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List of Notation

A, B, C, D – matrices of a linear system

(A,B,C,D) – a linear system. Also denoted (A,B,C) if D = 0

eAt – the matrix exponential

A∗ – conjugate transpose of a matrix

X – the state space of a linear system, X = Cn or X = Rn

U – the input space of a linear system, U = Cm or U = Rm

Y – the output space of a linear system, Y = Cp or Y = Rp

L(X, Y ) – the space of linear mappings from X to Y , i.e., L(X, Y ) = Cp×n

– for X = Cn and Y = Cp

L(X) – shorthand notation for L(X,X)

∥x∥ – the norm of a vector x

∥A∥ – the norm of a matrix A, i.e., ∥A∥ = max∥x∥=1∥Ax∥
R(A) – the range space of a matrix, i.e., R(A) = { y | y = Ax for some x }
N (A) – the null space of a matrix, i.e., N (A) = {x | Ax = 0 }
⟨x, y⟩ – inner product on a Euclidean space

σ(A) – set of eigenvalues of the square matrix A

ρ(A) – the resolvent set of a square matrix A, defined as ρ(A) = C \ σ(A)
ẋ(t) – time-derivative of x(t), i.e. d

dt
x(t)

Lp(a, b) – the Lebesgue space of functions f : (a, b)→ C,

– i.e., Lp(a, b) = { f : (a, b)→ C |
∫ b

a
|f(t)|pdt <∞} if 1 ≤ p <∞

– and L∞(a, b) = { f : (a, b)→ C | ess supt≥0|f(t)| <∞}
Lp(a, b;X) – the Lebesgue space of functions f : (a, b)→ X,

– i.e., Lp(a, b;X) = { f : (a, b)→ X |
∫ b

a
∥f(t)∥pXdt <∞} if 1 ≤ p <∞

– and L∞(a, b;X) = { f : (a, b)→ X | ess supt≥0∥f(t)∥X <∞}

If A ∈ Cn×n is a square matrix and c ∈ C is a scalar, our notation A + c means A + cI,
where I is the n×n identity matrix. Note that this same shorthand notation cannot be used
in Matlab, since in the command A+c, the part “c” is replaced with an n × n matrix whose
all elements are equal to c. The command A+c*eye(size(A)) produces the correct result.

iii



1. Introduction to Linear Systems

1.1 Introduction

The main purpose of this course is to give an introduction to the properties and control of
linear systems. In particular, we consider a system with a control input u(t), measured output
y(t) and possible disturbance signal w(t) affecting the system.

P
u(t)

w(t)

y(t)

Figure 1.1: The control system.

The general idea in control theory is usually to design and implement a control input
u(t) such that the output y(t) of the system behaves in a desired way despite the external
disturbance signals w(t).

In the first part of this course we concentrate on the control of linear systems which are
described by differential equations of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (1.1a)
y(t) = Cx(t) +Du(t). (1.1b)

Here x(·) : [0,∞) → X is a vector-valued function called the state of the system (1.1)
and ẋ(t) denotes the time-derivative of x(t). The control input u(·) : [0,∞) → U and the
measured output y(·) : [0,∞) → Y are either scalar or vector-valued functions depending
on the situation. The spaces U and Y are called the input space and the output space,
respectively, and we have U = Cm and Y = Cp, or U = Rm and Y = Rp.

With suitable choices of the state space X = Rn or X = Cn, and matrices A, B, C and D
it is possible to study and control several different types of systems. In this first introductory
chapter we will consider some basic concepts related to systems theory and write different
types of mathematical models in the form (1.1).

Definition 1.1.1. In a situation where we choose X = Rn or X = Cn for some n ∈ N, and
A, B, C, and D are matrices of suitable sizes, the system (1.1) is a linear system. We also
call the set of matrices (A,B,C,D) a linear system.

1



2 Chapter 1. Introduction to Linear Systems

For a linear system the solution of the differential equation (1.1a) can be given using
the matrix exponential function eAt associated to the square matrix A ∈ Cn×n. In particular,
for a given input u(·) ∈ L1

loc(0,∞;U) the solution x(t) of the equation (1.1a) is then given
by the familiar “variation of parameters formula”

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds,

and substituting this expression into (1.1b) gives a formula

y(t) = CeAtx0 + C

∫ t

0

eA(t−s)Bu(s)ds+Du(t)

for the measured output y(t) of the system. We note that since the input u is allowed to be
a measurable function (not necessarily piecewise continuous), the integrals in the formulas
for the state and output are defined using Lebesgue integration. The state is a continuous
function of t, i.e., x(·) ∈ C([0,∞);X), and y(·) ∈ L1

loc(0,∞;Y ).

1.2 Some Fundamental Concepts in Systems Theory

In this section we outline some concepts related to control systems on a very general level.
We will also come back to many of these concepts and study them in greater detail in the
later chapters.

1.2.1 Stability of a System

One of the key concepts in systems theory is the stability of the system (1.1) to be controlled.
Often the goal in the control is to design a control u(t) to make the system (1.1) become
stable, or alternatively, the stability of the system may be a prerequisite for a proposed
control scheme to function properly.

There are many different ways to define stability for a system, and the appropriate
choice of a definition usually depends on the situation at hand. The first two stability types
defined here concern the “internal stability” of the system as they are defined in terms of
the behaviour of the state x(t) of the system.

Definition 1.2.1. The system (1.1) is called asymptotically stable, if in the case of the
constant zero input u(t) ≡ 0 the state of the system (1.1) satisfies x(t) → 0 as t → ∞ for
all x0 ∈ X.

In the second stability type it is in addition required that the norms of the solutions x(t)
of (1.1a) decay at a uniform exponential rate.

Definition 1.2.2. The system (1.1) is called exponentially stable, if there exist ω > 0 and
M ≥ 1 such that in the case of the constant zero input u(t) ≡ 0 the state of the system (1.1)
satisfies

∥x(t)∥ ≤Me−ωt∥x0∥, ∀t ≥ 0, x0 ∈ X.
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Even though exponential stability is a strictly stronger concept than asymptotic stability,
these two concepts coincide for linear systems. In addition, the stability of the system can
in this case be determined directly from the locations of the eigenvalues σ(A) of the matrix
A.

Theorem 1.2.3. If X = Cn, then the following are equivalent.

(i) The system (1.1) is asymptotically stable.

(ii) The system (1.1) is exponentially stable.

(iii) Reλ < 0 for every λ ∈ σ(A).

Proof. See Theorem 2.1.2.

Finally, the next stability concept is an example of “external stability” – a stability type
that is not concerned with the state of the system but instead on how the input affects the
output of the system.

Definition 1.2.4. The system (1.1) is called input-output stable, if a “stable input” u(t) to
the system produces a “stable output” y(t).

There are several variants of input-output stability, the most common ones are

L2-input-output stability: If u(·) ∈ L2(0,∞;U), then y(·) ∈ L2(0,∞;Y )

L∞-input-output stability: If u(·) ∈ L∞(0,∞;U), then y(·) ∈ L∞(0,∞;Y ), i.e., a
bounded input results in a bounded output.

1.2.2 Controllability and Observability

The questions of controllability and observability deal with very essential control theoretic
properties of the linear system (1.1). In particular, controllability is related to the question
of how much and how accurately can the state of the system be affected with the control input,
and observability is related to whether or not all changes in the state of the system affect the
measured output of the system. The controllability of the system can be formulated in the
following way:

Definition 1.2.5. The system (1.1) is controllable (in time τ > 0) if for every initial state
x0 ∈ X and for every target state x1 ∈ X there exists a control input u(·) ∈ L1(0, τ ;U)
such that at time τ > 0 the state of the system is x(τ) = x1.

The above definition requires that the state of the system can be steered from any initial
state x0 ∈ X to any final state x1 ∈ X in the finite time τ > 0 with an appropriate control
input. The controllability of a system does not depend on the matrices C and D of the
system (1.1). For linear systems there are well-known criteria for testing the controllability
of a system using the properties of the matricesA andB, such as the Popov–Belevitch–Hautus
Test (or simply PBH Test) [5].

The observability of a system means that the knowledge of the input u(t) and the output
y(t) of the system on a time-inverval [0, τ ] uniquely determines the state of the system on
this interval. In mathematical terms this can be formulated in the following way.
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Definition 1.2.6. The system (1.1) is observable (in time τ > 0) if there exists kτ > 0 such
that ∫ τ

0

∥Cx(t)∥2dt ≥ k2τ∥x0∥2.

What the above definition actually requires is that the linear map from the initial state
x0 to the output with zero input Cx(·), i.e.,

x0 ∈ X 7→ Cx(·) ∈ L2(0, τ ;Y ),

is bounded from below. In particular this means that the given output on the inverval
[0, τ ] determines the initial state x0 uniquely. The state on the full inverval [0, τ ] is then
determined by the evolution of the state of the system (1.1).

The concept of observability again only depends on the matrices A and C of the sys-
tem (1.1). In addition, the controllability and the observability of a system are dual con-
cepts of each other, which rougly means that the controllability (observability) of a system
(A,B,C,D) is equivalent to the observability (controllability) of its so-called dual system
(A∗, C∗, B∗, D∗).

1.2.3 Feedback

In many situations it is beneficial to choose the input u(t) that is dependent on either the
state x(t) or the output y(t) of the system itself. This results in feedback, that is commonly
encountered in control applications. Feedback can in particular be used to make the system
stable.

Definition 1.2.7. In state feedback the input u(t) of the system is chosen to depend on the
state x(t) in such a way that u(t) = Kx(t) + ũ(t), where K is a matrix and ũ(·) is the new
input to the system.

A direct substitution of u(t) = Kx(t) + ũ(t) to the equations (1.1) shows that after the
state feedback the system becomes

ẋ(t) = (A+BK)x(t) +Bũ(t), x(0) = x0 ∈ X
y(t) = (C +DK)x(t) +Dũ(t).

State feedback is a powerful tool in control, but in many situations the state x(t) of the
system is not known, and it cannot therefore be used in designing the control input u(t).
Indeed, in many cases it is only possible to obtain indirect knowledge of the system via the
measured output y(t).

Definition 1.2.8. In output feedback the input u(t) of the system is chosen in such a way
that u(t) = Ky(t) + ũ(t), where K is a matrix and ũ(·) is the new input to the system.

The output feedback scheme is depicted in Figure 1.2.
If the matrix I − DK is nonsingular, then we can derive equations for the controlled

system after application of output feedback. Indeed, if we substitute u(t) = DKy(t) + ũ(t)
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P

K

ũ(t) y(t)

Figure 1.2: The system with output feedback.

to the equation (1.1b), we get

y(t) = Cx(t) +Du(t) = Cx(t) +DKy(t) +Dũ(t)

⇔ (I −DK)y(t) = Cx(t) +Dũ(t)

⇔ y(t) = (I −DK)−1Cx(t) + (I −DK)−1Dũ(t).

Substituting this into (1.1a) yields

ẋ(t) = Ax(t) +BKy(t) +Bũ(t)

= (A+BK(I −DK)−1C)x(t) +BK(I −DK)−1Dũ(t) +Bũ(t)

= (A+BK(I −DK)−1C)x(t) +B
[
K(I −DK)−1D + I

]
ũ(t)

= (A+BK(I −DK)−1C)x(t) +B(I −KD)−1ũ(t),

where we have used the property that

K(I −DK)−1D + I = (I −KD)−1KD + I = (I −KD)−1(KD − I + I) + I

= −I + (I −KD)−1 + I = (I −KD)−1.

Combining these we see that the system with the output feedback becomes

ẋ(t) = (A+BK(I −DK)−1C)x(t) +B(I −KD)−1ũ(t) x(0) = x0 ∈ X
y(t) = (I −DK)−1Cx(t) + (I −DK)−1Dũ(t).

This system is again a linear system of the form (1.1), but the matrices of the system have
changed in the following way:

A→ (A+BK(I −DK)−1C)

B → B(I −KD)−1

C → (I −DK)−1C

D → (I −DK)−1D.

1.2.4 Output Tracking

One of the control problems that we consider on this course are concerned with ouput
tracking and disturbance rejection, where the aim is to make the output of the plant converge
to a given reference signal yref (·) as t→∞.
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Definition 1.2.9. Let yref (·) : [0,∞)→ Y is a given function. In output tracking the aim is
to choose the input u(t) of the system in such a way that

∥y(t)− yref (t)∥ → 0 as t→∞.

Usually the reference signal is a linear combination of trigonometric functions. With
such functions it is possible to approximate, for example, continuous periodic functions by
truncating their Fourier series.

1.2.5 Robustness and Robust Control

The term robustness refers to a property that makes the control tolerant to changes and
uncertainties in the parameters (A,B,C,D) of the controlled system (1.1). There is no
one universal definition for “robustness”, but instead its use and meaning depend on the
situation at hand. For example, the controller could be required to achieve its goal even if
the parameters (A,B,C,D) of the system (1.1) are replaced with

A+∆A, B +∆B, C +∆C , D +∆D,

respectively, where ∆A,∆B,∆C ,∆D are matrices satisfying ∥∆A∥ < δ, ∥∆B∥ < δ, ∥∆C∥ < δ,
and ∥∆D∥ < δ for some fixed δ > 0.

Robustness is clearly a desirable property when designing control laws for real world
systems due to the fact that any mathematical model can only describe the actual physical
system with certain limited accuracy. Indeed, the difference between the real world con-
trol system and the mathematical model can be seen as a level of “uncertainty”, and the
designed controller must function properly despite it. We will later learn that incorporating
feedback into the control is essential to achieving robustness.

1.3 Examples of Linear Control Systems

1.3.1 A Damped Harmonic Oscillator

The motion of a simple damped harmonic oscillator (see Figure 1.3) is described by the
equations [4, Ex. 1.1.3]

mq̈(t) + rq̇(t) + kq(t) = F (t)

where m, k > 0 and r ≥ 0. The situation r = 0 corresponds to the undamped oscillator. In
this example we consider external force F (t) as our control input, i.e., u(t) = F (t), and we
measure the position q(t) of the oscillator, i.e., y(t) = q(t).

By choosing the state space as X = R2 and the state of the system as x(t) = (q(t), q̇(t))T ,
we can see that our system is described by the equations

ẋ(t) =

[
q̇(t)
q̈(t)

]
=

[
q̇(t)

− r
m
q̇(t)− k

m
q(t) + 1

m
F (t)

]
=

[
0 1
− k

m
− r

m

]
x(t) +

[
0
1
m

]
u(t)

y(t) = q(t) =
[
1 0

]
x(t).
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k

r

m
F (t)

Figure 1.3: A damped harmonic oscillator.

