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1 Introduction

The term Partial Differential Equation (PDE) is a general name used to describe
a differential equation whose solution depends on more than one variable and in-
cludes partial derivatives with respect to more than one of these variables. In partic-
ular, the following equations are examples of PDEs

∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) = 0, x, y ∈ [0, 1] (1)

∂f

∂t
(x, t) = a(x)

∂2f

∂x2
(x, t) + b(x)

∂f

∂x
(x, t), x ∈ [0, 1], t ≥ 0 (2)

∂f

∂t
(x, t) = f(x, t)

∂f

∂x
(x, t)− ∂3f

∂x3
(x, t), x ∈ [0, 1], t ≥ 0 (3)

The most typical variables in the partial differential equations used in mathematical
modeling are spatial coordinates (usually denoted with ’x, y, z’) and time (denoted
with “t”).

In these lectures we will concentrate our attention to models that include time. Such
models are used in describing dynamical behaviour, or behaviour evolving with
time. Particular examples of phenomena that are modeled with partial differential
equations include the following.

• Models of vibrations in materials and waves in liquids.

• Models of flows of liquids and gases.

• Models of electromagnetic fields and radiation via Maxwell’s equations.

• Models of distribution of heat and diffusion of materials.

On the other hand, PDE models without the time variable are called static, and they
are widely used especially in the study of mechanical structures.

We will also only study linear PDEs, which means that the equation does not con-
tain products or powers of the unknown function f or its derivatives. In the above
examples the equations (1) and (2) are linear, and equation (3) is nonlinear (due
to the first term on the right-hand side).

2 Terminology and Basic Properties of PDEs

The existence and uniqueness of solutions of partial differential equations are ques-
tions that are very relevant from a mathematical point of view, but especially in the
case of nonlinear models finding precise answers to these questions may be diffi-
cult or even impossible. The solvability and properties of linear partial differential
equations are understood quite well, and in many (but not all!) situations nonlinear
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equations may be approximated with sufficient accuracy with linearized models. In
these lectures we will not consider the solvability properties of PDEs in detail, and
we will also not consider the detailed properties of the solution function f . However,
as a general rule you should note that if an equation depending on x and t contains
a partial derivative with respect to x, then one should be able to compute this partial
derivative for the solution f(x, t) for any x and t, and so on. The existence of the
partial derivatives (for some (x, t)) also implies that the solution f(x, t) is continuous
(at (x, t)).

The order of the partial differential equation with respect to a variable refers to the
order of the highest partial derivative with respect to that variable. In particular, in
the examples in Section 1 we have that

• Equation (1) is of order 2 with respect to both x and y.

• Equation (2) is of order 1 with respect to t and of order 2 with respect to x.

• Equation (3) is of order 1 with respect to t and of order 3 with respect to x.

When the partial differential equation contains variables related to the spatial co-
ordinates x, y, and z, the (spatial) domain of the PDE refers to the range of the
variables (x, y, z) where the PDE is defined. In particular, if we want to consider the
distribution of heat in a room with dimensions l > 0 (width), d > 0 (depth) and
h > 0 (height), we can define the partial differential equation for the variables x, y, z
so that

x ∈ [0, `], y ∈ [0, d], z ∈ [0, h],

and the domain of the heat equation model will be the three-dimensional region
[0, `]× [0, d]× [0, h] ⊂ R3.

In equations depending on the time variable t we consider the solution of the PDE
for t ≥ t0, i.e., starting from some initial time t0 ∈ R. In this situation we add to the
PDE a condition that specifies what the solution of the equation is at the initial time
t = t0, and this is called an initial condition for the PDE. For example, if f(x, y, z, t)
describes the temperature at the coordinates (x, y, z) at the time t, and we want
to study the behaviour of the temperature f for times t ≥ t0, we specify an initial
condition

f(x, y, z, t0) = g(x, y, z), (x, y, z) ∈ [0, `]× [0, d]× [0, h]

where g is a function that describes what are the temperatures in the coordinates
(x, y, z) inside the room at time t = t0.

