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Main Objective

Problem
Generalize the Internal Model Principle of robust output regulation
to distributed parameter systems and nonsmooth reference signals.
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The System
Generation of Nonsmooth Reference Signals
The Internal Model Principle

Consider a plant

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)

where u(t) is the control input and y(t) the measured output.

The plant is an infinite-dimensional system on a Banach space X .
Covers PDEs, systems with delays, transport equations, infinite
platoons etc.
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The Control Problem

Problem (Robust Output Regulation)
Choose a control law in such a way that

The output y(t) tracks a given reference signal yref(t)
asymptotically, i.e.

lim
t→∞

‖y(t)− yref(t)‖ = 0

The above property is robust with respect to small
uncertainties and changes in the parameters of the plant.

Origins:

For finite-dimensional linear systems, Francis & Wonham, Davison
in the 1970’s.
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The Exosystem and the Control Scheme
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Classes of Periodic Nonsmooth Reference Signals

S
yref (t)

Figure: Examples of generated reference signals
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The Exosystems, An Overview

The infinite-dimensional exosystem

v̇(t) = Sv(t), v0 ∈W
yref (t) = Fv(t)

on a Hilbert space W , with S unbounded block-diagonal operator.

Signals:

yref (t) = tnyn(t) + · · ·+ ty1(t) + y0(t)

where yj(·) are periodic functions.
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The Internal Model Principle

Theorem (Francis & Wonham, 1970’s)
A stabilizing feedback controller solves the robust output
regulation problem if and only if it contains p copies of the
dynamics of the signal generator.

Here p = dim Y , the number of outputs.

The “contains p copies of the dynamics” means (roughly) that
for any Jordan block in the signal generator there must
be p Jordan blocks of equal or greater size in the
controller (associated to the same eigenvalue).
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Feedback Controller
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The p-Copy Internal Model Principle
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Earlier Work on Generalizing the IMP

B. A. Francis & W. M. Wonham – The finite-dimensional
Internal Model Principle, 1970’s
M. K. P. Bhat – Partial extension for distributed parameter
systems, 1976
E. Immonen – Partial extension for nonsmooth reference
signals, 2006
Y. Yamamoto – In the frequency domain, 1988.
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Main Result

LP & S. Pohjolainen, SIAM J. Control Optim. (2010):

Theorem
Generalization of the Internal Model Principle by Francis &
Wonham for distributed parameter systems and nonsmooth
reference signals.
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Main Result

LP & S. Pohjolainen, SIAM J. Control Optim. (2010):

Theorem
Generalization of the Internal Model Principle by Francis &
Wonham for distributed parameter systems and nonsmooth
reference signals.

i.e. for every Jordan block of dimension n in the exosystem, the
system operator of the controller must have p Jordan chains of
lengths ≥ n.
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Main Result

LP & S. Pohjolainen, SIAM J. Control Optim. (2010):

Theorem
Generalization of the Internal Model Principle by Francis &
Wonham for distributed parameter systems and nonsmooth
reference signals.

Due to infinite-dimensionality and nonsmooth signals: Additional
conditions relating

Behavior of the system’s transfer function at infinity on iR
(Note, not holomorphic at ∞ for DPS).
The smoothness properties of the reference signals.
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Example: Heating of a metal bar

-diffusioncontrol
?

6measurement
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Remarks on the Theorem

Remark
The proof of the Internal Model Principle is largely based on
requiring robustness with respect to perturbations to the output
operators of the exosystem.

Allowing such perturbations is often unnecessary (in particular, if
reference signals are known accurately).
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Robustness w.r.t. a Restricted Class of Perturbations

Problem
If we are only interested in robustness with respect to a specific
class of perturbations, we can then ask

how big an internal model do we need?

i.e., how many times must the dynamics of the exosystem be
copied in the controller.
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Main Result

A full internal model is necessary for robustness with respect to all
small perturbations in any one of the operators.

Theorem
If the control law is robust with respect to all small rank one
perturbations in any one of the operators A, B, C , or D of the
plant, then the controller necessarily incorporates a p-copy internal
model of the exosystem.

LP & S. Pohjolainen - Reduced Order Internal Models in Robust
Output Regulation, Submitted.
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Example: A MIMO Wave Equation
Set-point regulation (yref (t) ≡ yr ∈ Cp or yr ∈ Y Banach space)
of a system

∂2w
∂t2 (z, t)−α

∂w
∂t (z, t) = ∂2w

∂z2 (z, t) + Bu(t)

y(t) = Cw(·, t).

Example
We can build a 1-dimensional controller that is robust with respect
to all sufficiently small perturbations in α.

LP & S. Pohjolainen - Reduced Order Internal Models in Robust
Output Regulation, Submitted.
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Conclusions

In this presentation.

Internal Model Principle for distributed parameter systems
with infinite-dimensional exosystems.
A more detailed look into perturbations and robustness
properties.
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