This system is of the form (1.1) with matrices

A =

[
0 1
− k

m
− r

m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0 ∈ R.

The characteristic polynomial of A is

p(λ) = det(λ− A) = λ2 +
r

m
λ+

k

m
,

and thus the eigenvalues of A are given by

σ(A) =

{
−r ±

√
r2 − 4km

2m

}
.

Since k,m > 0, the real parts of the eigenvalues ofA are negative whenever r > 0, and equal
to zero if r = 0. By Theorem 1.2.3 we thus have that the oscillator system is exponentially
stable whenever r > 0, and that it is not asymptotically stable if r = 0.

0 5 10 15 20

−0.5

0

0.5

1

0 2 4 6 8 10

0

0.5

1

Figure 1.4: The damped harmonic oscillator with r = 0.5 (left) and r = 2 (right)

The harmonic oscillator is a fairly simple system, but it is also an illustrative example
of an important class of systems called “mechanical networks”. Such models including
masses, springs, and dampers appear frequently in engineering applications, for example in
the suspension systems of cars and other vehicles. This research area went through a very
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interesting period in the early 2000’s when a new mechanical component, the inerter, was
invented by Professor Malcolm Smith from University of Cambridge [11]. The concept of
the inerter was based on the analogy between mechanical and electrical networks. In this
analogy electrical resistors behave in a similar way as mechanical dampers, and electrical
inductors behave in a similar way as mechanical springs. This analogy was completed
when Professor Smith introduced the inerter, which is a mechanical device with analogous
properties to an electrical capacitor. One of the first engineering applications of this new
invention was its employment in designing a new and improved suspension system for
the Formula 1 racers in a collaboration between McLaren and Professor Smith [12]. This
suspension system was (obviously) developed in secret under the code name “J-damper”.
It was first employed in 2005 at the Spanish Grand Prix in the vehicle of Kimi Räikkönen,
who went on to win that race [9]! Also the continuation of the story is very interesting, if
you are curious about following up on it. In particular the later developments involve the
J-damper designs being stolen from McLaren by a spy working for Renault. . .

1.3.2 Moving Robots

A very simple linearised model for a small moving robot can be given by

ẋ(t) = u(t), x(0) ∈ C

where x(·) and u(·) are both complex-valued functions. The solution x(t) of the above
differential equation describes the motion of the robot in the xy-plane once we identify the
real axis of C with the x-axis and the imaginary axis with the y-axis.

The system consisting of n ∈ N identical robots xk(t) is then described by the equations

ẋ1(t) = u1(t), x1(0) ∈ C
ẋ2(t) = u2(t), x2(0) ∈ C

...
ẋn(t) = un(t), xn(0) ∈ C.

If we measure the positions of the robots in the xy-coordinates, this leads to measure-
ments yk(t) = xk(t) for k ∈ {1, . . . , n}. If we choose the state space of the full sys-
tem as X = Cn and the state of the system as x(t) = (x1(t), . . . , xn(t))

T ∈ Cn, with
u(t) = (u1(t), . . . , un(t))

T ∈ Cn, and y(t) = (y1(t), . . . , yn(t))
T ∈ Cn, then the behaviour

of the group of n robots is described by the equations

d

dt

x1(t)...
xn(t)

 =

u1(t)...
un(t)

 ,
x1(0)...
xn(0)

 ∈ X
y1(t)...
yn(t)

 =

x1(t)...
xn(t)


which is of the form (1.1) with matrices

A = 0n×n, B = In×n, C = In×n, D = 0n×n.
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Since A = 0 ∈ Cn×n, its eigenvalues are given by σ(A) = {0}. By Theorem 1.2.3 the
system of robots is therefore not asymptotically stable. We can, however, make the system
stable using state feedback. Indeed, we can implement a control law which steers each of
the robots to the direction of the origin if there is no other input present. This can be done
by commanding each robot to move into the direction −xk(t), which is exactly the direction
of the origin. We can therefore choose a control law uk(t) = −αxk(t)+ ũk(t), where α > 0 is
a constant parameter that expresses how fast we want the robots to move, and where ũk(t)
is the new input. Since

u(t) = −αx(t) + ũ(t),

where ũ(t) = (ũ1(t), . . . , ũn(t)), the feedback matrix K is given by K = −αIn×n. With this
state feedback the system of robots becomes

ẋ(t) = −αx(t) + ũ(t), x(0) = x0 ∈ X
y(t) = x(t),

which is exponentially stable by Theorem 1.2.3 since σ(A+BK) = σ(−αI) = {−α} ⊂ C−.
Figure 1.5 depicts the behaviour of the stabilised system of robots for two different initial
configurations.

x1(0)

x2(0)
x3(0)

Figure 1.5: Stabilised system of robots.

1.4 Numerical Simulation with Matlab

In this section we develop techniques to simulate the behaviour of the system and its out-
put using Matlab. Matlab has its own powerful tools for simulation and control of linear
systems. These include Simulink, Robust Control Toolbox, Control System Toolbox, Model
Predictive Control Toolbox, and Model Identification Toolbox (see the Matlab documenta-
tion for more infomation). On this course we aim to understand how the simulation and
the control algorithms work, and for this reason we write our own simple codes. However,
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you are also encouraged to get to know and experiment with the built-in Matlab methods
related to linear systems and control. There the best place to start is the Control System
Toolbox which concentrates on the analysis and control of linear systems of the form (1.1).

In the following sections we start writing some helpful functions for simulation, analysis,
and tweaking of a linear control system of the form (1.1).

1.4.1 LinSysSim — Simulation of the State of the System

We begin by writing a Matlab function LinSysSim that simulates the state of the sys-
tem (1.1) with given matrices A and B and given initial state x0 and a control function
u(·) over a specified time-interval. This data is given in the following variables

A, B Matrices A and B of the system

x0 The initial state x0

ufun The control function u(·) (Matlab function handle)

tspan The start and end times of the simulation (a vector with two elements)

The differential equation

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (1.2)

can be solve numerically using one of the available solvers in Matlab. There are many
variations of the solver, e.g., ode23, ode45 and ode15s. We choose to use the solver ode15s,
because it can handle some difficulties that arise later in the simulation of approximations
of partial differential equations. As the output from the function LinSysSim we return
the solution structure sol that we obtain from the differential equation solver ode15s. The
structure sol contains the instances t of time at which the numerical solution was computed
in the variable “sol.x” and the corresponding values in the variable “sol.y”. We will see
that the structure is very convenient way of storing the information about the state x(t) of
the system.

The code for the function is presented in the following. The first lines of comment are
documentation for the function and they can be shown by typing “help LinSysSim” in the
Matlab command line.

function sol = LinSysSim(A,B,x0,ufun,tspan)
% function sol = LinSysSim(A,B,x0,ufun,tspan)
%
% Simulate the state of the differential equation x'(t)=Ax(t)+Bu(t)
% with initial state x(0)=x0, and u(t) = ufun(t) ('ufun' is a function
% handle) over the time interval 'tspan'. The returned variable 'sol' is
% the output of the Matlab's differential equation solver 'ode15s'.

odefun = @(t,x) A*x + B*ufun(t);

sol = ode15s(odefun,tspan,x0);

The first line of the code defines how the derivative ẋ(t) in the equation (1.2) depends
on the variable t and the function x(t). Here we compute the value of the input function
u(t) using the function handle ufun provided as the parameter in the function LinSysSim.
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On the second line we ask the solver ode15s to solve the differential equation (1.2) on
the time-interval determined by the input variable tspan.

1.4.2 LinSysOutputPlot — Plotting the Output of the System

The second function that we write uses the output of our first function LinSysSim to plot
the output of the system (1.1). The input parameters we provide are the variable “sol”
containing the solution of the differential equation (1.2), matrices C and D, the input
function u(·) and a parameter N specifying how many points we want to use in the plotting.
We also give a possibility to provide two optional parameters axlim and LineW that can
be used to customise the style of the plot (feel free to add your additional customisation
parameters if you like!)

sol The output of the function LinSysSim

C, D Matrices C and D of the system

ufun The control function u(·) (Matlab function handle)

N Number of points used in the plotting

axlim Custom limits for the axes of the plot, set to “[ ]” for default limits

LineW Line width in the plots, default is equal to 1.

In addition to the plotting the function returns the vector tt of points where the output
was plotted and a vector yy of corresponding values of the function y(t).

function [tt,yy] = LinSysOutputPlot(sol,C,D,ufun,N,axlim,LineW)
% function [tt,yy] = LinSysOutputPlot(sol,C,D,ufun,N,axlim,LineW)
%
% Plots the measured output of a linear system when 'sol' is the solution
% variable obtained from the ODE solver, C and D are parameters of the
% system and 'ufun' is the function handle for the input function. Uses a
% uniform grid with N points.
% 'axlim' are the limits for the axes (input '[]' for default) and 'LineW'
% is the line width.

tt = linspace(sol.x(1),sol.x(end),N);
yy = C*deval(sol,tt)+D*ufun(tt);

if nargin <= 6
LineW = 1;

end

plot(tt,yy,'Linewidth',LineW);

if nargin >5 && ~isempty(axlim)
axis(axlim)

end

The first line of the code initialises an evenly spaced grid of N points on the interval
where the state x(t) of the system was solved. The second line uses the Matlab function
deval to evaluate the numerical solution x(t) at these points (the command deval(sol,tt))
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and computes the output y(t) at these points. Finally, the output is plotted with the com-
mand plot.

1.4.3 LinSysStatePlot — Plotting the State of the System

There are situations where we might want to plot the state x(t) of the system as well. For
this purpose, we can modify the function LinSysOutputPlot in the following way. The
input variables are the same as in the case of the function LinSysOutputPlot, and the
output variable xx contains the values of x(t) evaluated at the points tt of the grid.

function [tt,xx] = LinSysStatePlot(sol,N,axlim,LineW)
% function [tt,xx] = LinSysStatePlot(sol,N,axlim,LineW)
%
% Plots the state variables of a linear system when 'sol' is the solution
% variable obtained from the ODE solver. Uses a uniform grid with N points.
% 'axlim' are the limits for the axes (input '[]' for default) and 'LineW'
% is the line width.

tt = linspace(sol.x(1),sol.x(end),N);
xx = deval(sol,tt);

if nargin <= 3
LineW = 1;

end

plot(tt,xx,'Linewidth',LineW);

if nargin >2 & ~isempty(axlim)
axis(axlim)

end

1.4.4 Example: Simulating the Damped Harmonic Oscillator

We can use our new functions for simulating the behaviour of the damped harmonic oscil-
lator in Section 1.3. The following code defines the matrices (A,B,C,D) of the system, and
calls the functions LinSysSim and LinSysOutputPlot to simulate the behaviour output of
the plant with a chosen input function u(·).

r = 1; k = 1; m = 2;

A = [0 1;-k/m -r/m];
B = [0;1/m];
C = [1 0];
D = 0;

x0 = [1;0];
tspan = [0 15];

ufun = @(t) zeros(size(t));
%ufun = @(t) sin(t).*cos(t);
%ufun = @(t) sin(t).^2;
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%ufun = @(t) sqrt(t);
%ufun = @(t) rem(t,2)<=1;

sol = LinSysSim(A,B,x0,ufun,tspan);
LinSysOutputPlot(sol,C,D,ufun,200,[],2);

1.5 References and Further Reading

• Free book (in the TAU network) [4, Chapters 1–4]

• Control linear systems [5, 3]

• Control of nonlinear systems [1, 6]



2. Control of Linear Systems

In this chapter we concentrate on investigating certain fundamental properties of linear
systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (2.1a)
y(t) = Cx(t) +Du(t) (2.1b)

with state x(t) ∈ X, input u(t) ∈ U , and output y(t) ∈ Y . We assume that the state
space, input space and output spaces are either complex or real, so that X = Cn, U = Cm

and Y = Cp, or alternatively X = Rn, U = Rm and Y = Rp. In particular, investigating
the degree to which the behaviour of the system of can be influenced using its inputs is a
fundamental question that is equally relevant for all classes and types of control systems.
This question is at the heart of the concepts of controllability and stabilisability.

2.1 Stability of a System

We begin the investigation of stability of a linear system (A,B,C,D) by recalling the defi-
nitions in Section 1.2.1.

Definition 2.1.1. The system (2.1) is

(i) asymptotically stable, if ∥x(t)∥ → 0 as t→∞ whenever u(t) ≡ 0 and x0 ∈ X.

(ii) exponentially stable if there exist ω > 0 and M ≥ 1 such that

∥x(t)∥ ≤Me−ωt∥x0∥, ∀t ≥ 0, x0 ∈ X.

whenever u(t) ≡ 0 and x0 ∈ X.

In the case u(t) ≡ 0 the state of the system is given by x(t) = eAtx0 for t ≥ 0. Because of
this, the above definition shows that (A,B,C,D) is asymptotically stable if and only if

lim
t→∞
∥eAtx0∥ = 0, ∀x0 ∈ X.

Moreover, (A,B,C,D) is exponentially stable if and only if there exist ω > 0 and M ≥ 1
such that

∥eAtx0∥ ≤Me−ωt∥x0∥, ∀x0 ∈ X, t ≥ 0. (2.2)

Finally, exponential stability of the system can alternatively be defined using the matrix
norm of eAt, since the condition (2.2) is equivalent with the estimate ∥eAt∥ ≤Me−ωt for all
t ≥ 0.

14
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We will now prove that asymptotic and exponential stability of a linear system are in
fact equivalent, and that they can be determined based on the locations of the eigenvalues
of the matrix A.

Theorem 2.1.2. The following are equivalent.

(i) The system (2.1) is asymptotically stable.

(ii) The system (2.1) is exponentially stable.

(iii) Reλ < 0 for every λ ∈ σ(A).

Proof. Clearly (ii) implies (i). We will begin by showing that (i) implies (iii). To this end,
assume the system is asymptotically stable. As explained above, the asymptotic stability of
the system (2.1) means that ∥eAtx∥ → 0 as t→∞ for all x ∈ X. Let λ ∈ σ(A) and let x ̸= 0
be such that Ax = λx. Then also Akx = λkx and

eAtx =
∞∑
k=0

tkAkx

k!
=

∞∑
k=0

tkλk

k!
x = eλtx

(both infinite series converge absolutely and uniformly for t on compact intervals of R).
The assumption ∥eAtx∥ → 0 as t→∞ now implies that

0← ∥eAtx∥ = ∥eλtx∥ = |eλt|∥x∥ = eReλt∥x∥

as t→∞. Since ∥x∥ ̸= 0, this is only possible if Reλ < 0. Since λ ∈ σ(A) was arbitrary, we
have that (iii) holds.

