Saturating Integral Control for
Infinite-Dimensional Linear Systems

Pietro Lorenzetti®, Lassi Paunonen!, Nicolas Vanspranghe!,
and George Weiss?

! Tampere University, Finland
2 Tel Aviv University, Israel
3 CRAN, Université de Lorraine, Nancy, France

December 2023

Funded by Research Council of Finland grant 349002 (2022-2026)

L. Paunonen Saturating Integral Control



Saturating Integral Control Problem Definition
The Saturating Integrator

Introduction

Goal of the talk: Study the output tracking problem for linear
systems.

u(t) y(t)

—»| System [—>»

Problem (Output Tracking)

Design a controller such that the output y(t) of the system
converges to a constant reference yr € R i.e.,

|y(t) - yref’ — 07 as t— o0.
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Problem (Output Tracking)

Design a controller such that the output y(t) of the system
converges to a constant reference y,.f € R i.e.,

ly(t) — yrer| = 0, as t— 0.

In this talk:
o System is linear, stable and single-input-single-output (SISO)
@ System is infinite-dimensional, usually arising from a PDE.
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u(t) y(t)

—>»| System [——>»

Problem (Output Tracking)

Design a controller such that the output y(t) of the system
converges to a constant reference y,.f € R i.e.,

ly(t) — yrer| = 0, as t— 0.

In this talk:
o System is linear, stable and single-input-single-output (SISO)
@ System is infinite-dimensional, usually arising from a PDE.
o Values u(t) € R of the control input are restricted so that

Umin < u(t) < Umax, for all ¢t > 0.
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Applications

Output tracking for infinite-dimensional systems and PDEs:
@ Temperature tracking control, e.g., in manufacturing processes

o Tracking control of flexible robotic manipulators, large-scale
space structures, etc.

Reasons for the limitations umi, < u(t) < Umax
o Naturally arising from operational ranges of actuators:

e Maximal torques of motors
e Maximal voltages and currents of power supply units
o Posivitity constraints: A heater cannot cool things

@ A tool for energy efficiency: Avoid unnecessary use of power
o Can guarantee “anti-windup” by design

o Safety considerations: Avoid deadly voltages
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Saturating Integral Control

For a stable SISO system, the integral controller

t
i(0) = nlyr —(®) (1o ult) = [ (er — y())ds)
can be used in achieving output tracking of the constant y,er € R.

u(t) y(t)

System

Y

— 1 Yref

Integrator

Problem
How can we limit the values of u(t) so that umin < u(t) < Umax?
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Saturating Integral Control

For a stable SISO system, the integral controller

i) =ty =) (ie ult)=n [ r — (61

can be used in achieving output tracking of the constant y,.r € R.

Problem
How can we limit the values of u(t) so that umin < u(t) < Umax?
Solution strategy: Define a differential equation where at each
timet >0

e u(t) is allowed to change freely if Uumin < u(t) < Umax

@ u(t) is not allowed to increase if u(t) = umax

e u(t) is not allowed to decrease if u(t) = umin
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The Saturating Integrator

where

max{y,0} if u < umin,
y(“??J) =3y if ue (umina Umax):
min{y,0} if u > umax.
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The Saturating Integrator

where
max{y,0} if u < umin,
y(u7y) =3y if u e (umina Umax):
min{y,0} if u > umax.
State u(t) of the constrained integrator. Periodic input of the constrained integrator.

0 1 2 3 4 5 6
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Background

The saturating integrator can be used for output tracking:
o Lorenzetti-Weiss 2023: Stable nonlinear SISO systems

o Matlab: “limited integrator”
@ Also: Lorenzetti—-Weiss 2022: Stable nonlinear MIMO systems

Other closely related designs:

@ Pl for nonlinear systems: Desoer—Lin '85, Konstantopoulos et. al.
'16, Guiver et. al. '17, Simpson-Porco '21,

@ Pl for co-dim with saturation: Logemann—Ryan—Townley '98-'04.
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Background

The saturating integrator can be used for output tracking:
o Lorenzetti-Weiss 2023: Stable nonlinear SISO systems

o Matlab: “limited integrator”
@ Also: Lorenzetti—-Weiss 2022: Stable nonlinear MIMO systems

Other closely related designs:

@ Pl for nonlinear systems: Desoer—Lin '85, Konstantopoulos et. al.
'16, Guiver et. al. '17, Simpson-Porco '21,

@ Pl for co-dim with saturation: Logemann—Ryan—Townley '98-'04.