The definition of a PDE also requires so-called boundary condition, which deter-
mine the properties of the solution on the edges of the domain. There are different
types of boundary conditions, and the two most typical ones are the following:
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• Dirichlet boundary conditions: The solution of the PDE is required to have
specific values on the edges of the domain. For example for the equation (1)
we could require that

f(x, 0) = h1(x), f(x, 1) = h2(x), ∀x ∈ [0, 1]

f(0, y) = h3(y), f(1, y) = h4(y), ∀y ∈ [0, 1]

where h1, h2, h3, and h4 are functions defined on [0, 1].

• Neumann boundary conditions: The normal derivative

∂f

∂n
(x, y, z, t) = ∇f(x, y, z, t) · n(x, y, z)

of the solution f(x, y, z, t) is required to have specific values on the boundary
of the domain. Here ∇f(x, y, z, t) = (∂f

∂x
, ∂f
∂y
, ∂f
∂z

)T is the gradient of f and
n(x, y, z) is the unit normal vector of the boundary of the domain at the point
(x, y, z).

Both Dirichlet and Neumann boundary conditions are discussed in more detail in the
following sections.

Remark. It is important to note that in order for the PDE to have a well-defined so-
lution, the initial condition must be in agreement with the boundary conditions.
That is, the function describing the solution of the equation at the initial time t = t0
needs to satisfy the boundary conditions. There are also other (weaker) notions of
solutions of PDEs where this is not required, but such weak and mild solutions
outside the scope of this course.

2.1 Numerical Solutions and Visualization

Finding an explicit formula for the solution of a partial differential equation can be
very difficult or even impossible, but the solutions can be approximated with numer-
ical methods. Numerical approximation methods for PDEs include the following (in
the case of two spatial variables x and y and time t).

• Finite Differences: The domain of the PDE is divided into a grid consisting
of small rectangles, and the solution f(x, y, t) is approximated at the corners
of these rectangles (the “nodes” of the grid). This method is very simple to
implement for rectangular domains.

• Finite Element Method: A bit more advanced method than Finite Differences.
The domain of the PDE is divided into triangles instead of rectangles. The
Finite Element Method works very well for domains of various shapes.

The above methods are only mentioned here as a reference, and they are not studied
in detail in these lecture notes.
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In approximating the solutions of partial differential equations with dependence on
time t it is common to only approximate the partial derivatives associated to the
spatial variables (x, y, z), and leave the partial derivatives with respect to t in the
equation. This way, the PDE can be reduced to a system of ordinary differential
equations with the variable t. Such systems can be solved efficiently in Matlab using
functions such as ode45 and ode15s.

PDEs with only two variables, especially those depending on t ≥ t0 and one spatial
variable x ∈ [0, `], can also be solved with the Matlab function pdepe. The use of the
pdepe function is illustrated in the Matlab codes associated to the lectures.

For solving and illustrating PDEs including two or three spatial variables (and the
possible time t) Matlab includes the “PDE Toolbox” (initiated with the command
pdetool). PDE Toolbox uses the Finite Element Method in approximating the solu-
tions of the equations.

3 The One-Dimensional Heat Equation

In this section we study a partial differential equation called the heat equation.
This equation is used to describe various processes involving diffusion of heat and
substances. We concentrate on the situation where the equation has one spatial
variable x and all the physical parameters are constant (see Section 3.1 for a full list
of the parameters). In this case the heat equation is of the form

∂T

∂t
(x, t) = α

∂2T

∂x2
(x, t) +

1

cρ
q(x, t), x ∈ [0, `], t ≥ 0 (4a)

T (x, 0) = Tinit(x), x ∈ [0, `] (4b)

T (0, t) = T0, T (`, t) = T`. (4c)

The physical parameters have the following meanings. We assume all parameters to
be constant throughout the length of the rod.

• K > 0 is the thermal conductivity of the material.

• c > 0 is the specific heat capacity of the material, i.e., the amount of en-
ergy required to increase the temperature of a unit mass of material with one
degree.

• ρ > 0 is the mass density of the material.

• α = K
cρ

is the thermal diffusivity of the material.