Finally, assume that (iii) holds. Let A = SJS−1 be the Jordan canonical form of A where
J = diag(J1, . . . , Jq). We have (see Section A.3)

∥eAt∥ = ∥SeJtS−1∥ ≤ ∥S∥∥S−1∥∥eJt∥ ≤ ∥S∥∥S−1∥ ·max
{
∥eJ1t∥, . . . , ∥eJqt∥

}
For every k ∈ {1, . . . , q} the matrix-valued function eJkt is of the form eJkt = eλktQ(t) where
λk is the eigenvalue of the Jordan block and ∥Q(t)∥ ≤ M̃k max{1, tnk−1} where nk = dim Jk
(see Theorem A.3.1). If we choose any 0 > ωk > Reλk, then there exists Mk ≥ 0 such that
∥eJkt∥ ≤Mke

ωkt for all t ≥ 0. Since this holds for all k ∈ {1, . . . , q}, we can estimate

∥eAt∥ ≤ ∥S∥∥S−1∥max
{
∥eJ1t∥, . . . , ∥eJqt∥

}
≤ ∥S∥∥S−1∥max

{
M1e

ω1t, . . . ,Mqe
ωqt
}
≤Meωt

if we choose M = ∥S∥∥S−1∥max{M1, . . . ,Mq} and ω = max{ω1, . . . , ωq} < 0. This immedi-
ately implies that the system is exponentially stable, and thus (ii) holds.

Example 2.1.3. As shown in Section 1.3.1, the damped harmonic oscillator is exponentially
stable when r > 0. ⋄

The stability concepts in Definition 2.1.1 only focus on the behaviour of the state x(t)
of the system and on the case where the system has zero input u(t) ≡ 0. The following
result shows that the state of a stable system behaves nicely even in the presence of inputs.
In particular, the state is bounded with respect to t ≥ 0 whenever the input is (essentially)
bounded, and x(t) converges to a limit as t→∞ provided that u(t) has a limit as t→∞.
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Theorem 2.1.4. Assume that the system (A,B,C,D) is exponentially stable and let x0 ∈ X.
Then the following hold.

(a) If u ∈ Lp(0,∞;U) for some p ≥ 1, then x(t)→ 0 as t→∞ and y ∈ Lp(0,∞;Y ).

(b) If u ∈ L∞(0,∞;U) (i.e., if ess supt≥0∥u(t)∥ < ∞), then supt≥0∥x(t)∥ < ∞ and y ∈
L∞(0,∞).

Proof. Let M,ω > 0 be such that ∥eAt∥ ≤Me−ωt for all t ≥ 0. We will prove part (a) only in
the case where p = 1, in which case the proof is simpler. To this end, u ∈ L1(0,∞;U). The
state x(t) is given by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds.

Since ∥eAtx0∥ ≤ Me−ωt∥x0∥ → 0, the first term converges to 0 as t → ∞. To show the
convergence of the second term, let t0 > 0 be fixed and assume t ≥ t0. Then∫ t

0

eA(t−s)Bu(s)ds =

∫ t0

0

eA(t−s)Bu(s)ds+

∫ t

t0

eA(t−s)Bu(s)ds

= eA(t−t0)

∫ t0

0

eA(t0−s)Bu(s)ds+

∫ t

t0

eA(t−s)Bu(s)ds

Denoting z0 =
∫ t0
0
eA(t0−s)Bu(s)ds ∈ X and using ∥eA(t−s)∥ ≤ Me−ω(t−s) ≤ M for 0 ≤ s ≤ t

we get ∥∥∥∥∫ t

0

eA(t−s)Bu(s)ds

∥∥∥∥ ≤ ∥eA(t−t0)z0∥+
∫ t

t0

∥eA(t−s)Bu(s)∥ds

≤Me−ω(t−t0)∥z0∥+M∥B∥
∫ t

t0

∥u(s)∥ds

≤Me−ω(t−t0)∥z0∥+M∥B∥
∫ ∞

t0

∥u(s)∥ds.

If ε > 0 is arbitrary, the assumption u ∈ L1(0,∞;U) implies that we can choose t0 > 0
in such a way that

∫∞
t0
∥u(s)∥ds < ε/(2M∥B∥). Then if t ≥ t0 is sufficiently large so that

Me−ω(t−t0)∥z0∥ < ε/2, we have∥∥∥∥∫ t

0

eA(t−s)Bu(s)ds

∥∥∥∥ ≤Me−ω(t−t0)∥z0∥+M∥B∥
∫ ∞

t0

∥u(s)∥ds < ε

2
+
ε

2
= ε.

This confirms that also
∫ t

0
eA(t−s)Bu(s)ds → 0 as t → ∞, which completes the proof that

x(t)→ 0 as t→∞.
The output of the system satisfies

y(t) = CeAtx0 +

∫ t

0

eA(t−s)Bu(s)ds+Du(t), a.e. t ≥ 0.
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Our aim is to prove that y ∈ L1(0,∞;Y ). The third term is clearly in L1(0,∞;Y ), since
∥Du(t)∥ ≤ ∥D∥∥u(t)∥ for a.e. t ≥ 0. Moreover, since ∥CeAtx0∥ ≤M∥C∥e−ωt∥x0∥, we have∫ ∞

0

∥CeAtx0∥dt ≤
∫ ∞

0

M∥C∥e−ωt∥x0∥dt =
M∥C∥∥x0∥

ω
<∞,

and thus the first term of y is also in L1(0,∞;Y ). To analyse the second term, we can use
the Young’s Inequality for Convolutions in Lemma B.1.2. Indeed, for all t ≥ 0 we have∥∥∥∥C ∫ t

0

eA(t−s)Bu(s)ds

∥∥∥∥ ≤M∥B∥∥C∥
∫ t

0

e−ω(t−s)∥u(s)∥ds =M∥B∥∥C∥h(t),

where h : [0,∞)→ C is defined as

h(t) =

∫ t

0

e−ω(t−s)∥u(s)∥ds =
∫ t

0

f(s)g(t− s)ds,

with f(s) = ∥u(s)∥ and g(s) = e−ωs. In particular, the second term of y is in L1(0,∞;Y )
if h ∈ L1(0,∞). Since u ∈ L1(0,∞;U), we have f ∈ Lp(0,∞) and ∥f∥1 = ∥u∥1. We also
have g ∈ L1(0,∞) due to ω > 0. Because of this, Young’s Inequality for Convolutions
in Lemma B.1.2 (with r = 1) shows that h ∈ L1(0,∞). This completes the proof that
y ∈ L1(0,∞;Y ).

Part (b) will be proved as an exercise.

Part (b) of Theorem 2.1.4 shows that in an exponentially stable system an input u(t)
which is (essentially) bounded with respect to t always leads to a bounded state x(t) and
(essentially) bounded output y(t). It can nevertheless happen that the supt≥0∥x(t)∥ and
ess supt≥0∥y∥(t) can be relatively large compared to the amplitude of the input u(t). This is
exactly what happens in certain models exhibiting resonance. In this phenomenon inputs of
the form u(t) = a cos(bt) with small amplitudes ∥a∥ and with suitable frequencies b ∈ [0, 2π)
can lead to oscillations with large amplitudes in x(t) and y(t).

Since ∥g∥1 =
∫∞
0
e−ωtdt = 1/ω in the proof of Theorem 2.1.4(a), the Young’s Inequality

for Convolutions in Lemma B.1.2 also yields an estimate∫ ∞

0

∥∥∥∥C ∫ t

0

eA(t−s)Bu(s)ds

∥∥∥∥ dt ≤M∥B∥∥C∥∥h∥1 ≤M∥B∥∥C∥∥f∥1∥g∥1 =
M∥B∥∥C∥

ω
∥u∥1.

Combining this with the other estimates in the proof shows that

∥y∥1 ≤
M∥C∥
ω
∥x0∥+

(
M∥B∥∥C∥

ω
+ ∥D∥

)
∥u∥1.

This gives us precise information on how the L1-norm of the output y of a stable system
depends on the norm of the initial state x0 and the L1-norm of the input u ∈ L1(0,∞;U).

2.2 Controllability of Linear Systems

In this section we will study the controllability of a linear system. We begin by recalling
Definition 1.2.5.
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Definition 2.2.1. The system (A,B,C,D) is controllable (in time τ > 0) if for every initial
state x0 ∈ X and for every target state x1 ∈ X there exists a control input u(·) ∈ L1(0, τ ;U)
such that at time τ > 0 the state of the system (2.1) is x(τ) = x1.

The following theorem shows that the controllability of a linear system can be tested
using the properties of the matrix A and B, simply by computing the number of linearly
independent columns in the so-called “controllability matrix”.

Theorem 2.2.2. Let X = Cn. The following are equivalent for every τ > 0.

(a) The system (2.1) is controllable in time τ .

(b) The controllability matrix satisfies rank
[
B AB · · · An−1B

]
= n.

The proof of Theorem 2.2.2 is based on the relationship between the controllability
matrix and the “controllability Gramian” of the system.

Definition 2.2.3. Let X = Cn and U = Cm. The controllability matrix associated to the
system (2.1) is defined as [

B AB · · · An−1B
]
∈ Cn×nm.

For t > 0 its controllability Gramian is

Wt =

∫ t

0

eAsBB∗eA
∗sds ∈ Cn×n.

For any t > 0 the controllability Gramian has the properties that

(Wt)
∗ =

∫ t

0

(
eAsBB∗eA

∗s
)∗
ds =

∫ t

0

eAsBB∗eA
∗sds = Wt

⟨Wtx, x⟩ =
∫ t

0

⟨eAsBB∗eA
∗sx, x⟩ds =

∫ t

0

∥B∗eA
∗sx∥2ds ≥ 0 ∀x ∈ Cn.

This means that for all t > 0 the matrix Wt is symmetric (or Hermitian) and positive semi-
definite. The controllability matrix and the controllability Gramian are related in the fol-
lowing way. Here R(Q) denotes the range space of a matrix Q ∈ Cm×n, i.e., R(Q) = { y ∈
Cm | y = Qx for some x ∈ Cn }.

Lemma 2.2.4. For every t > 0 we have

R
([
B AB · · · An−1B

])
= R (Wt)

and Wt is nonsingular if and only if rank
[
B AB · · · An−1B

]
= n.

Proof. See [4, Prop. 3.1.5].

We can now use Lemma 2.2.4 to prove Theorem 2.2.2.
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Proof of Theorem 2.2.2. We begin by showing that (b) implies (a). To this end, assume that
rank

[
B AB · · · An−1B

]
= n and let x0, x1 ∈ X be arbitrary. To achieve x(τ) = x1 we

need to find an input u(·) such that

x1 = x(τ) = eAτx0 +

∫ τ

0

eA(τ−s)Bu(s)ds.

By Lemma 2.2.4 the controllability Gramian Wτ is invertible. Our aim is to use this prop-
erty in finding a suitable input. In particular, if we choose a function of the form u(s) =
B∗eA

∗(τ−s)y for some y ∈ X and for all s ≥ 0, then u(·) ∈ L1(0, τ ;U) and∫ τ

0

eA(τ−s)Bu(s)ds =

∫ τ

0

eA(τ−s)BB∗eA
∗(τ−s)yds =

∫ τ

0

eArBB∗eA
∗rydr = Wτy.

This implies that if we choose y = W−1
τ (x1− eAτx0) in the control, then

∫ τ

0
eA(τ−s)Bu(s)ds =

Wτy = x1 − eAτx0, and thus x(τ) = x1.
For the proof of the implication from (a) to (b), see [4, Thm. 3.1.6].

The proof of Theorem 2.2.2 shows that the controllability of a linear system for some
time τ > 0 implies the controllability of the same system for any time τ > 0. In particular,
we can steer a controllable system to any target state in any arbitrarily small time τ > 0.
However, a faster control necessarily requires a control input with a large norm, which in
applications is subject to physical constraints. This is also visible in the chosen control input

u(t) = B∗eA
∗(τ−t)W−1

τ (x1 − eAτx0).

Indeed, if τ > 0 becomes small, then also the norm Wτ will be small, which in turn implies
that W−1

τ will have large norm due to

∥W−1
τ ∥ ≥

1

∥Wτ∥
.

Example 2.2.5. Consider the damped harmonic oscillator in Section 1.3.1. The matrices of
the linear system were given by

A =

[
0 1
− k

m
− r

m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0 ∈ R

with m, k > 0 and r ≥ 0 (r = 0 corresponds to the situation with no damping). A direct
computation shows that the controllability matrix is (now n = 2)[

B AB
]
=

1

m

[
0 1
1 −r/m

]
which has rank equal to 2 for all r ≥ 0 and m > 0. Thus the system is controllable. ⋄

2.3 Stabilisability of a System

In this section we consider a weaker notion of stabilisability of the system. As the following
definition shows, this concept means that the system can be made stable with state feedback
u(t) = Kx(t) + ũ(t). We remark that stabilisability is defined in a more general way in [4,
Def. 4.1.3], but it is shown in [4, Sec. 4.2] that the two properties coincide.
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Definition 2.3.1. Let X = Cn and U = Cm. The system (2.1) is stabilisable if there exists
K ∈ Cm×n such that σ(A+BK) ⊂ C−.

It is shown in [4, Cor. 4.2.6] that if the system (2.1) is controllable, then it is also
stabilisable. However, controllability actually implies a stronger property which allows us
to place the eigenvalues of the matrix A + BK arbitrarily in the complex plane with an
appropriate choice of a matrix K ∈ Cm×n. If the system has this latter property, then it is
said that the pole placement problem is solvable (the “poles” being the eigenvalues of the
matrixA+BK). This is a strictly stronger property than stabilisability, because stabilisability
does not require us to be able to move the eigenvalues of A that are already in the “stable
half-plane” C−. This is illustrated in the following example.

Example 2.3.2. Consider a system with

A =

1 1 0
0 1 0
0 0 −1

 , and B =

01
0


(the matrices C and D do not play a role in controllability and stabilisability). Now n = 3
and m = 1, and the matrices K ∈ Cm×n are of the form K = (k1, k2, k3) with kl ∈ C. We
have

A+BK =

 1 1 0
k1 1 + k2 k3
0 0 −1

 .
A direct computation shows that the characteristic polynomial of A+BK is

det(λ− A−BK) = (λ+ 1)(λ2 + (−k2 − 2)λ− k1 + k2 + 1).

If we choose k1 = −12 and k2 = −7, and k3 ∈ C, then the roots of det(λ − A − BK) are
σ(A+BK) = {−1,−2,−3}. Thus the system is stabilisable.