Novelty in our work:
@ Proof that the saturating integrator works for linear but
infinite-dimensional SISO systems.
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Main Theorem
Main Results Constrained Tracking for a Wave Equation

Motivation: A Linear Finite-Dimensional System

Using the saturating integral controller for (A, B, C, D) leads to
the closed-loop system

z(t) = Ax(t) + Bu(t), xz(0) = zp € R
y(t) = Cx(t) + Du(t)
u(t) = L (u(t), K(yrer — y(t))), u(0) =ug € R.
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Motivation: A Linear Finite-Dimensional System

Using the saturating integral controller for (A, B, C, D) leads to
the closed-loop system

z(t) = Ax(t) + Bu(t), xz(0) = zp € R
y(t) = Cx(t) + Du(t)
u(t) = L (u(t), K(yrer — y(t))), u(0) =ug € R.

Theorem (Lorenzetti-Weiss '23)

Assume that the system is stable and P(0) = C(—A)"'B+D > 0.
There exists k* > 0 such that if k € (0,k*) and if y..r € R satisfies

Yref
P(0)
then for some o« > 0 we have

Umin < < Umax;

o0

eyer—yt) ZF 0 Vag € R, ug € R.
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Main Result: A Well-Posed Linear System

Consider a “Well-Posed Linear System" (A, B,C, P) on an
infinite-dimensional state space X,

x(t) = Az(t) + Bu(t), z(0) =29 X
y(t) = "Cx(t) + Du(t)"
a(t) = 7 (u(t), K(yrer — y(t))), u(0) =up € R.
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Main Result: A Well-Posed Linear System

Consider a “Well-Posed Linear System" (A, B,C, P) on an
infinite-dimensional state space X,

x(t) = Az(t) + Bu(t), z(0) =29 X
y(t) = "Cx(t) + Du(t)"
a(t) = 7 (u(t), K(yrer — y(t))), u(0) = ug € R.

Theorem (Main Result)

Assume the system is exponentially stable and P(0) > 0. There
exists K* > 0 such that if k € (0,k™) and if y.of € R satisfies

Yref
P(0)
then for some o« > 0 we have

0o
/ eat|yref_ y(t)Pdt < 00, VQZQ S X, Uy € R.
0

Umin < < Umax,
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Main Theorem
Main Results Constrained Tracking for a Wave Equation

The Main Challenges

@ The function . in the saturating integrator is discontinuous,
and difficult to define for L2-inputs.

~ We prove helpful contractivity properties of the input-output
map of the integrator.

L. Paunonen Saturating Integral Control



Main Theorem
Main Results Constrained Tracking for a Wave Equation

The Main Challenges

@ The function . in the saturating integrator is discontinuous,
and difficult to define for L2-inputs.

~ We prove helpful contractivity properties of the input-output
map of the integrator.

e For a well-posed linear system (A, B, C, P), the existence of
solutions of the (nonlinear) closed-loop system need to be
analysed carefully.

~ We use nonlinear feedback techniques for WPS.
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The Main Challenges

@ The function . in the saturating integrator is discontinuous,
and difficult to define for L2-inputs.

~ We prove helpful contractivity properties of the input-output
map of the integrator.

e For a well-posed linear system (A, B, C, P), the existence of
solutions of the (nonlinear) closed-loop system need to be
analysed carefully.

~ We use nonlinear feedback techniques for WPS.

o Global exponential closed-loop stability and convergence of
the tracking error using Lyapunov methods.

~~ The Lyapunov methods (inspired by singular perturbations)
can be used on oco-dim spaces, with certain technicalities.
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A Boundary Controlled Wave Equation

Consider a wave equation on £ € [0, 1],

0w 0w ow
L6t =960 - a© (),

?%(O,t) = u(t), w(1,t) =0, Tm

| N_"

u(t) = 27“5”(»:0,13,

where a € C[0,1], «(§) > 0, and « # 0, and where & is fixed.

~ Can be represented as a well-posed linear system with state
z(t) = (w(-,t),0w(-,t)) on X = H}(0,1) x L(0,1).

~ SISO and exponentially stable due to the damping with
a #0, and P(0) > 0.
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A Boundary Controlled Wave Equation

Result
There exists k* > 0 such that if k € (0,k*) and if y.of € R satisfies

then
ow

a€ dt < oo,

(507 t) — Yref

> at
0

for some o > 0 and for all xq € X and ug € R.

In addition, for initial conditions zg € X and ug € R satisfying the
boundary conditions at ¢ = 0, we have

w
3
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Numerical lllustration

Output y(t) (red) and the reference r(t) (blue)

T T T T T T

0 2 4 6 8 10 12 14 16 Additional property:

Regulation error y(t) — r(t)

If uy outside [umin, Umax],

then the integrator will bring
-10 T T T T T T T

o 2 4 6 & 10 1 14 1 u(t) to the interval and keep
Control input u(t) |t there.
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Numerical lllustration

The Bottom Line:
The saturating integrator works for most stable PDE systems!

Thank you!
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