The term 1
cρ
q(x, t) is a source term which describes the heat generated or lost in-

ternally in the material, and the heat added or removed from the material due to
external actions. The initial condition of the PDE is given in (4b) and the boundary
condition (4c) indicate that for all times the solution has constant values T0 and
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T` at the endpoints of the domain [0, `]. It should be noted that also other bound-
ary conditions would be possible depending on the physical situation, and these are
discussed later in Section 3.3.

The physical parameters of actual materials can often be measured with suitable
test setups. For example, the parameter α can be determined using Flash Laser
Analysis (see https://en.wikipedia.org/wiki/Laser_flash_analysis). Estimating the
parameters based on measurements is also a topic of one of the exercise problems in
Section 5.

The equation (4) can be used to describe the evolution of the temperature profile in
a thin metal rod of uniform material, as in Figure 1.

High temperature Transition area Low temperature

Figure 1: The Heat Distribution in a Metal Rod.

To be more precise, each of the assumptions “thin”, “metal”, and “uniform material”
have the following implications:

• The rod should be “thin” in the sense that the spreading out of the heat happens
mostly in the x direction, and not as much in other directions.

• Rod should be metal or some other material that has good and even conduc-
tance of heat throughout its length.

• The material should be “uniform” in the sense that the spreading of the heat
happens in a similar way in all parts of the rod. If this is not true, then some of
the physical parameters K, c, and ρ can depend on the variable x instead, and
the heat equation will have a slighly different form (see e.g., “Heat equation”
in Wikipedia for more information).

• The rod should also be “insulated” from its surroundings in such a way that the
amount of heat escaping from the rod through its sides is very small compared
to the amount of heat flowing inside the rod itself.

If these conditions are (at least roughly) met, then the the heat equation (4) de-
scribes the evolution of the temperature in the rod so that

• T (x, t) is the temperature of the rod at the position x ∈ [0, `] for all times t > 0.
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• The two endpoints of the rods are held in constant temperatures T (0, t) = T0
and T (`, t) = T`.

• Initially at time t = 0 the temperature distribution in the rod is given by the
function Tinit(x).

3.1 Derivation of the Heat Equation

In this section we derive the PDE model (4) from the physical principles and conser-
vation laws. For simplicity, we will only do this in the situation where the equation
does not have a source term, i.e., q(x, t) ≡ 0. We consider a situation depicted in
Figure 2.

Area = A

0 x x+ ∆x `

Figure 2: The slice [x, x+ δ]

Our aim is to show that at each time t > 0 and at each position x ∈ [0, `] the partial
differential equation (4a) describes the behaviour of the temperature in the rod in
Figure 2. We denote by T (x, t) the temperature of the rod at position x ∈ [0, `] and
at time t > 0. We use the following two properties:

(1) Fourier’s law: Heat flows from areas of higher temperature to those of lower
temperature in such a way that the “rate of heat flowing through a surface per
unit area is propotional to the negative temperature gradient”, i.e.,

rate of heat flow = −AK∂T

∂x
(x, t)

where A is the area of the surface and K is the thermal conductivity.

(2) Conservation of energy: Without internal heat sources or sinks the change of
energy in a given region of the rod is determined by the heat flowing through
its boundaries.

Consider a piece of the rod beginning at x and ending at x + ∆x, where ∆x > 0 is
assumed to be so small that the temperature in the rod between x and ∆x is T (x, t)
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at time t > 0 (see Figure 2). At time t > 0 the amount of heat energy in this piece of
the rod is given by

Eheat(t) = c×mass× temperature at time t,

where c > 0 is the specific heat capacity. Since the mass of the piece of rod is ρA∆x
where A is the area of its intersection (assumed to be constant), and its temperature
is T (x, t) at time t > 0, we can write

Eheat(t) = c · ρA∆x · T (x, t). (5)

Let ∆t > 0 be small. Since there are no internal heat sources or sinks, the conserva-
tion of energy tells us that the change of energy in the piece of the rod on the time
interval [t, t+∆t] depends only on the amount of heat flowing in and out of the piece
through its edges at x and x+ ∆x, i.e.,