However, the controllability matrix of the system is given by

[
B AB A2B

]
=

0 1 2
1 1 1
0 0 0


which has rank equal to 2 < n = 3. Because of this, the system is not controllable. We can
also observe that for all choices of K the matrix A+BK will still have one eigenvalue equal
to −1. Because of this, the full pole placement problem is not solvable. ⋄

The stabilisability of the system can be tested using the eigenvalues and eigenvectors of
A∗ in the following way. Since σ(A∗) = σ(A), the corresponding eigenvalues of A and A∗

have the same real parts.

Theorem 2.3.3. Let X = Cn. The system (2.1) is stabilisable if and only if A and B have
the following property.

If λ ∈ σ(A∗) is such that Reλ ≥ 0 and A∗x = λx with x ̸= 0, then B∗x ̸= 0.
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Proof. See [4, Thm. 4.3.1].

Example 2.3.4. Consider a system like in Example 2.3.2 with

A =

1 1 0
0 1 0
0 0 −1

 , and B =

01
0

 .
We have σ(A∗) = {1,−1}. The only linearly independent eigenvector A∗ corresponding to
the eigenvalue λ = 1 is ϕ = [0, 1, 0]T . Since

B∗ϕ = 1 ̸= 0,

Theorem 2.3.3 implies that the system is stabilisable. ⋄

Remark 2.3.5. Stabilisability of the pair (A,B) poses limitations on the geometric multi-
plicity of the eigenvalues of A∗. More precisely, if B ∈ Cn×m, then A∗ can have at most
m linearly independent eigenvectors related to an eigenvalue with Reλ ≥ 0. This can be
seen in the following way: Since rank(B∗) ≤ m, the Rank–Nullity Theorem tells us that
dimN (B∗) = n − rank(B∗) ≥ n − m. On the other hand, Theorem 2.3.3 tells us that if
(A,B) is stabilisable, then N (λ− A∗) ∩N (B∗) = {0} whenever Reλ ≥ 0. Due to the lower
bound dimN (B∗) ≥ n−m, this is only possible if dimN (λ− A∗) ≤ m.

There are few standard ways to choose the matrix K to stabilise a stabilisable system
(A,B,C,D). We will cover them on a superficial level in the following so that these methods
can be used throughout the course, but we will not consider the proofs of these results.

2.3.1 Pole Placement

One of the stabilisation methods is the pole placement already mentioned above. This sta-
bilisation method was already mentioned above. It is a systematic method to choose K in
such a way that the eigenvalues of A + BK are at predefined locations. However, this is
only possible if (A,B,C,D) is controllable. This method is implemented in Matlab’s Control
System Toolbox as the routine place. If you are interested, you can learn more about this
method in [4, Sec. 4.2].

2.3.2 Dissipativity-Based Stabilisation

In a special situation where the matrix A is dissipative in the sense that Re⟨Ax, x⟩ ≤ 0 for all
x ∈ X, there is a very direct simple way to construct K. Indeed, if (A,B,C,D) is stabilisable
and A has the above property, then the choice K = −B∗ leads to a stable system. A more
general version of this result is presented in the following theorem1.

Theorem 2.3.6. Assume that (A,B,C,D) is stabilisable and that A is Q-dissipative in the
sense that there exists a positive definite matrix Q such that Re⟨QAx, x⟩ ≤ 0 for all x ∈ X.
If we choose K = −B∗Q, then σ(A + BK) ⊂ C−, i.e., the state feedback control input
u(t) = −Kx(t) achieves exponential stability.

1You will not find the concept of Q-dissipativity in the literature. Instead, this concept is more typically
formulated as dissipativity “with respect to an inner product defined by ⟨Qx, y⟩”, which is equivalent.
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Not all systems are Q-dissipative, but this property is often encountered in models de-
scribing physical systems, such as mechanical or electrical networks. In such situations, Q
is often related to the concept of energy of the system in the sense that the total energy of
the solution at time t is proportional to ⟨Qx(t), x(t)⟩. In the following example we see that
the harmonic oscillator is dissipative if k = m, and that it is Q-dissipative with the choice
Q = diag(k,m) if k ̸= m.

Example 2.3.7. Consider the harmonic oscillator in Section 1.3.1 with m, k > 0, and with-
out damping r = 0. The linear system on X = C2 has the matrices

A =

[
0 1
− k

m
0

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0.

We saw that (A,B,C,D) is controllable, so it is also stabilisable. We have

Re⟨Ax, x⟩ = Re

〈[
x2

−kx1/m

]
,

[
x1
x2

]〉
= Re

(
x2x1 −

k

m
x1x2

)
= (1− k/m) Re (x2x1) .

Thus the system is dissipative if k = m, and K = −B∗ = −[0, 1/m] achieves exponential
stability.

If k ̸= m, we can try to get Q-dissipativity using a diagonal Q = diag(q1, q2). Such a Q is
positive definite if (and only if) q1, q2 > 0. We have

Re⟨QAx, x⟩X = Re

〈[
q1 0
0 q2

] [
x2

−kx1/m

]
,

[
x1
x2

]〉
X

= Re

(
q1x2x1 − q2

k

m
x1x2

)
=

(
q1 − q2

k

m

)
Re(x2x1).

Choosing q1 = k and q2 = m we have Re⟨QAx, x⟩ = 0 for all x. Because of this, the system
is Q-dissipative, and by Theorem 2.3.6 the choice K = −B∗Q = −[0, 1] achieves stability.

We can note that since x(t) = [q(t), q̇(t)]T , we have

⟨Qx(t), x(t)⟩ =
〈[

kq(t)
mq̇(t)

]
,

[
q(t)
q̇(t)

]〉
= k|q(t)|2 +m|q̇(t)|2,

which is twice the total (potential + kinetic) energy of the oscillator. ⋄

2.3.3 Linear Quadratic Regulator (LQR) Design

Perhaps the most standard technique for finding K is Linear Quadratic Regulator (LQR)
design. This design aims at construction of a matrix K such that with the control input
u(t) = Kx(t) the system becomes stable and in addition this choice of K minimises the
value of the integrals ∫ ∞

0

∥x(t)∥2 +R∥u(t)∥2dt,

where x(t) is the state of the system (A,B,C,D) with the input2 u(t) = Kx(t). The purpose
of this minimisation is to find a stabilising control input for which the state norms ∥x(t)∥

2In fact, the minimisation is done over all possible control inputs u ∈ L2(0,∞;Cm).
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and the norms ∥u(t)∥ are (relatively) small. This is extremely useful in practice, because the
norms ∥u(t)∥ are typically directly related to the amount of energy that we need to use in
controlling our system. Here R > 0 is a parameter which determines how much emphasis
is placed on achieving a control input u(t) with small norms, versus achieving small norms
of the state x(t).

The LQR construction is implemented in Matlab’s Control Systems Toolbox in the rou-
tine lqr. It should be noted that there are also various different versions of LQR design,
but the one described above is sufficient for our purposes, and can be implemented with
the Matlab command lqr with the choices Q=eye(size(A)), R=R·eye(size(B,2)), and
N=zeros(size(A,1),size(B,2)).

From a mathematical perspective it is also interesting that the choice of K in LQR is
based on a solution of an algebraic Riccati equation, which is a matrix equation of the form

A∗Π+ΠA− ΠBR−1B∗Π = −I, (2.3)

where the solution Π is a symmetric matrix. If Π is the unique positive-definite solution of
the above equation, then the stabilising state feedback matrix is given by K = −R−1B∗Π. In
the following theorem we will show that this choice indeed leads to an exponentially stable
system. We note that the equation (2.3) has a (unique) positive definite solution whenever
(A,B,C,D) is stabilisable.

Theorem 2.3.8. Assume that the equation (2.3) has a solution Π which is a positive definite
matrix and define K = −R−1B∗Π. Then σ(A + BK) ⊂ C−, i.e., the state feedback control
input u(t) = −Kx(t) achieves exponential stability.

Proof. To simplify the notation, we only present the proof in the case where R = 1. Assume
that Π is a positive definite matrix which satisfies (2.3). Define K = −B∗Π and denote
AK = A + BK. Our aim is to show the existence of M > 0 and ω > 0 using the Grönwall’s
Inequality in Lemma B.1.3. To this end, let x0 ∈ X be arbitrary and denote x(t) = eAKtx0
for t ≥ 0. The matrix Π is Hermitian and positive definite by assumption, and therefore it
has a Hermitian and positive definite square root Π1/2 satisfying Π1/2Π1/2 = Π, and

∥Π1/2x(t)∥2 = ⟨Π1/2x(t),Π1/2x(t)⟩ = ⟨Π1/2Π1/2x(t), x(t)⟩ = ⟨Πx(t), x(t)⟩.

The matrix Π1/2 is nonsingular, and thus ∥x(t)∥ = ∥Π−1/2Π1/2x(t)∥ ≤ ∥Π−1/2∥∥Π1/2x(t)∥.
Note that (2.3) implies

A∗
KΠ+ΠAK = (A−BB∗Π)∗Π+Π(A−BB∗Π)

= A∗Π+ΠA− 2ΠBB∗Π = −I − ΠBB∗Π.

Since ẋ(t) = AKx(t), we can use the above identity to estimate the derivative of ∥Π1/2x(t)∥2
by

d

dt
∥Π1/2x(t)∥2 = d

dt
⟨Πx(t), x(t)⟩ = ⟨Πẋ(t), x(t)⟩+ ⟨Πx(t), ẋ(t)⟩

= ⟨ΠAKx(t), x(t)⟩+ ⟨Πx(t), AKx(t)⟩ = ⟨ΠAKx(t), x(t)⟩+ ⟨A∗
KΠx(t), x(t)⟩

= ⟨(A∗
KΠ+ΠAK)x(t), x(t)⟩ = ⟨(−I − ΠBB∗Π)x(t), x(t)⟩

= −⟨x(t), x(t)⟩ − ⟨B∗Πx(t), B∗Πx(t)⟩ = −∥x(t)∥2 − ∥B∗Πx(t)∥2

≤ −∥x(t)∥2 ≤ −∥Π−1/2∥2∥Π1/2x(t)∥2.
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Grönwall’s Inequality in Lemma B.1.3 applied to the continuously differentiable function
f(t) = ∥Π1/2x(t)∥2 now implies that

∥Π1/2x(t)∥2 ≤ e−βt∥Π1/2x(0)∥2 ≤ e−βt∥Π1/2∥2∥x0∥2,

where β = ∥Π−1/2∥2 > 0. This estimate finally shows

∥eAKtx0∥ = ∥x(t)∥ ≤ ∥Π−1/2∥∥Π1/2x(t)∥ ≤ ∥Π−1/2∥∥Π1/2∥e−
β
2
t∥x0∥.

Since x0 ∈ X was arbitrary, we have ∥eAKt∥ ≤ Me−ωt for t ≥ 0, where M = ∥Π−1/2∥∥Π1/2∥
and ω = ∥Π−1/2∥2/2 > 0.

Exercise 2.3.9. It is often desirable to try to choose K in such a way that the states of
the stabilised system decay at some predefined exponential rate (when ũ ≡ 0). This is
equivalent to choosing K so that ∥e(A+BK)t∥ ≤Me−βt, where β > 0 is a predefined constant
andM ≥ 1. Prove that this can be done by constructing aK which stabilises the system (A+
β,B,C,D). In particular, reformulate Theorem 2.3.3 to find a condition for the existence of
K, and write down a formula for K using LQR design (based on the solution of a modified
algebraic Riccati equation). ⋄

2.4 Transfer Functions of Linear systems

Besides studying the behaviour of the control system (2.1) by considering the solution x(t)
of the differential equation (2.1a), it is alternatively possible to study the way how the input
u(t) affects the output of the system y(t). One very convenient way to do this is to instead
study the Laplace transforms û and ŷ of the functions u and y. This approach to studying
linear systems is referred to as frequency domain analysis. The most fundamental concept
in this setting is the transfer function of a linear system.

Definition 2.4.1. The transfer function of the (A,B,C,D) linear system is the matrix-
valued function P : C \ σ(A)→ L(U, Y ) defined by

P (λ) = C(λ− A)−1B +D, λ ∈ C \ σ(A).

Many of the imporant questions of control theory that are studied for linear systems
of the form (2.1) can be equivalently studied in the frequency domain by considering only
the transfer functions of the plant. In many cases the analysis of the transfer function of
the system leads to simpler and more natural analysis and control techniques. The use of
transfer functions in control engineering actually predates the analysis using differential
equations, and particularly the state space representation (2.1) was developed only in the
1960’s by Rudolph Kálmán (who also developed the Kalman filter).

The transfer function P (·) is a matrix-valued function whose components are rational
functions. Conversely, if we are given a matrix-valued function P (·) consisting of rational
functions, then it is possible to construct a linear system (A,B,C,D) with this transfer
function. Such a system is called a realisation of the transfer function. This means that
linear systems have a good correspondence with the matrix-valued functions consisting of
rational functions.
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Even though we focus on analysis of linear systems in the time domain (as opposed to
the frequency domain), we will also encounter transfer functions later on this course. In the
following, we will show how the Laplace transform can be applied to the system (2.1) and
how the transfer function of (A,B,C,D) describes the mapping of the transformed input
ũ to the transformed output ỹ. This part is optional material, and if you are not familiar
with Laplace transforms, you are welcome to either look up this concept on your own or
simply skip over this part.

Example 2.4.2. Consider the harmonic oscillator in Section 1.3.1 with m, k > 0 and r ≥ 0.
This is a linear system on X = R2 with

A =

[
0 1
− k

m
− r

m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0.

A direct computation shows that, for λ /∈ σ(A), the values of the transfer function P are

P (λ) = C(λ− A)−1B +D =
[
1 0

] [λ −1
k
m

λ+ r
m

]−1 [
0
1
m

]
=

m

mλ2 + rλ+ k

[
1 0

] [λ+ r
m

1
− k

m
λ

] [
0
1
m

]
=

1

mλ2 + rλ+ k
.

⋄

2.4.1 Derivation of the Transfer Function∗

If we assume that A, B, C, and D are matrices and σ(A) ⊂ {λ | Reλ < β } for some
β ∈ R, then if γ > β is such that e−γ·x(·) ∈ L1(0,∞;X), e−γ·u(·) ∈ L1(0,∞;U) and e−γy(·) ∈
L1(0,∞;Y ), we can take Laplace transforms from the equations (2.1) and evaluate them
at λ ∈ C with Reλ > γ. The Laplace transform of the time-derivative ẋ(t) is equal to
L (ẋ) (λ) = λx̂(λ)−x(0), where we have denoted L(x) = x̂. The transformed equation (2.1)
has the form

λx̂(λ)− x(0) = Ax̂(λ) +Bû(λ).

