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Introduction

Goal of the talk: Study the output tracking problem for linear
systems.

System
u(t) y(t)

Problem (Output Tracking)
Design a controller such that the output y(t) of the system
converges to a constant reference yref ∈ R i.e.,

|y(t) − yref | → 0, as t → ∞.
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Design a controller such that the output y(t) of the system
converges to a constant reference yref ∈ R i.e.,

|y(t) − yref | → 0, as t → ∞.

In this talk:
System is linear, stable and single-input-single-output (SISO)
System is infinite-dimensional, usually arising from a PDE.

Values u(t) ∈ R of the control input are restricted so that

umin ≤ u(t) ≤ umax , for all t ≥ 0.

L. Paunonen Saturating Integral Control



Saturating Integral Control
Main Results

Problem Definition
The Saturating Integrator

Introduction

System
u(t) y(t)

Problem (Output Tracking)
Design a controller such that the output y(t) of the system
converges to a constant reference yref ∈ R i.e.,

|y(t) − yref | → 0, as t → ∞.

In this talk:
System is linear, stable and single-input-single-output (SISO)
System is infinite-dimensional, usually arising from a PDE.
Values u(t) ∈ R of the control input are restricted so that

umin ≤ u(t) ≤ umax , for all t ≥ 0.

L. Paunonen Saturating Integral Control



Saturating Integral Control
Main Results

Problem Definition
The Saturating Integrator

Applications
Output tracking for infinite-dimensional systems and PDEs:

Temperature tracking control, e.g., in manufacturing processes
Tracking control of flexible robotic manipulators, large-scale
space structures, etc.

Reasons for the limitations umin ≤ u(t) ≤ umax
Naturally arising from operational ranges of actuators:

Maximal torques of motors
Maximal voltages and currents of power supply units
Posivitity constraints: A heater cannot cool things

A tool for energy efficiency: Avoid unnecessary use of power
Can guarantee “anti-windup” by design
Safety considerations: Avoid deadly voltages
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Saturating Integral Control
For a stable SISO system, the integral controller

u̇(t) = κ(yref − y(t))
(

i.e. u(t) = κ

∫ t

0
(yref − y(s))ds

)
can be used in achieving output tracking of the constant yref ∈ R.

System

Integrator

u(t) y(t)

yref−

Problem
How can we limit the values of u(t) so that umin ≤ u(t) ≤ umax?

Solution strategy: Define a differential equation where at each
time t ≥ 0

u(t) is allowed to change freely if umin < u(t) < umax
u(t) is not allowed to increase if u(t) = umax
u(t) is not allowed to decrease if u(t) = umin
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The Saturating Integrator

u̇(t) = S (u(t), κ(yref − y(t)))

where

S (u, y) =


max{y, 0} if u ≤ umin,

y if u ∈ (umin, umax ),
min{y, 0} if u ≥ umax .
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Background

The saturating integrator can be used for output tracking:
Lorenzetti–Weiss 2023: Stable nonlinear SISO systems
Matlab: “limited integrator”
Also: Lorenzetti–Weiss 2022: Stable nonlinear MIMO systems

Other closely related designs:
PI for nonlinear systems: Desoer–Lin ’85, Konstantopoulos et. al.
’16, Guiver et. al. ’17, Simpson-Porco ’21,

PI for ∞-dim with saturation: Logemann–Ryan–Townley ’98–’04.

Novelty in our work:
Proof that the saturating integrator works for linear but
infinite-dimensional SISO systems.
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Motivation: A Linear Finite-Dimensional System
Using the saturating integral controller for (A, B, C, D) leads to
the closed-loop system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Rn

y(t) = Cx(t) + Du(t)
u̇(t) = S (u(t), κ(yref − y(t))), u(0) = u0 ∈ R.