Change of Eheat(t) = (heat flowing in at x) − (heat flowing out at x+ ∆x)

Since ∆t is small, the amount of heat flowing in and out of the piece of rod is
approximately the rate of the heat flow times ∆t. The Fourier’s law then tells us that

Change of Eheat(t) = (heat flowing in at x) − (heat flowing out at x+ ∆x)

= ∆t ·
(
−KA∂T

∂x
(x, t)

)
−∆t ·

(
−KA∂T

∂x
(x+ ∆x, t)

)
= KA ·∆t

(
∂T

∂x
(x+ ∆x, t)− ∂T

∂x
(x, t)

)
.

On the other hand, this change of Eheat(t) on the interval is precisely Eheat(t+ ∆t)−
Eheat(t), and using the formula (5) we get an equation

cρA∆x · T (x, t+ ∆t)− cρA∆x · T (x, t) = KA ·∆t
(
∂T

∂x
(x+ ∆x, t)− ∂T

∂x
(x, t)

)
,

which is equivalent to

T (x, t+ ∆t)− T (x, t)

∆t
=
K

cρ
· 1

∆x

(
∂T

∂x
(x+ ∆x, t)− ∂T

∂x
(x, t)

)
.

Letting ∆x→ 0 and ∆t→ 0 we get a limit

∂T

∂t
(x, t) =

K

cρ
· ∂
∂x

(
∂T

∂x
(x, t)

)
=
K

cρ
· ∂

2T

∂x2
(x, t),

which is precisely (4a) with α = K
cρ

.

3.2 The Solution of the Heat Equation

The characteristic property of the heat equation (4) is that the heat in the system
diffuses from the areas of high temperature to those of low temperature. Over time,
without any additional sources of heat, the heat in the system distributes evenly.
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Explicit Solution of the Homogeneous Equation

The heat equation (4) is homogeneous if the source term is identically zero, i.e.,
q(x, t) ≡ 0. In this case the solution of the heat equation with Dirichlet boundary
conditions

u(0, t) = 0, u(`, t) = 0, (6)

can be determined using the method called separation of variables. In this method
we “separate” the dependence of the variables x and t in T (x, t) by searching for a
solution of the form

T (x, t) = φ(t)T0(x).

If we substitute this function to (4a), we get

φ′(t)T0(x) = αφ(t)T ′′0 (x) ⇔ 1

α

φ′(t)

φ(t)
=
T ′′0 (x)

T0(x)
.

Since in the latter expression, the left-hand side depends only on t and the right-
hand side only on x, both of the quantities must be equal to a constant value λ ∈ R.
Because of this, the functions φ(t) and T0(t) must satisfy the ordinary differential
equations

φ′(t) = αλφ(t), T ′′0 (x) = λT0(x).

The first equation has a unique solution

φ(t) = eαλtφ(0).

If λ = 0, the second equation has a unique solution T0(x) = ax+ b. However, in this
case the boundary conditions (6) can only be satisfied if a = b = 0. This corresponds
to the trivial solution T (x, t) ≡ 0. If λ 6= 0, the second equation has a general solution
given by

T0(x) = Aλe
√
−λx +Bλe

−
√
−λx, x ∈ [0, `].

The values of Aλ and Bλ are determined by the boundary conditions (6). In partic-
ular, T (0, t) = 0 requires that Aλ +Bλ = T0(0) = 0, and thus

T0(x) = Aλ(e
√
−λx − e−

√
−λx), x ∈ [0, `].