Our assumption that λ /∈ σ(A) implies that λ − A is nonsingular, and and thus x(0) = x0
implies

λx̂(λ)− x(0) = Ax̂(λ) +Bû(λ)

⇔ (λ− A)x̂(λ) = x0 +Bû(λ)

⇔ x̂(λ) = (λ− A)−1x0 + (λ− A)−1Bû(λ).

We can similarly take the Laplace transforms of the equation (2.1b) that determines the
output of the system to obtain

ŷ(λ) = Cx̂(λ) +Dû(λ) = C(λ− A)−1x0 +
[
C(λ− A)−1B +D

]
û(λ).

The first term in the expression for ŷ(λ) depends only on the initial state x0 of the system,
and the second one depends only on the input û(λ). In particular, if we ignore the effect of
the intial state, or equivalently consider the case x(0) = x0 = 0, we then get an expression

ŷ(λ) =
[
C(λ− A)−1B +D

]
û(λ) = P (λ)û(λ)

for the output ŷ in terms of the input û. This relationship describes how the transfer function
P (·) maps the input û to the output ŷ.
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In this chapter we consider a particular class of control problems, namely, output tracking.
In this control problem the aim is to choose the input u(t) of the system in such a way that
the output converges to a desired reference output yref (t) as t grows indefinitely.

Definition 3.0.1. Let yref (·) : [0,∞) → Y = Cp be a given reference output function. In
the output tracking problem the aim is to choose the input u(t) of the system in such a way
that

∥y(t)− yref (t)∥ → 0 as t→∞.

Throughout the chapter we assume that the feedthrough matrix D is zero, and thus
consider the linear system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (3.1a)
y(t) = Cx(t) (3.1b)

with u(t) ∈ U and y(t) ∈ Y , where X = Cn, U = Cm and Y = Cp, or alternatively X = Rn,
U = Rm and Y = Rp. Similar results are valid also for linear systems with D ̸= 0, but the
assumption D = 0 simplifies the formulas.

We focus on two particular situations and particular control design methods for the out-
put tracking problem. In the first case we consider the tracking of constant reference signals
using “Proportional-Integral Control” in Section 3.1. In the second case in Section 3.2 we
consider the tracking of time-varying signals, this time using so-called feedforward control.
These two control designs have different properties with both advantages and weaknesses,
and we will analyse and compare them later in the chapter.

3.1 Proportional–Integral Control (PI Control)

In this section we focus on the output tracking problem in the situation where the reference
signal yref (t) is constant, so that yref (t) ≡ yref ∈ Y . In Proportional–Integral Control (PI
Control) the output tracking problem is solved with a control input u(t) which is based on
the knowledge of the tracking error e(t) = y(t)− yref and its cumulative integral over time,
i.e.,1

u(t) = KP e(t) +KI

∫ t

0

e(s)ds, (3.2)

1The more general Proportional–Integral–Derivative Control (PID Control) also uses the derivative ė(t) of
the tracking error.

26
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where KP , KI ∈ Cm×p (or KP , KI ∈ Rm×p) are the parameters of the control input. PI
Control was developed in the early 1900’s, and it is extremely widely used in engineering
and industry, for example in process control. The Wikipedia article on PID Control provides
a good overview to its history and typical applications. One of the main strengths of PI
control is that it is robust (in the sense discussed briefly in Section 1.2.5), and in particular
the tracking of the reference yref will be achieved even if the matrices A, B, and C are not
known exactly, or if they experience changes (for example in RLC circuits the properties of
the electronic components change with temperature during the operation of the circuit).

Example 3.1.1. Let us consider a single moving robot in Section 1.3.2 modeled by

ẋ(t) = u(t), x(0) ∈ C
y(t) = x(t).

This is a linear system on X = C with matrices A = 0, B = 1, C = 1, D = 0.
The goal of driving the robot to a point xr ∈ C in the complex plane can be seen as an

output tracking problem with yref (t) ≡ xr. Indeed, if we solve this problem, then If we solve
this problem, then

|x(t)− xr| = |y(t)− yref | → 0 as t→∞.

In this example we try to do this with Proportional control only (that is, without the integral
term in the PI controller). In this situation the control law is of the form

u(t) = KP e(t)

where e(t) = y(t)− yref = x(t)− xr. If we choose KP < 0, then we indeed get convergence
of the position x(t) of the robot to the desired position xr. This is illustrated in Figure 3.1.

0 1 2 3 4 5 6 7 8 9 10
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0.5

1

1.5

2

2.5

Figure 3.1: Proportional control of a single robot.

Thus Proportional control seems to be sufficient to solve the control problem. However,
in reality the robot may experience some external disturbances, for instance, from altitude
difference in the environment, or from wind of friction. These disturbances could be (a bit
naively) modeled as

ẋ(t) = u(t) + d, x(0) ∈ C
y(t) = x(t),

https://en.wikipedia.org/wiki/PID_controller
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Figure 3.2: Proportional control of a single robot with disturbance.

where d ∈ C is the (constant in time) disturbance. In this situation, the Proportional control
u(t) = KP e(t) will no longer steer the robot to the desired position. Indeed, as illustrated
in Figure 3.2.

However, as discussed below, adding the Integral part to the PI control will fix the issue
of this persistent error! ⋄

As demonstrated in the example above, the integral term in the PI control will espe-
cially help in avoiding persistent errors in the tracking, and cancelling the effect of external
(constant) disturbances. Overall, the Proportional term KP e(t) in the PI control law (3.2)
is based on the current value of the tracking error e(t). On the other hand, the Integral term
will in addition keep track of the history of the tracking error. In particular, if the tracking
would have a persistent error (which does not go to zero), this would be seen by the inte-
gral term, and this term would gradually increase the control action to compensate for the
remaining error until it becomes zero. Even a small error like this would be compensated,
since the integral of a small nonzero value over a longer time window would become no-
ticeable. This is one of the reasons for the accuracy of the integral control: with suitably
chosen parameters it will reach the reference, and it will keep the output of the system there
reliably. Similarly, the effects of disturbances on the tracking error will be noticed by the
integral term, and this term will lead to a compensating control action until the error con-
verges to zero. In addition to these properties, the integral term in the PI control law (3.2)
is instrumental in achieving robustness, in the sense that the control law will achieve the
tracking even if the parameters of the system are unknown or if they experience changes.
We will see this in the analysis of the PI controller as the property that the parameters KP

and KI do not depend on the reference yref , and that they depend very weakly on the actual
system (A,B,C,D) (sometimes only the signs of KP and KI should be correct!). Because
of this, the control input (3.2) with the same parameters KP and KI can solve the output
tracking problem for very different kinds of systems.

The performance of the PI Controller is typically analysed in the frequency domain,
but on this course we use state space methods to present conditions for the solvability of
the output tracking problem. We begin by noting that if we define xc(t) =

∫ t

0
e(s)ds, then

d
dt
xc(t) = e(t) and xc(0) = 0. Because of this, the control signal u(t) in (3.2) can be written
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as an output of another linear system, called the controller,

ẋc(t) = 0 · xc(t) + e(t), xc(0) ∈ Y (3.3a)
u(t) = KIxc(t) +KP e(t) (3.3b)

on the space Xc = Y . The initial state corresponding to (3.2) is xc(0) = 0 ∈ Xc. Note that
this system has an input e(t) and output u(t), and for this reason (3.3) is called an error
feedback controller. It is of the form (1.1), now with matrices (Ac, Bc, Cc, Dc) where Ac =
0 ∈ Cp×p, Bc = I ∈ Cp×p, Cc = KI ∈ Cm×p, and Dc = KP ∈ Cm×p. Together the controlled
system (3.1) and the controller (3.3) form a feedback interconnection in Figure 3.3.

PC
u(t) y(t)e(t)yref

−

Figure 3.3: The system P = (A,B,C) in a feedback interconnection with an error feedback
controller C = (Ac, Bc, Cc, Dc).

Using the system equations (3.1) and (3.3) and e(t) = y(t)− yref = Cx(t)− yref we can
see that the time-derivatives of the states x(t) and xc(t) satisfy

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +BKIxc(t) +BKP (Cx(t)− yref )

= (A+BKPC)x(t) +BKIxc(t)−BKPyref

ẋc(t) = e(t) = Cx(t)− yref .

The behaviour of the states x(t) and xc(t) can be studied together if we define xe(t) =
(x(t), xc(t)). The above equations now imply that

ẋe(t) =

[
ẋ(t)
ẋc(t)

]
=

[
(A+BKPC)x(t) +BKIxc(t)−BKPyref

Cx(t)− yref

]
=

[
A+BKPC BKI

C 0

] [
x(t)
xc(t)

]
+

[
−BKp

−I

]
yref

and

e(t) = Cx(t)− yref =
[
C, 0

] [ x(t)
xc(t)

]
+ (−I)yref .

Note that the above differential equation for xe(t) and the expression for e(t) have the form
of another linear control system — now with state xe(t), (constant) input yref , and output
e(t). Indeed, if we define matrices

Ae =

[
A+BKPC BKI

C 0

]
∈ C(n+p)×(n+p), Be =

[
−BKP

−I

]
∈ C(n+p)×p,
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Ce =
[
C 0

]
∈ Cp×(n+p), and De = −I ∈ Cp×p, then xe(t) and e(t) are the state and output,

respectively, of the so-called closed-loop system

ẋe(t) = Aexe(t) +Beyref , xe(0) =
[

x(0)
xc(0)

]
∈ Cn+p

e(t) = Cexe(t) +Deyref .

The role of the closed-loop system is to describe the behaviour of the states x(t) and xc(t) of
the system (3.1) and the PI controller (or more generally, any dynamic feedback controller).

After these preliminaries, we can state a general condition on KP and KI which guaran-
tees that the PI controller solves the tracking problem for any reference yref ∈ Y (note that
KP and KI do not depend on yref ).

Theorem 3.1.2. If KP , KI ∈ Cm×p are such that all eigenvalues of the matrix

Ae =

[
A+BKPC BKI

C 0

]
have negative real parts, then for any yref ∈ Y the PI controller (3.2) solves the output
tracking problem. In particular, there exist constants M,ω > 0 such that for any yref ∈ Y and
for all initial states x(0) ∈ X and xc(0) ∈ Y we have

∥y(t)− yref∥Y ≤Me−ωt
(
∥x(0)∥+ ∥xc(0)∥+ ∥yref∥

)
, ∀t ≥ 0.

Proof. Let KP , KI ∈ Cm×p be such that σ(Ae) ⊂ C− and let yref ∈ Y be arbitrary. We
begin the proof by finding an expression for the tracking error e(t) = y(t)− yref in terms of
matrices (Ae, Be, Ce, De). The variation of parameters formula implies that

xe(t) = eAetxe(0) +

∫ t

0

eAe(t−s)Beyrefds = eAetxe(0) +

(∫ t

0

eAe(t−s)ds

)
Beyref .

Since Ae is nonsingular due to our assumption σ(Ae) ⊂ C−, we have∫ t

0

eAe(t−s)ds = A−1
e

∫ t

0

Aee
Ae(t−s)ds = A−1

e

∫ t

0

(
− d

ds
eAe(t−s)

)
ds

= A−1
e

(
−eAe(t−t) + eAe(t−0)

)
= A−1

e

(
eAet − I

)
.

Using this identity in the above formula for xe(t), we get (note that A−1
e eAet = eAetA−1

e )

xe(t) = eAet(xe(0) + A−1
e Beyref )− A−1

e Beyref

⇒ e(t) = Cexe(t) +Deyref

= Cee
Aet(xe(0) + A−1

e Beyref ) + (−CeA
−1
e Be +De)yref .

As the next step we show that the second term of e(t) is identically zero by showing that
−CeA

−1
e Be + De = 0. To show this, let y ∈ Y be arbitrary and denote [ z

zc ] = A−1
e Bey. The

structures of the matrices Ae and Bc show that[
z
zc

]
= A−1

e Bey ⇔ Ae

[
z
zc

]
= Bey ⇔

[
A+BKPC BKI

C 0

] [
z
zc

]
=

[
−BKP

−I

]
y

⇔

{
(A+BKPC)z +BKIzc = −BKPy

Cz = −y.
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With this notation we thus have that

(−CeA
−1
e Be +De)y = −Ce

[
z
zc

]
+Dey = −

[
C 0

] [ z
zc

]
− y = −Cz − y = y − y = 0.

Since (−CeA
−1
e Be +De)y = 0 for an arbitrary y ∈ Y , we indeed have −CeA

−1
e Be +De = 0.

With this property our formula for the tracking error e(t) becomes e(t) = Cee
Aet(xe(0) +

A−1
e Beyref ). The assumption on KP and KI implies that there exist M0, ω > 0 such that
∥eAet∥ ≤M0e

−ωt for all t ≥ 0. Using this property we can estimate

∥e(t)∥ = ∥Cee
Aet(xe(0) + A−1

e Beyref )∥ ≤ ∥Ce∥∥eAet∥(∥xe(0)∥+ ∥A−1
e Be∥∥yref∥)

≤M0∥Ce∥max{1, ∥A−1
e Be∥}e−ωt(∥xe(0)∥+ ∥yref∥).

The claim of the theorem holds with the choice M = M0∥Ce∥max{1, ∥A−1
e Be∥}, since

∥xe(0)∥2 = ∥x(0)∥2 + ∥xc(0)∥2 ≤ ∥x(0)∥2 + 2∥x(0)∥∥xc(0)∥+ ∥xc(0)∥2 = (∥x(0)∥+ ∥xc(0)∥)2.

The condition on the parameters KP and KI in Theorem 3.1.2 is quite general, and does
not immediately show how these parameters should be chosen. The problem of choosing
KP and KI to guarantee that the PI controller solves the tracking problem and has desirable
performance is called “tuning the PI controller”, and several systematic methods have been
developed for this purpose. In the following theorem we present one such method. In
the statement the notation PKP

(0)† ∈ Cp×m refers to the (Moore–Penrose) pseudoinverse
of the matrix PKP

(0) ∈ Cm×p, and if PKP
(0) has linearly independent columns, then the

pseudoinverse has the simple formula PKP
(0)† = PKP

(0)∗(PKP
(0)PKP

(0)∗)−1.

Theorem 3.1.3. Choose the matrices KP , KI ∈ Cm×p in the following way.

(1) Choose KP ∈ Cm×p in such a way that σ(A+BKPC) ⊂ C−.

(2) Denote PKP
(0) := C(−A−BKPC)

−1B, and choose KI = −εPKP
(0)† with a parameter

ε > 0.

If the matrix PKP
(0) is surjective (i.e. has linearly independent rows), then there exists ε∗ > 0

such that for every value ε ∈ (0, ε∗] the PI controller with parameters KP and KI solves the
output tracking problem for every reference yref ∈ Y .