Theorem (Lorenzetti–Weiss ’23)
Assume that the system is stable and P (0) = C(−A)−1B + D > 0.
There exists κ∗ > 0 such that if κ ∈ (0, κ∗) and if yref ∈ R satisfies

umin <
yref

P (0) < umax,

then for some α > 0 we have
eαt|yref − y(t)| t→∞−→ 0 ∀x0 ∈ Rn, u0 ∈ R.
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ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Rn

y(t) = Cx(t) + Du(t)
u̇(t) = S (u(t), κ(yref − y(t))), u(0) = u0 ∈ R.

Theorem (Lorenzetti–Weiss ’23)
Assume that the system is stable and P (0) = C(−A)−1B + D > 0.
There exists κ∗ > 0 such that if κ ∈ (0, κ∗) and if yref ∈ R satisfies

umin <
yref

P (0) < umax,

then for some α > 0 we have
eαt|yref − y(t)| t→∞−→ 0 ∀x0 ∈ Rn, u0 ∈ R.

L. Paunonen Saturating Integral Control



Saturating Integral Control
Main Results

Main Theorem
Constrained Tracking for a Wave Equation

Main Result: A Well-Posed Linear System
Consider a “Well-Posed Linear System” (A, B, C, P ) on an
infinite-dimensional state space X,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X

y(t) = “Cx(t) + Du(t)”
u̇(t) = S (u(t), κ(yref − y(t))), u(0) = u0 ∈ R.

Theorem (Main Result)
Assume the system is exponentially stable and P (0) > 0. There
exists κ∗ > 0 such that if κ ∈ (0, κ∗) and if yref ∈ R satisfies

umin <
yref

P (0) < umax,

then for some α > 0 we have∫ ∞

0
eαt|yref − y(t)|2dt < ∞, ∀x0 ∈ X, u0 ∈ R.
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The Main Challenges

The function S in the saturating integrator is discontinuous,
and difficult to define for L2-inputs.

; We prove helpful contractivity properties of the input-output
map of the integrator.

For a well-posed linear system (A, B, C, P ), the existence of
solutions of the (nonlinear) closed-loop system need to be
analysed carefully.

; We use nonlinear feedback techniques for WPS.
Global exponential closed-loop stability and convergence of
the tracking error using Lyapunov methods.

; The Lyapunov methods (inspired by singular perturbations)
can be used on ∞-dim spaces, with certain technicalities.
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A Boundary Controlled Wave Equation

Consider a wave equation on ξ ∈ [0, 1],

∂2w

∂t2 (ξ, t) = ∂2w

∂ξ2 (ξ, t) − α(ξ)∂w

∂t
(ξ, t),

∂w

∂ξ
(0, t) = u(t), w(1, t) = 0,

y(t) = ∂w

∂ξ
(ξ0, t),

where α ∈ C[0, 1], α(ξ) ≥ 0, and α ̸= 0, and where ξ0 is fixed.
; Can be represented as a well-posed linear system with state

x(t) = (w(·, t), ∂tw(·, t)) on X = H1
r (0, 1) × L2(0, 1).

; SISO and exponentially stable due to the damping with
α ̸= 0, and P (0) > 0.
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A Boundary Controlled Wave Equation
Result
There exists κ∗ > 0 such that if κ ∈ (0, κ∗) and if yref ∈ R satisfies

umin <
yref

P (0) < umax,

then ∫ ∞

0
eαt

∣∣∣∣∂w

∂ξ
(ξ0, t) − yref

∣∣∣∣2dt < ∞,

for some α > 0 and for all x0 ∈ X and u0 ∈ R.

In addition, for initial conditions x0 ∈ X and u0 ∈ R satisfying the
boundary conditions at t = 0, we have

eαt

∣∣∣∣∂w

∂ξ
(ξ0, t) − yref

∣∣∣∣ → 0, as t → ∞.
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Numerical Illustration

Additional property:

If u0 outside [umin, umax ],
then the integrator will bring
u(t) to the interval and keep
it there.
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Numerical Illustration

The Bottom Line:
The saturating integrator works for most stable PDE systems!

Thank you!
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