If λ < 0, then e
√
−λ` 6= e−

√
−λ`, and therefore the boundary condition T (`, t) = 0

can only be satisfied if Aλ = 0, which again leads to the trivial solution T (x, t) ≡ 0.
Finally, if λ > 0, then the boundary condition T (`, t) = 0 is satisfied if and only if

e
√
−λ` = e−

√
−λ` ⇔ e2i

√
λ` = 1 ⇔ 2

√
λ` = 2πn, n ∈ N

⇔ λ =
n2π2

`2
, n ∈ N.
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Combining with the formula φ(t) = eαλtφ(0) this means that for every n ∈ N the
function

Tn(x, t) = C̃ne
−αn

2π2

`2
t
(
ei
nπ
`
x − e−i

nπ
`
x
)

= Cne
−αn

2π2

`2
t sin

(nπ
`
x
)

(7)

is a solution of the heat equation for any constant Cn ∈ C. Note that if T1(x, t) and
T2(x, t) are two solutions of the heat equation (4a) with boundary conditions (6),
then also T1(x, t) + T2(x, t) is a solution satisfying the same boundary conditions.
Moreover, it turns out that the general solution of the heat equation (4a) with the
boundary conditions (6) can be represented as an infinite linear combination of the
terms of the form (7),

T (x, t) =
∞∑
n=1

Cne
−αn

2π2

`2
t sin

(nπ
`
x
)
.

It remains to determine the coefficients Cn based on the initial condition T (x, 0) =
Tinit(x). Setting t = 0 in the above formula we get T (x, 0) =

∑∞
n=1Cn sin

(
nπ
`
x
)
. Then

the theory of Fourier series tells us that the coefficients {Cn}n can be computed with
the formulas

Cn =
2

`

∫ `

0

Tinit(x) sin
(nπ
`
x
)
dx, n ∈ N.

Effect of the Physical Parameters and the Source Term

The higher parameter α > 0 makes the diffusion process faster. As we saw in the
previous section, α = K

cρ
, where K is the thermal conductivity, c is the specific

heat capacity, and ρ the density of the material. This means that the higher ther-
mal conductivity speeds up the diffusion, whereas higher specific heat capacity and
higher density slow it down. Figure 3 shows the solution of the heat equation for
three different parameters α. The boundary conditions and the initial condition of
the equation are chosen as

T (0, t) = 1, T (1, t) = 0, T (x, 0) = 10x(1− x)2 + 1− x, f(x, t) ≡ 0.
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Figure 3: Heat diffusion for 3 different parameters α ∈ {0.1, 0.2, 0.5} (left to right).
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The source term 1
cρ
q(x, t) can increase or decrease the temperature in the heat equa-

tion. Figure 4 shows the solution of the heat equation for three different functions

q1(x, t) = χ[0,1/2](x), where χ[0,1/2](x) =

{
1 x ∈ [0, 1/2]

0 otherwise

q2(x, t) = χ[1/4,3/4](x)
1

1 + t3

q3(x, t) = 3(1− x)3 sin(4t).

In these three examples, the dependence on x in the function q(x, t) affects in which
parts of the spatial interval x ∈ [0, 1] the heat is added or removed at each time.
The dependence on t on the other hand affects how the amount of energy added or
removed depends on time. For example in the case of q1(x, t), the heat is added to the
equation only on the subinterval [0, 1/2], and the amount of added heat is constant
with respect to time. On the other hand, in the case of q2(x, t) a fair amount of heat
is added initially, and the amount of added heat decreases over time. Finally, in the
case of q3(x, t) the amount of added and removed heat changes periodically due to
the periodic function sin(4t).
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Figure 4: Heat diffusion for the source terms with q1, q2, and q3 (left to right).

3.3 The Boundary Conditions of the Heat Equation

The boundary conditions (4c) of the heat equation are of the Dirichlet type, where
the solution T (x, t) is required to have constant value on the endpoints x = 0 and x =
` of the domain [0, 1]. As mentioned before, this corresponds to the situation where
the temperature of the two ends of the metal rod are held at constant temperatures
T0 and T`.

In an alternative situation the ends of the metal rod could be insulated in such a
way that heat energy cannot flow in or out at the boundaries x = 0 and x = `.
Mathematically this corresponds to the derivatives of T (x, t) with respect to x being
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zero x = 0 and x = `. If we modify the boundary conditions (4c) we arrive at the
heat equation

∂T

∂t
(x, t) = α

∂2T

∂x2
(x, t), x ∈ [0, `], t ≥ 0 (8a)

T (x, 0) = Tinit(x), x ∈ [0, `] (8b)

∂T

∂x
(0, t) = 0,

∂T

∂x
(`, t) = 0. (8c)

The boundary conditions (8c) are Neumann boundary conditions.