Proof. We will present the beginning of the proof in detail, and only sketch the last part. By
Theorem 3.1.2 it is sufficient to show that there exists ε∗ > 0 such that for every ε ∈ (0, ε∗]
we have σ(Ae) ⊂ C−. With the choice KI = −εPKP

(0)† the matrix Ae has the form

Ae =

[
A+BKPC −εBPKP

(0)†

C 0

]
.

We define a similarity transform Ãe = SAeS
−1 where S ∈ L(Xe) and S−1 ∈ L(Xe) are

defined as

S =

[
I εH
0 I

]
, S−1 =

[
I −εH
0 I

]
,
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with H = −(A+ BKPC)
−1BPKP

(0)† ∈ L(Y,X). Since a similarity transformation does not
change the spectrum of a matrix, we can complete the proof by showing that σ(Ãe) ⊂ C−
for all ε ∈ (0, ε∗].

We note that due to the definition of H ∈ L(Y,X) the matrices (A+ BKPC)H and CH
have the forms

(A+BKPC)H = −(A+BKPC)(A+BKPC)
−1BPKP

(0)† = −BPKP
(0)†

CH = −C(A+BKPC)
−1BPKP

(0)† = PKP
(0)PKP

(0)† = I,

since PKP
(0)† is a right inverse of PKP

(0) due to our assumptions. Using the above formulas
for (A+BKPC)H and CH we get

Ãe = SAeS
−1 =

[
I εH
0 I

] [
A+BKPC −εBPKP

(0)†

C 0

] [
I −εH
0 I

]
=

[
I εH
0 I

] [
A+BKPC −ε(A+BKPC)H − εBPKP

(0)†

C −εCH

]
=

[
I εH
0 I

] [
A+BKPC 0

C −ε

]
=

[
A+BKPC + εHC −ε2H

C −εI

]
.

If we denote AK := A+BKPC for brevity, then Ãe has the form

Ãe =

[
AK + εHC 0

C −εI

]
+ ε2

[
0 −H
0 0

]
=: Ae0 + ε2Ae1.

It remains to analyse the location of eigenvalues of Ãe, and we will only sketch this
analysis. We note that since Ae0 is block-triangular, the eigenvalues of Ae0 are exactly the
eigenvalues of its diagonal blocks. Since σ(−εI) = {−ε}, we have σ(Ae0) = σ(AK + εHC)∪
{−ε}. Since the locations of the eigenvalues of a matrix are continuous functions of its
elements and since for small values of ε > 0 the perturbation εHC is small, there exists
ε1 > 0 and µ < 0 such that Reλ ≤ µ < 0 for all λ ∈ σ(AK + εHC) and for all ε ∈ (0, ε1].
That is, the eigenvalues σ(AK + εHC) have “uniformly” negative real parts for small ε > 0.
Therefore for all ε ∈ (0, ε1] the eigenvalues of Ae0 are all in C−. To complete the proof, we
need to analyse how the term ε2Ae1 changes the eigenvalues of Ae0. For this we need more
advanced and detailed “perturbation results” for eigenvalues. These results can be used to
show that since the term ε2Ae1 is “of higher order” in the variable ε > 0, for all sufficiently
small ε > 0 the eigenvalues of Ãe = Ae0 + ε2Ae1 are indeed in C−.

The above theorem requires two properties from the system (3.1). First of all, it must be
possible to choose KP ∈ Cm×p in such a way that the real parts of eigenvalues of A+BKPC
are negative. As shown in Section 1.2.3, A + BKPC is the main matrix of the system that
arises when applying output feedback of the form y(t) = KPu(t) + ũ(t) to the matrix to
the system (A,B,C, 0). Because of this, the condition essentially requires that the system
(A,B,C) needs to be stabilisable with output feedback2. This condition is always satisfied
if the system (A,B,C) is already stable (i.e., σ(A) ⊂ C−), and in this case it is possible to
choose KP = 0 ∈ Cm×p (though other choices of KP may improve the performance of the
controller).

2Note that this is a more restrictive condition than stabilisability considered in Section 2.3.
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The second condition is that the rows of PKP
(0) = C(−A − BKPC)

−1B are linearly
independent. The choice of the notation “PKP

(0)” may seem strange, but it is justified in
the light of Section 2.4. We can observe that this matrix is the transfer function of the system
(A+BKPC,B,C, 0) evaluated at the point λ = 0. This condition can be verified easily if the
matrices A, B, C, D, and KP are known, and (quite remarkably!) this linear independence
does not depend on the choice of KP ∈ Cm×p, as long as the condition σ(A+BKPC) ⊂ C−
is satisfied. The linear independence of the rows of PKP

(0) also requires that the system
(A,B,C) must have at least as many inputs as outputs, i.e., necessarily m ≥ p.

The following Matlab routine forms the closed-loop system consisting of the control sys-
tem (A,B,C) and the PI controller with given parameters. The behaviour of the controlled
system and the tracking error e(t) can then be investigated by simulating the closed-loop
system (Ae, Be, Ce, De) with the routine LinSysSim with the constant input yref .

function [Ae,Be,Ce,De] = LinSysPIClosedLoop(A,B,C,K_P,eps)
% function [Ae,Be,Ce,De] = LinSysPIClosedLoop(A,B,C,K_P,eps)
%
% Form the closed-loop system (Ae,Be,Ce,De) consisting of the linear system
% (A,B,C) and a Proportional-Integral Controller (PI Controller) with the
% parameters K_P (proportional part gain) K_I = eps*pinv(C*((A+B*K_P*C)\B))
% (integral part gain) where eps>0 is a low-gain parameter. The routine
% tests the stability of the closed-loop system.
%
% Parameters:
% A = nxn-matrix, B = nxm-matrix, C = pxn-matrix,
% K_P = mxp-matrix, eps>0

p = size(C,1); m = size(B,2);

if ~isequal(size(K_P),[m,p])
error('K_P has incorrect dimensions!')

end
if find(real(eig(A+B*K_P*C))>=0)

warning('The matrix A+B*K_P*C is not Hurwitz!')
end

P0 = -C*((A+B*K_P*C)\B);
if rank(P0,1e-10)<p

error('The transfer function of (A,B,C) is nearly non-surjective at s=0!')
end

K_I = -eps*pinv(P0);

Ae = [A+B*K_P*C,B*K_I;C,zeros(p)];
Be = [-B*K_P;-eye(p)];
Ce = [C,zeros(p)];
De = -eye(p);

% Test the stability of the closed-loop system, and print out the stability
% margin.
CLeigs = eig(Ae);
maxRe = max(real(CLeigs));

if maxRe>=0
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error(['The closed-loop system matrix Ae is not Hurwitz!' ...
'Adjust controller parameters!'])

end

fprintf(['The largest real part of eigenvalues of Ae = ' num2str(maxRe) '\n'])

Example 3.1.4. In this example we consider tracking of the position of the damped har-
monic oscillator in Section 1.3.1 using the PI controller. The parameters (A,B,C) of the
system (3.1) are

A =

[
0 1
− k

m
− r

m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
with k,m, r > 0. Since u(t) ∈ R and y(t) ∈ R, the PI controller has the form

ẋc(t) = e(t), xc(0) ∈ R
u(t) = KIxc(t) +KP e(t)

for some scalars KI , KP ∈ R (for this model we can consider the controller with real pa-
rameters). We will choose these parameters using Theorem 3.1.3. Since the oscillator has
damping, it is already stable, and we can choose KP = 0. A direct computation shows that
we then have PKP

(0) = C(−A)−1B = 1/k > 0. Because of this, the choice of the parameters
are given by

KP = 0 ∈ R, KI = −εPKP
(0)† = − ε

C(−A)−1B
= −εk.

Theorem 3.1.3 now guarantees that for all sufficiently small ε > 0 the PI controller achieves
the tracking for any reference output yref ∈ R. According to Theorem 3.1.2 the condition
for a suitable ε > 0 is that the eigenvalues of the matrix

Ae =

[
A+BKPC BKI

C 0

]
=

[
A −εkB
C 0

]
have negative real parts, and this condition can be easily checked for any fixed ε > 0.
Figure 3.4 shows the simulated output of the harmonic oscillator with different values of
parameters ε and KP . The code of the simulation is presented below. The code makes use
of another helpful function LinSysPlotEigs.

⋄

% Harmonic oscillator with damping
r = 1; k = 1; m = 1;
A = [0 1;-k/m -r/m]; B = [0;1/m]; C = [1 0];

% Construct the PI controller
% Choose parameters K_P to stabilise A+B*K_P*C,
% and the gain parameter eps>0
K_P = 0;
eps = 0.3;
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Figure 3.4: Output of the harmonic oscillator with the PI controller.

[Ae,Be,Ce,De] = LinSysPIClosedLoop(A,B,C,K_P,eps);

% The choices of K_P and eps can be tested by plotting the spectrum of A_e
LinSysPlotEigs(Ae,[-1,0,-3,3])

yref = @(t) -4;
% yref = @(t) (-4)*(t<30) + (-2)*(t>=30);

% The closed-loop system can be simulated with 'LinSysSim', now with the
% input function 'yref(t)'

% Initial states of the oscillator and the PI controller
x0 = [1;0];
xc0 = 0;

tspan = [0 20];
sol = LinSysSim(Ae,Be,[x0;xc0],yref,tspan);
tt = linspace(tspan(1),tspan(2),500);
xxe = deval(sol,tt);

% The output of the controlled system is C*x(t) = [C,zeros(p)]*x_e(t)
yy = [C,0]*xxe;

% Values of yref(t) for plotting
yrefvals = zeros(1,length(tt));
for ind = 1:length(tt), yrefvals(ind)=yref(tt(ind)); end

% Plot the output and the reference
plot(tt,[yrefvals;yy],'Linewidth',2)
title(['Output for $K_P= ' num2str(K_P) '$ and $\varepsilon= ' ...

num2str(eps) '$'],'Interpreter','Latex','Fontsize',16)

function LinSysPlotEigs(A,axlim)
% function PlotEigs(A,axlims)
%
% Plots the eigenvalues of A
% If 'axlim' is not given, limits determined from the spectrum.

Aspec = eig(full(A));
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if nargin == 1
axlim=[min(real(Aspec)),max(real(Aspec)),min(imag(Aspec)),max(imag(Aspec))];

end

hold off, cla, hold on
plot(real(Aspec),imag(Aspec),'r.','Markersize',15)
% set the limits of the plot
axis(axlim)

% plot the axes
plot(axlim(1:2),[0 0],'k',[0 0],axlim(3:4),'k','Linewidth',1)

maxreal = num2str(max(real(Aspec)));
title(['Largest real part = $' maxreal '$' ],'Interpreter','Latex')

3.1.1 Optimisation of the Convergence Rate [Optional]

It is often desirable to choose the parameters KP and KI in such a way that the exponential
convergence of the tracking error e(t) = y(t)− yref is relatively fast3. As shown in the proof
of Theorem 3.1.2, the exponent ω > 0 in the estimate

∥y(t)− yref∥Y ≤Me−ωt
(
∥x(0)∥+ ∥xc(0)∥+ ∥yref∥

)
, ∀t ≥ 0

is determined by the estimate ∥eAet∥ ≤M0e
−ωt for the matrix exponential function eAet. On

the other hand, the proof of Theorem 2.1.2 tells us that ω > 0 is determined by real parts
of the eigenvalues of Ae. In particular, the estimate holds when 0 < ω < min{ |Reλ| | λ ∈
σ(Ae) }. Because of this, in order to maximise the exponent ω > 0 in the decay rate we
should choose parameters KP and KI in such a way that the real parts of the eigenvalues of
σ(Ae) ⊂ C− are as far from the imaginary axis as possible. Optimising the location of σ(Ae)
with respect to arbitrary matrices KP and KI can be challenging. To make things simpler,
we proceed as in Theorem 3.1.3 by fixing KP (so that σ(A + BKPC) ⊂ C−), choosing
KI = −εPKP

(0)†, and aim to choose an optimal value for ε > 0. Since ε > 0 is the only
open parameter, one possible choice is to simply compute and plot the eigenvalues of Ae for
several values of ε > 0, and try to find a value where the eigenvalues σ(Ae) are as small as
possible. However, there’s also a systematic approach to choosing ε > 0. We our choices of
KP and KI we can write the matrix Ae in the form

Ae =

[
A+BKPC BKI

C 0

]
=

[
A+BKPC 0

C 0

]
+ ε

[
B
0

] [
−PKP

(0)†, 0
]
=: Ae0 + εBe0Ce0.

The problem of finding and plotting the change of the eigenvalues of the matrix of the
form Ae0 + εBe0Ce0 as a function of ε > 0 is known as root locus, and for example Matlab’s
Control Systems Toolbox has a routine rlocus for this analysis in the case where the system
(A,B,C,D) has scalar-valued inputs and outputs, i.e., m = 1 and p = 1. This tool allows us
to illustrate precisely how the eigenvalues of Ae change when ε > 0 increases from its initial
value ε = 0, and we can use the plot to identify the best possible value for this parameter.

3It could also be possible to optimise with respect to some other criteria, e.g., minimising oscillations in
the error, but in this dicsussion we focus only on the exponential rate ω > 0 of the tracking. It is important to
also note that attempting to increase ω > 0 sometimes leads to a bigger value of M > 0 in the estimate.
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The following Matlab code implements a routine which plots the change of the eigen-
values of Ae as a function of ε > 0. The plot is based on the rlocus routine with a few
modifications. The Matlab routine also returns the value εopt of the parameter ε for which
the eigenvalues of Ae have the most negative real parts.

function [eiglocs,kvals,k_opt] = LinSysRootLocus(A,B,C,krange)
% function [eiglocs,kvals,k_opt] = LinSysRootLocus(A,B,C,krange)
%
% Root locus plot for the locations of eigenvalues of A+k*B*C with k>0.
%
% Input parameters:
% A = n x n matrix
% B = n x 1 matrix
% C = 1 x n matrix
% krange = (positive) values for the parameter k. Either 2-vector containing
% the range of the values of k, or a vector of length at least 3
% containing the particular values of k.
%
% Output parameters:
% eiglocs = a matrix containing the locations of the eigenvalues at the
% computed values of k
%
% kvals = computed values of k
%
% k_opt = the value of k for which the real parts of the eigenvalues are as
% far away from the imaginary axis as possible

sys = ss(A,B,C,0);
[eiglocs,kvals] = rlocus(sys,-krange);
rlocus(sys,-krange);
linehand = findall(gcf,'Type','line');
set(linehand(6:end),'LineWidth',2);

[~,ind] = min(max(real(eiglocs),[],1));
k_opt = -kvals(ind);

Example 3.1.5. Figures 3.5 shows the root locus plots for Ae for two different values of
the parameter KP . These figures are produced using the LinSysRootLocus routine with the
following code. Note that in both cases the two paths of the eigenvalues begin from the
eigenvalues of the matrix A + BKPC, and one begins from the origin 0 ∈ C. These are
exactly the eigenvalues of the matrix Ae corresponding to the parameter value ε = 0.

