right)$$

where $d_0, g_2 \in \mathcal{D}(A_0)$ and $g_1 \in L^2(0, 1)$

Perturbations

Consider perturbations

$$rac{\partial^2 w}{\partial t^2}(z,t) = rac{\partial^2 w}{\partial z^2}(z,t) + b_0(z)u(t) + d_0\left(\langle w,g_1
angle_{L^2} + \langle rac{\partial w}{\partial t},g_2
angle_{L^2}
ight)$$

where $d_0, g_2 \in \mathcal{D}(A_0)$ and $g_1 \in L^2(0, 1)$, i.e.

$$\dot{x} = (A + BK)x + d\langle x, g \rangle_X$$

where

$$d = \begin{bmatrix} 0\\ d_0 \end{bmatrix}, \qquad g = \begin{bmatrix} A_0^{-1}g_1\\ g_2 \end{bmatrix}$$

and $d, g \in \mathcal{D}(A_0) \times \mathcal{D}(A_0^{\frac{1}{2}}) = \mathcal{D}(A + BK).$

Spectrum

Now $\alpha = 2$, compute $\delta > 0$ such that $\sigma(A + BK + \langle \cdot, g \rangle d) \subset \mathbb{C}^-$ if $||(A + BK)g|| < \delta$ and $||(A + BK)d|| < \delta$. We can use $\delta = \frac{1}{4}$ and $\sigma(A + BK + \langle \cdot, g \rangle d) \subset \mathbb{C}^-$ whenever $||d'_0||_{L^2} + 21||d_0||_{L^2} < \frac{1}{4}$

$$\sqrt{\|g_1\|_{L^2}^2 + \|g_2'\|_{L^2}^2} < \frac{1}{88}$$

$$\sqrt{\frac{1}{\pi} \|g_1\|_{L^2}^2 + \|g_2\|_{L^2}^2} < \frac{1}{88}$$

Uniform Boundedness

- Since $\alpha = 2$, we need that d or g is in $\mathcal{D}(A + BK)^2$;
- This is a difficult requirement since $\mathcal{R}(B) \not\subset \mathcal{D}(A)$;
- If we choose a smoother b_0 , we need a larger α ;
- Other conditions for preservation of uniform boundedness?
 - Riesz-spectral operators?

Conclusions

- Conditions for the preservation of the property $\sigma(A)\subset \mathbb{C}^-$ and the strong stability of a semigroup
- Application to a wave equation

Thank You!