It is also possible to combine Dirichlet and Neumann boundary conditions for a
single equation, as long as each boundary point x = 0 and x = ` only have one
boundary condition. Indeed, in a situation where one end of the metal rod is held at
a constant temperature and the other end is insulated, the boundary conditions of
the equations (8) can be replaced with

T (0, t) = T0, and
∂T

∂x
(`, t) = 0

or
∂T

∂x
(0, t) = 0, and T (`, t) = T`.

4 The Wave Equation

The one-dimensional wave equation studied in this section can in particular be used
to describe the motion of a vibrating string of length ` > 0. If the density of the
string is the same throughout its length, and if the string is held fixed at both ends,
at x = 0 and x = `, then the partial differential equation describing the motion is
given by

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t), x ∈ [0, `], t ≥ 0 (9a)

u(x, 0) = uinit(x),
∂u

∂t
(x, 0) = vinit(x) x ∈ [0, `] (9b)

u(0, t) = 0, u(`, t) = 0. (9c)

Here u(x, t) is the vertical position of the string at the coordinate x ∈ (0, `) and at
the time instant t > 0, as in Figure 5.

The quantity c > 0 is the wave speed, and it depends on the density and the tension
of the string. The boundary conditions (9c) describe that the both ends of the string
are held at vertical position zero at all times.

4.1 Derivation of the Wave Equation

We will now derive the wave equation from the Newton’s Second Law F = ma.
We denote the vertical position of the string with u(x, t) at time t ≥ 0 and at the
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u(x, t)

x

`

Figure 5: The Motion of a String.

horizontal position x ∈ (0, `). We assume that the situation is simple in the sense
that the following hold.

• The string has constant mass density

• The weight of the string is relatively small, so we can ignore the effect of
gravity.

• The considered oscillations are small so that the length of the string stays ap-
proximately constant, the slope of the string at every point is relatively small,
and the at each point the string moves mainly in the vertical direction.

• The string does not resist the bending, and the tension is constant in the hori-
zontal direction.

We use the following notation

• ρ is the constant mass density of the string (units of mass per length of a string).

• θ(x, t) is the angle of the string at a point x ∈ (0, `) and at a time t ≥ 0, so that

∂u

∂x
(x, t) = “slope of the string at x ∈ (0, `)” = tan θ(x, t).

• τ(x, t) is the total tension at a point x ∈ (0, `) and at a time t ≥ 0.

• τhor is the constant tension in the horizontal direction.

Consider the situation in Figure 6 where we study to motion of particles of the string
on the small segment [x, x+ ∆x].

Newton’s Second Law F = ma tells us that the vertical displacement u(x, t) on this
segment satisfies

F = ma = ρ∆x
∂2u

∂t2
, (10)
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x x+ ∆x

T (x, t)

T (x+ ∆x, t)

θ(x, t)

θ(x+ ∆x, t)

Figure 6: The one-dimensional wave equation

where F is the total force affecting the points on the segment that arises from the
differences in the vertical components of the tensions at x and x + ∆x. Taking
into account the signs (positive direction is upwards), we have that the vertical
components of the tensions add to

F = τ(x+ ∆x, t) sin θ(x+ ∆x, t)− τ(x, t) sin θ(x, t).

However, we assume that the horizontal tension is constant on the string, i.e.,
τ(x, t) cos θ(x, t) = τ(x + ∆x, t) cos θ(x + ∆x, t) = τhor, and we can therefore use
tan θ = sin θ

cos θ
to compute

F = τ(x+ ∆x, t) sin θ(x+ ∆x, t)− τ(x, t) sin θ(x, t)

= τ(x+ ∆x, t) cos θ(x+ ∆x, t) tan θ(x+ ∆x, t)− τ(x, t) cos θ(x, t) tan θ(x, t)

= τhor (tan θ(x+ ∆x, t)− tan θ(x, t))

= τhor

(
∂u

∂x
(x+ ∆x, t)− ∂u

∂x
(x, t)

)
,

where we have used the fact that ∂u
∂x

is the slope of the string at x, which is alterna-
tively given by tan θ(x, t). Combining this expression for F with (10) and dividing
both sides with ρ∆x leads to

∂2u

∂t2
=
τhor
ρ
· 1

∆x

(
∂u

∂x
(x+ ∆x, t)− ∂u

∂x
(x, t)

)
.