% K_P = 0;
K_P = .75;

Ae0 = [A+B*K_P*C,zeros(2,1);C,0];
Be0 = [B;0];
Ce0 = [zeros(1,2),-1/(C*((-A-B*K_P*C)\B))];

epsrange = linspace(0,0.7,3001);
[eiglocs,kvals,eps_opt] = LinSysRootLocus(Ae0,Be0,Ce0,epsrange);
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Figure 3.5: Root locus figures representing the change of the eigenvalues of Ae as a function
for ε > 0 for KP = 0 (left) and KP = 0.75 (right).

⋄

3.2 Output Tracking of Time-Varying Signals

In this section we consider output tracking of signals which are not necessarily constant,
but can instead be a linear combination of trigonometric functions. In this situation we will
use a different kind of control design where we directly utilise the full knowledge of the
reference signal yref (t) (instead of only using the tracking error e(t) = y(t)− yref (t) as in PI
control). In addition, if the system (A,B,C) is not exponentially stable, we use either the
knowledge of the state x(t) or the output y(t) of the system.

3.2.1 The Reference Signal yref(t)

Definition 3.2.1. We consider a reference signal of the form

yref (t) =

q∑
k=−q

ake
iωkt (3.4)

where {ωk}qk=−q ⊂ R are the frequencies of the signal and {ak}qk=0 ⊂ Y are its amplitudes.
We assume that ω0 = 0 and ω−k = −ωk for k ∈ {1, . . . , q}.

Suitable choices of frequencies and (complex) amplitudes in (3.4) allow us to consider
tracking of various kinds of reference signals. For example, trigonometric functions like
yref (t) = cos(ω1t+ θ) and yref (t) = sin(ω1t+ θ) with ω1 > 0 and θ ∈ [0, 2π) can be expressed
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as

cos(ω1t+ θ) =
1

2

(
ei(ω1t+θ) + e−i(ω1t+θ)

)
=
eiθ

2
eiω1t +

e−iθ

2
ei(−ω1)t, ⇒ a±1 =

e±iθ

2
, ω−1 = −ω1

sin(ω1t+ θ) =
1

2i

(
ei(ω1t+θ) − e−i(ω1t+θ)

)
=
eiθ

2i
eiω1t − e−iθ

2i
ei(−ω1)t, ⇒ a±1 = ±

e±iθ

2i
.

The component functions of yref (t) are real-valued if (and only if) a0 ∈ Rp and a−k = ak for
all k ∈ {0, . . . , q}. In this situation for all t ∈ R we have

yref (t) =

q∑
k=−q

ake
−iωkt =

q∑
k=−q

a−ke
iω−kt =

q∑
n=−q

ane
iωnt = yref (t),

which implies that yref (t) ∈ Rp.
Another typical application is to choose ω1 = 2π

τ
> 0 for some τ > 0 and let ωk = kω1

for k ∈ {2, . . . , q}. In that case yref is τ -periodic in the sense that yref (t + τ) = yref (t) for all
t ∈ R, since we have

yref (t+ τ) =

q∑
k=−q

ake
iωk(t+τ) =

q∑
k=−q

ake
iωktei2πk =

q∑
k=−q

ake
iωkt = yref (t).

The theory of Fourier Series tells us that functions of the form (3.4) can be used to ap-
proximate any τ -periodic function f(·) ∈ L2(0, τ ;Y ) with any given finite accuracy in the
L2-sense. This means that f(·) is a τ -periodic function such that f(·) ∈ L2(0, τ ;Y ), then for
any ε > 0 there exists q ∈ N and (ak)

q
k=−q ⊂ Y such that

∥∥∥∥f(·)− q∑
k=−q

ake
iωk·
∥∥∥∥
L2

< ε.

As illustrated in Figure 3.6 the convergence may not happen in the pointwise sense if the
function f(·) is not continuous, and in particular the Gibbs phenomenon results in over-
shoots and undershoots that can not be reduced by increasing the number of terms in the
approximating function. However, the convergence also happens in the “pointwise sense”
if the τ -periodic function f(·) is continuous on R and satisfies suitable additional condi-
tions4. Moreover, if the τ -periodic function f has Fourier coefficients (ak)∞k=−∞ which satisfy∑

k∈Z|ak| <∞, then for any ε > 0 there exists q ∈ N and (ak)
q
k=−q ⊂ Y such that

∥∥∥∥f(t)− q∑
k=−q

ake
i 2πt

τ

∥∥∥∥
Y

< ε for all t ∈ R.

This property is much stronger than convergence in the L2-sense, as is illustrated in Fig-
ure 3.6 for a periodic “triangle” function satisfying the condition on the Fourier coefficients
(ak)

∞
k=−∞ (but which is not continuously differentiable).

4In particular, pointwise convergence happens for continuously differentiable functions, but the same is
true also under weaker conditions. For example, the weaker concept of Hölder continuity is sufficient.
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Figure 3.6: Fourier approximations of periodic functions.

Example 3.2.2. If we want to consider a periodic refencence signal

yref (t) =

[
sin(2πt) + 1
cos(2πt)

]
,

then we can choose τ = 1, ω0 = 0, ω1 =
2π
τ
= 2π, and ω−1 = ω1 and using

sin(2πt) =
ei2πt − e−i2πt

2i
, cos(2πt) =

ei2πt + e−i2πt

2

we can write

yref (t) =

[
sin(2πt) + 1
cos(2πt)

]
=

[
1
0

]
eiω0t +

[
1
0

]
eiω1t − eiω−1t

2i
+

[
0
1

]
eiω1t + eiω−1t

2

=

[
1
0

]
eiω0t +

([
1/(2i)

0

]
+

[
0
1/2

])
eiω1t +

([
−1/(2i)

0

]
+

[
0
1/2

])
eiω−1t

=

[
1
0

]
eiω0t +

1

2

[
−i
1

]
eiω1t +

1

2

[
i
1

]
eiω−1t

which means that in the form (3.4) we have q = 1 and

a0 =

[
1
0

]
, a1 =

1

2

[
−i
1

]
, a−1 =

1

2

[
i
1

]
.

Note that the vectors satisfy a−1 = a1, since yref (t) ∈ R2 for all t ∈ R. ⋄

3.2.2 Feedforward Controller Design

We aim to design a control input of the form

u(t) = Kx(t) +

q∑
k=−q

uke
iωkt (3.5)

where K is a matrix and {uk}qk=−q ⊂ U . Our goal is to choose the parameters K and {uk}k
in such a way that using this control input the output y(t) will converge to the reference
signal yref (t) as time grows indefinitely. The following theorem confirms that this kind of
control input can be used to solve the output tracking problem and provides appropriate
choices for the parameters {uk}qk=−q. The role of the term state feedback term Kx(t) in
the control input is to pre-stabilise the system. As explained before, the state x(t) is often
unknown, and in this case state feedback cannot be used. To replace this term with output
feedback, we can choose K = K0C for some K0 ∈ L(Y, U), in which case Kx(t) = K0y(t).
Moreover, if the system is already stable, it is possible to choose K = 0.
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Theorem 3.2.3. Assume (A,B,C) is stabilisable and let K be chosen so that σ(A+ BK) ⊂
C−. Let yref(t) be a reference signal of the form (3.4). If we can choose {uk}qk=−q ⊂ U in such
a way that

PK(iωk)uk = ak k ∈ {−q, . . . , q},

where PK(λ) = C(λ−A−BK)−1B, then with the control input (3.5) the output y(t) of the
system satisfies

∥y(t)− yref(t)∥Y → 0, as t→∞.

Proof. The input (3.5) is of the form u(t) = Kx(t) + ũ(t), and with this input the system
becomes

ẋ(t) = (A+BK)x(t) +Bũ(t), x(0) = x0 ∈ X
y(t) = Cx(t).

The function PK(·) defined by PK(λ) = C(λ − A − BK)−1B is the transfer function of the
stabilised system (A+BK,B,C). Because of this, we can complete the proof of the theorem
under the assumption that (A,B,C) is stable (i.e., σ(A) ⊂ C−) and K = 0.

In the situation where K = 0, the output y(t) of the system with input (3.5) is given by

y(t) = CeAtx0 + C

∫ t

0

eA(t−s)Bu(s)ds

= CeAtx0 + C

∫ t

0

eA(t−s)B

[
q∑

k=−q

uke
iωks

]
ds

= CeAtx0 +

q∑
k=−q

C

∫ t

0

eA(t−s)Buke
iωksds

= CeAtx0 +

q∑
k=−q

eiωktC

∫ t

0

e(A−iωk)(t−s)Bukds.

Since the system (A,B,C) was assumed to be stable, we have that iωk are not eigenvalues
of A, and therefore A− iωk is nonsingular for every k. Because of this, we can compute5

∫ t

0

e(A−iωk)(t−s)ds = (iωk − A)−1

∫ t

0

(iωk − A)e(A−iωk)(t−s)ds

= (iωk − A)−1

∫ t

0

[
d

ds
e(A−iωk)(t−s)

]
ds = (iωk − A)−1

[
e(A−iωk)(t−t) − e(A−iωk)(t−0)

]
= (iωk − A)−1

[
I − e(A−iωk)t

]
.

5You can compare this computation to a similar argument in the proof of Theorem 3.1.2.
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Substituting this formula to the expression for y(t) yields (recall that (iωk−A)−1 commutes
with e(A−iωk)t, and see Exercise A.1.4)

y(t) = CeAtx0 +

q∑
k=−q

eiωktC

∫ t

0

e(A−iωk)(t−s)dsBuk

= CeAtx0 +

q∑
k=−q

eiωktC(iωk − A)−1

[
I − e(A−iωk)t

]
Buk

= CeAtx0 −
q∑

k=−q

C(iωk − A)−1eAtBuk +

q∑
k=−q

C(iωk − A)−1Buke
iωkt.

Since ak = P (iωk)uk = C(iωk − A)−1Buk by assumption for all k ∈ {−q, . . . , q}, the last
term of y(t) is exactly the reference signal yref (t) in (3.4). Because of this, the tracking error
e(t) = y(t)− yref (t) can be estimated by

∥y(t)− yref (t)∥ =

∥∥∥∥∥CeAtx0 −
q∑

k=−q

C(iωk − A)−1eAtBuk

∥∥∥∥∥
≤ ∥C∥∥eAt∥∥x0∥+

q∑
k=−q

∥C(iωk − A)−1∥∥eAt∥∥Buk∥

= ∥eAt∥

(
∥C∥∥x0∥+

q∑
k=−q

∥C(iωk − A)−1∥∥Buk∥

)
→ 0

as t→∞, since limt→∞∥eAt∥ = 0 due to our assumption that (A,B,C) is stable.

Theorem 3.2.3 shows that we can design a control that solves the output tracking prob-
lem in particular if p = m (the number of inputs is the same as the number of outputs) and
the matrices PK(iωk) ∈ Cp×p are nonsingular for every k ∈ {−q, . . . , q}. Then the unique
choices of uk are given by

uk = PK(iωk)
−1ak, k ∈ {−q, . . . , q}.

More generally, we can choose suitable vectors uk if and only if ak ∈ R(PK(iωk)) for every
k. In this situation the choices which result in vectors uk with the smallest possible norms
∥uk∥ are given by

uk = PK(iωk)
†ak, k ∈ {−q, . . . , q},

where PK(iωk)
† is the Moore–Penrose pseudoinverse of PK(iωk). If R(PK(iωk)) = Y , then

the pseudoinverse is given by the formula PK(iωk)
† = PK(iωk)

∗(PK(iωk)PK(iωk)
∗)−1.

3.2.3 Matlab Implementation

The construction of the control input that solves the output tracking problem for a stable
system can be easily implemented using Matlab. We begin with the case where K = 0
(which in particular means that the system is already stable). The following function re-
ceives the frequencies and coefficient vectors of the reference signal and the function for
computing the transfer function P (·) of the system as parameters, and based on this infor-
mation constructs the appropriate control input u(t).
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function ufun = LinSysTrackStab(ref_w,ref_c,Pfun)
% function control = LinSysTrackStab(ref_w,ref_c,Pfun)
%
% Generates the control input "ufun" to achieve output tracking of the
% reference signal with frequencies given in "ref_w" (real values) and
% corresponding coefficient vectors given as columns of "ref_c". "Pfun" is
% a function handle that evaluates the transfer function of the system at a
% given point.
%
% Note that ufun can not be evaluated for a vector argument

% number of frequencies
N = length(ref_w);

% find out the number of inputs
m = size(Pfun(1i*ref_w(1)),2);

% store the coefficient vectors of the control output
ukvecs = zeros(m,N);

for ind = 1:N

Pval = Pfun(1i*ref_w(ind));

% If the coefficient vector ref_c(ind) is not in the range space of
% P(iw), produce a warning
if rank(Pval) < rank([Pval ref_c(ind)])

warning('Tracking problem may not be solvable!')
end

% The operator "\" corresponds to the multiplication with the
% pseudoinverse of P(iw)
ukvecs(:,ind) = Pval\ref_c(ind);

end

% Construct the control function, u(t) = sum(exp(1i*wk*t)*uk,k=-q..q)
ufun = @(t) ukvecs*exp(1i*ref_w(:)*t);

In addition, we may want to implement a simple function that gives us a function handle
for computing the values of the reference signal yref (t).

function yref = LinSysTrackRef(ref_w,ref_c)
% function yref = LinSysTrackRef(ref_w,ref_c)
%
% Returns a function handle that computes the value of the reference signal
% y_ref at time t. The input arguments are the frequencies of the reference
% signal "ref_w" (real values) and the corresponding coefficient vectors
% given as columns of "ref_c".
%
% The function yref can not be evaluated for a vector.

yref = @(t) ref_c*exp(1i*ref_w(:)*t);

In the case where K is not zero, we can see the term Kx(t) in the control input as a pre-
stabilisation, similarly as in the proof of Theorem 3.2.3. Indeed, constructing the control
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input for output tracking for the system (A,B,C,D) can be achieved by using the above
routine LinSysTrackStab to find a control input for the stable system (A + BK,B,C +
DK,D). Note that in this implementation we allow a nonzero feedthrough matrix D ̸= 0.
Our results remain valid also in this case, but the formula for PK(λ) changes to PK(λ) =
(C +DK)(λ− A−BK)−1B +D.