If we let ∆x → 0, the difference on the right-hand side converges to ∂2u
∂x2

, and we
obtain the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

where c2 = τhor/ρ.

4.2 The Solution of the Wave Equation

Explicit Solution of the Wave Equation

If we for simplicity ignore the effect of the boundary conditions, and instead consider
the wave equation (9a) on the spatial domain x ∈ R, then the general solution of

13



the wave equation (9a) can be derived using the method of characteristics. If we
consider new variables s = x− ct and r = x+ ct, then the chain rule implies that

∂

∂x
=
∂s

∂x

∂

∂s
+
∂r

∂x

∂

∂r
=

∂

∂s
+

∂

∂r

∂2

∂x2
=

(
∂

∂s
+

∂

∂r

)(
∂

∂s
+

∂

∂r

)
=

∂2

∂s2
+ 2

∂2

∂s∂r
+

∂2

∂r2

∂

∂t
=
∂s

∂t

∂

∂s
+
∂r

∂t

∂

∂r
= −c ∂

∂s
+ c

∂

∂r

∂2

∂t2
=

(
−c ∂

∂s
+ c

∂

∂r

)(
−c ∂

∂s
+ c

∂

∂r

)
= c2

∂2

∂s2
− 2c2

∂2

∂s∂r
+ c2

∂2

∂r2
.

Substituting ∂2

∂x2
and ∂2

∂t2
to the equation (9a) we get

c2
∂2u

∂s2
− 2c2

∂2u

∂s∂r
+ c2

∂2u

∂r2
= c2

(
∂2u

∂s2
+ 2

∂2u

∂s∂r
+
∂2u

∂r2

)
⇔ ∂2u

∂s∂r
= 0.

The general solution of the last equation is u(s, r) = F (s) + G(r), where F and G
can be arbitrary (suitably differentiable) functions. If we change back to the original
variables x and t, we can see that the solution of the wave equation (9a) is

u(x, t) = F (x− ct) +G(x+ ct).

The two components F (x − ct) and G(x + ct) correspond to two waves travelling
to the right and to the left, respectively. Finally, the functions F and G can be
determined based on the initial conditions (9b). This way, the solution of the wave
equation with the initial conditions (9b) is given by the d’Alembert’s formula

u(x, t) =
uinit(x− ct) + uinit(x+ ct)

2
+

∫ x+ct

x−ct
vinit(z)dz (11)

for all x ∈ R and t ≥ 0.

Behaviour of Solutions of the Wave Equation

As we observed in the previous section, the general solutions of the wave equation
consist of two parts, one moving to the right and one to the left. In particular, the
solutions include “wave pulses” that travel only in a single direction, such as the
one pictured in Figure 7. The parameter c > 0 is the wave speed, which literally
determines the speed of propagation of the two components of the solution. Solu-
tions that start out with a single wave pulse travelling to the right or to the left can
be constructed by choosing suitable initial conditions for the wave equation. If we
aim at a solution u(x, t) = F (x − ct), then the appropriate initial conditions can be
determined by simply substituting t = 0 into u and its time-derivative. This way we
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can see that the initial conditions corresponding to the solution u(x, t) = F (x − ct)
are given by

uinit(x) = u(x, 0) = F (x), vinit(x) =
∂u

∂t
(x, 0) = −cF ′(x),

where the coefficient −c results from differentiating F (x− ct) with respect to t.

When a pulse travelling to the right hits a boundary with a Dirichlet boundary con-
dition u(`, t) = 0, it is reflected off the boundary and begins to move left. The pulse
eventually returns to the reflection of its initial profile. This is illustrated in Figure 8.
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Figure 7: A wave pulse travelling to the

right.
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Figure 8: A wave pulse reflecting at the

boundary.

Figure 9 shows a single wave pulse splitting into two parts, one moving to the left
and one to the right. This kind of solution corresponds to an initial displacement of
the string with zero intial velocity. In Figure 9 the initial displacement and velocity
are given by

uinit(x) = e−100(x−1/2)
2

, vinit(x) ≡ 0.

The solutions of the wave equation also includes standing waves such as the one
shown in Figure 10.
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Figure 9: A splitting wave.
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Figure 10: A standing wave.
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4.3 Boundary Conditions of the Wave Equation

Similarly as in the case of the heat equation, also the wave equation can be studied
for different types of boundary conditions. In particular, the Neumann boundary
conditions

∂u

∂x
(0, t) = 0, and

∂u

∂x
(`, t) = 0,

are used to model a situation where the endpoints of the string can move freely in
the vertical direction, but the ends of the string are held at a constant angles so that
the tangents of the string at x = 0 and x = ` stay horizontal at all times.

5 Exercise Problems

You should complete and document three exercise problems: Problems 1 and 2, and
either 3 or 4.

1. Modify the derivation of the solution T (x, t) using the separation of variables
to find the solution of the heat equation (4a) with the boundary conditions

T (0, t) = 0 and
∂T

∂x
(`, t) = 0.

2. In this problem we will look for standing waves of the wave equation (9a).

(a) Look for a solution of the wave equation in the form uk(x, t) =
cos(ωkt)ψk(x) where ωk ∈ R (we are again using “separation of variables”)
for some index k ∈ Z. Substitute uk(x, t) into the wave equation and de-
rive an ordinary differential equation for ψk(x).

(b) Find ψk(x) as a solution of the differential equation in part (a). Note that
the equation has a general solution for any “frequency” ωk, but both of
the boundary conditions can be satisfied only for certain specific values of
ωk ∈ R. Find these frequencies ωk.

(c) Illustrate the standing wave solutions uk(x, t) for different ωk and describe
the role of the frequency ωk.

3. [Matlab] Download the Matlab codes for the simulations of the heat equation
and the wave equation from the course homepage.

(a) Experiment with different values of the parameters K, c, ρ (in the heat
equation) and test different source functions q(x, t). Briefly describe the
effects of these changes to the behaviour of the solutions. Repeat the same
study for the wave equation.
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(b) In this problem we will try to estimate the specific heat capacity c > 0
and the thermal conductivity K > 0 of the heat equation based on mea-
surements. Assume the metal rod has a known mass density ρ = 1.2 and
length ` = 1.0. Use the Matlab code to find the values of K and c (with 2
or 3 decimal point accuracy) based on the following information:

– With the intial heat profile T0(x) = 20x(1 − x)5 and zero source
function q(x, t) ≡ 0 the temperature at the point x0 = 0.75 at time
t0 = 0.40 is T (x0, t0) = 0.160.

– With the intial heat profile T0(x) = x(1 − x) and source function
q(x, t) = 8χ[0,1/5](x) the temperature at the point x0 = 0.60 at time
t0 = 3.35 is T (x0, t0) = 0.109.

Describe in detail how you arrived at the solution. Comment on what factors
influence the estimated values of c and K.
Hint: You can find the values of α and c with trial and error using simulations.
In order to find the temperature T (x0, t0), you should modify the variables
xmesh and tspan so that they include the points you are interested in.

4. In this problem we study the wave 1D wave equation (9a) with Dirichlet
boundary conditions.

(a) Show that the d’Alembert’s formula in equation (11) satisfies the wave
equation and the initial conditions. Use the formula to find the solution
of the wave equation (9a) with ` = 1 and c = 1 for uinit(x) = sin(2πx) and
vinit(x) ≡ 0. Simplify the formula as much as possible.

(b) How do the Dirichlet boundary conditions at x = 0 and x = ` relate the
functions F (·) and G(·) in the solution of the wave equation?

(c) Describe how the wave speed c > 0 in the wave equation could be esti-
mated based on measurements from the solution of the wave equation.
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