% reference signal sin(2*pi*t)+1
ref_w = [-2*pi 0 2*pi];
ref_c = [1i/2 1 -1i/2];

% transfer function of the plant
PKfun = @(s) (C+D*K)*((s*eye(size(A))-A-B*K)\B)+D;

ufun = LinSysTrackStab(ref_w,ref_c,PKfun);
yref_fun = LinSysTrackRef(ref_w,ref_c);

The produced function ufun can now be used as an input to the system (A+BK,B,C+
DK,D).

Example 3.2.4. In this example we consider output tracking of the position of the har-
monic oscillator in Section 1.3.1 using feedforward control. The parameters (A,B,C) of
the system (3.1) are

A =

[
0 1
− k

m
0

]
, B =

[
0
1
m

]
, C =

[
1 0

]
with k,m > 0. The system is unstable, but can be stabilised with state feedback with the
choice K = [0,−1] of the feedback matrix (the property σ(A+BK) ⊂ C− can be checked as
an easy exercise). We can also compute the transfer function PK(λ) of the oscillator system.
Standard matrix calculations imply that for λ /∈ σ(A+BK) we have

(λ− A−BK)−1 =

[
λ −1
k
m

λ+ 1
m

]−1

=
1

mλ2 + λ+ k

[
mλ+ 1 m
−k mλ

]
and thus

PK(λ) = C(λ− A−BK)−1B =
1

mλ2 + λ+ k

[
1, 0
] [mλ+ 1 m

−k mλ

] [
0
1
m

]
=

1

mλ2 + λ+ k
.

Our aim is to track the reference signal yref (t) = sin(2πt) + 1, which has frequencies ω0 = 0,
ω1 = 2π and ω−1 = −2π and amplitudes a0 = 1, a1 = −i/2 and a−1 = i/2 (see Exam-
ple 3.2.2). The required transfer function values are

PK(iω0) = PK(0) =
1

k
, and PK(iω±1) = PK(±i2π) =

1

k − 4mπ2 ± i2π
.

The unique solutions of the equations PK(iωk)uk = ak for k = −1, 0, 1 are uk = ak/PK(iωk),
which we can compute explicitly. This leads to the full control input

u(t) = [0,−1]x(t) + k +
i(k − 4mπ2) + 2π

2
e−i2πt +

−i(k − 4mπ2) + 2π

2
ei2πt.
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Using Euler’s formula e±i2πt = cos(2πt)± i sin(2πt) we can further simplify u(t) to the form

u(t) = [0,−1]x(t) + k + 2π cos(2πt) + (k − 4mπ2) sin(2πt).

The construction of the tracking control can be completed using LinSysTrackStab for the
system (A+ BK,B,C). The Matlab implementation is given below and is also available in
the file EX_C3_Track_oscillator.m.

r = 0; k = 1; m = 1;
A = [0 1;-k/m -r/m];
B = [0;1/m]; C = [1 0]; D = 0;

% Choose the reference signal and express it in the standard form.
% Reference signal sin(2*pi*t)+1
ref_w = [-2*pi 0 2*pi];
ref_c = [1i/2 1 -1i/2];

% Without damping, the system is unstable. However, we can stabilise it
% with state feedback using the matrix K=[0,-1].

K = [0,-1];

% Transfer function of the stabilised plant
PKfun = @(s) (C+D*K)*((s*eye(size(A))-A-B*K)\B)+D;

ufun = LinSysTrackStab(ref_w,ref_c,PKfun);
yref_fun = LinSysTrackRef(ref_w,ref_c);

%% Simulate the system

% The simulation is completed by applying the control "ufun" to the system
% (A+BK,B,C+DK,D)

% Initial state of the oscillator
x0 = [1;0];
tspan = [0 14];

sol = LinSysSim(A+B*K,B,x0,ufun,tspan);

tt = linspace(tspan(1),tspan(2),500);
xx = deval(sol,tt);

% The output of the controlled system is C*x(t) = [C,zeros(p)]*x_e(t)
yy = C*xx+D*ufun(tt);

% Values of yref(t) for plotting
yrefvals = zeros(1,length(tt));
for ind = 1:length(tt), yrefvals(ind)=yref_fun(tt(ind)); end

figure(1)
% Plot the output and the reference
plot(tt,[yrefvals;yy],'Linewidth',2)
title(['Output of the controlled oscillator.'],'Interpreter','Latex','Fontsize',16)

Figure 3.7 shows the simulated output of the harmonic oscillator. ⋄
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Figure 3.7: Output (red) of the harmonic oscillator with the feedforward controller and the
reference signal yref (t) = sin(2πt) + 1 (blue).

Example 3.2.5. In this example we consider output tracking control for a heat equation,
which models the evolution of the temperature profile of an object made out of material
which conducts heat relatively well. We consider the situation where the object is approx-
imately one-dimensional, for example a metal rod. We also consider the case where the
temperature profile can be controlled by heating (or cooling) one part of the metal rod, and
as the output of the system we measure the average temperature over another part of the
rod. More precisely, we assume that the metal rod has length ℓ = 1, the heating and cooling
happens on the left half of the rod, and the temperature measurement is over the right half
of the rod (see Figure 3.8). In addition, we assume that there is no heat flux through the
two ends of the metal rod (that is, the ends of the rod are insulated).

ξ = 0 ξ = 1/2 ξ = 1

control measurement

Figure 3.8: The input output configuration in the controlled heat system.

In this case, the dynamics of the temperature profile can be modelled with a partial
differential equation, namely, the one-dimensional heat equation. If we denote by v(ξ, t) the
temperature of the metal rod at time t ≥ 0 and at point ξ ∈ [0, 1], then v is a function of two
variables ξ and t and it satisfies the partial differential equation

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t) + b(ξ)u(t) (3.6a)

∂v

∂ξ
(0, t) = 0,

∂v

∂ξ
(1, t) = 0, v(ξ, 0) = v0(ξ) (3.6b)

y(t) = 2

∫ 1

1/2

v(ξ, t)dξ, (3.6c)
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where α > 0 is the (constant) conductivity of heat and b is a function such that b(ξ) = b0
for ξ ∈ [0, 1/2] and b(ξ) = 0 for ξ ∈ (1/2, 1]. The function v0 determines the temperature
profile at time t = 0. On this course we will not consider the partial differential equation
model (3.6) in detail, but instead we simply note that the behaviour of the temperature
profile can be approximated reliably with selected numerical schemes, which lead to a
linear control system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t).

One such numerical scheme is “Finite Differences”, where the state variable x(t) is a vector
of approximate temperatures at equally spaced points ξ ∈ {0, 1/(n− 1), 2/(n− 1), . . . , (n−
2)/(n− 1), 1} on the interval [0, 1]. Thus

x(t) ≈
[
v(0, t), v

(
1

n− 1
, t

)
, . . . , v

(
n− 2

n− 1
, t

)
, v(1, t)

]T
∈ Rn

with a sufficiently large n ∈ N. The matrices A, B and C have specific forms determined by
the Finite Difference approximation, namely (only nonzero elements of A written out)

A = α(n− 1)2



−2 2
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
2 −2


, B = b0



1
...
1
0
...
0


and C = 2

n−1

[
0, . . . , 0, 1, . . . , 1

]
. More precisely, the kth elements of B = [B1, . . . , Bn]

T

and C = [C1, . . . , Cn] are

Bk =

{
b0 if 0 ≤ k−1

n−1
< 1/2

0 if 1/2 ≤ k−1
n−1
≤ 1

Bk =

{
0 if 0 ≤ k−1

n−1
< 1/2

2
n−1

if 1/2 ≤ k−1
n−1
≤ 1.

The system (A,B,C) is unstable due to the fact that 0 ∈ σ(A), but it can be stabilised
either with the state feedback K = −B∗, or with LQR6. In fact, the system can be stabilised
even with output feedback u(t) = −K0y(t) where K0 > 0 is small, since we can verify (com-
putationally) that σ(A − BK0C) ⊂ C−. This allows us to solve output tracking problems
either with the PI controller or using feedforward control. We can compute the required
transfer function values using the matrices A, B, and C. Alternatively, we can simulate
a control scenario where these matrices are unknown by measuring the transfer function
values using the procedure in Section 3.4.

We consider the output tracking of a periodic triangle signal depicted in Figure 3.6 with
τ = 2. We can use a Fourier series approximation

yref (t) =

q∑
k=−q

ake
iω0kt, where ak ∈ C, ω0 =

2π

τ
= π.

6These two methods of stabilisation also work for the original heat equation, but in that case they would
require detailed justfication! However, here we simply use these methods for the approximation of the heat
equation for some fixed value of n ∈ N.
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with q = 7. The coefficients ak have the formula

ak =
(−1)k − 1

k2π2
=

{
− 2

k2π2 k odd
0 k even

Figure 3.9 depicts the behaviour of the state (the approximate temperature profile) and
measured output of the controlled system. The code implementing the feedforward tracking
control is shown below.

0 1 2 3 4 5 6 7 8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3.9: Tracking of a periodic triangle signal. The left figure depicts the measured
output (red) and the reference signal (blue). The right figure depicts the evolution of the
temperature profile.

% Parameters of the heat equation:
alpha = 1; % heat diffusivity
b0 = 1; % control gain parameter
n = 20; % size of the Finite Difference approximation

% Construct the matrices A, B, and C of the approximation for the heat equation

spgrid = linspace(0,1,n);
ee = ones(n,1);
A = alpha*(n-1)^2*full(spdiags([ee,-2*ee,ee],-1:1,n,n));
A(1,2) = 2*alpha*(n-1)^2; A(n,n-1) = 2*alpha*(n-1)^2;
B = b0*(spgrid<1/2)';
C = 2/(n-1)*(spgrid>=1/2);
D = 0;

% Choose the reference signal and express it in the standard form.

% Triangle signal, only odd frequencies
ak = @(k) ((-1)^k-1)/(k^2*pi^2);
ref_w = [-7*pi, -5*pi, -3*pi, -pi, 0, pi, 3*pi, 5*pi, 7*pi];
ref_c = [ak(-7), ak(-5), ak(-3), ak(-1), 0, ak(1), ak(3), ak(5), ak(7)];

% The heat system is unstable. However, we can stabilise it with state
% feedback K = -B^*, or designing K using the LQR method.
% Alternatively, the system is stabilisable with negative output feedback,
% for example with u(t)=-k0*y(t)+u_{new}(t) where k0>0 is small.
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% State feedback
% K = -B';
% Output feedback
K = -3*C;

% Transfer function of the stabilised plant
PKfun = @(s) (C+D*K)*((s*eye(size(A))-A-B*K)\B)+D;

ufun = LinSysTrackStab(ref_w,ref_c,PKfun);
yref_fun = LinSysTrackRef(ref_w,ref_c);

%% Simulate the system
% This is done by applying the control "ufun" to the system (A+BK,B,C)

% Initial state of the heat system
x0 = zeros(n,1);

tspan = [0 8];

sol = LinSysSim(A+B*K,B,x0,ufun,tspan);

tt = linspace(tspan(1),tspan(2),551);
xx = deval(sol,tt);
xx = real(xx); % ignore the complex part of the solution caused by numerical errors

% The output of the controlled system
yy = C*xx+D*ufun(tt);

% Values of yref(t) for plotting
yrefvals = zeros(1,length(tt));
for ind = 1:length(tt), yrefvals(ind)=yref_fun(tt(ind)); end

figure(1)
% Plot the output and the reference
plot(tt,[real(yrefvals);yy],'Linewidth',2)
title('Output of the controlled heat system.','Interpreter','Latex','Fontsize',16)

figure(2)
surf(tt(1:2:end),spgrid,xx(:,1:2:end))
set(gca,'ydir','reverse')
xlabel('time $t$','fontsize',18,'Interpreter','latex')
ylabel('position $\xi$','fontsize',18,'Interpreter','latex')

⋄

3.3 Comparison of The Two Control Methods

In this chapter we have studied two different methods for solving the output tracking prob-
lem for a given reference signal. Some of the main features of the two methods are sum-
marised below:

Proportional-Integral control:

• The reference signal yref is a constant function.

• The controller uses only knowledge of the tracking error e(t) = y(t)− yref (t)
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• The control type is dynamic feedback control

Feedforward control:

• The reference signal yref is a linear combination of trigonometric functions

• The controller uses knowledge of the transfer function values PK(iωk) of the system,
the state x(t) (if stabilisation is needed) and the reference signal yref (t)

• The control type is (static) feedforward control

In comparison, the PI controller can be argued to use less information on the system
(A,B,C) to achieve the output tracking. This is made possible by the fact that the control
acts in the dynamic feedback configuration, since such a feedback system is capable of
obtaining the required information about the system indirectly. This feedback configuration
also gives PI control a valuable property called robustness, which means that the controller
is able to tolerate uncertainty and changes in the parameters A, B, C of the system. Indeed,
the PI controller designed for the system (A,B,C) will also solve the output tracking for a
system (A′, B′, C ′) provided that ∥A − A′∥, ∥B − B′∥ and ∥C − C ′∥ are sufficiently small!
This important feature is verified as an exercise. On the other hand, since the feedforward
controller requires explicit information about the system (A,B,C) in the form of the transfer
function values PK(iωk), the controller will in general not be able to achieve output tracking
if the parameters of the system change (unless the control input is adjusted as well).

Proportional-Integral control is limited to reference signals which are constant functions
of time. However, this controller structure can be generalised (in a nontrivial way) to solve
the output tracking problem for the linear combinations of trigonometric functions studied
in Section 3.2. This leads to dynamic error feedback controllers with so-called internal
models [2, 3, 10], which contain information of the frequencies {ωk}qk=−q of the reference
signal. In fact, PI-control can be seen as a special case of an internal model based controller
structure designed for signals with only one frequency ω0 = 0.

The feedforward controller relies on state feedback for stabilisation. However, in the
case where the system (A,B,C) is stabilisable with output feedback (as defined on page 32
of Section 3.1) we can replace the state feedback Kx(t) with output feedback. Indeed, if
we can choose K0 ∈ Cm×p in such a way that σ(A + BK0C) ⊂ C−, then we can choose
K = K0C in the control law. Then Kx(t) = K0Cx(t) = K0y(t) implies that the feedforward
control (3.5) becomes

u(t) = K0y(t) +

q∑
k=−q

uke
iωkt.

3.4 Measuring Transfer Function Values From The System
[Optional]

Both the PI controller and the feedforward control for output tracking utilise the knowl-
edge of the values of the transfer function of the (stabilised system). More precisely, in
Theorem 3.1.3 we can choose the PI controllers parameters based on the value PKP

(0), and
the feedforward controller in Theorem 3.2.3 uses the values PK(iωk), where ωk are the fre-
quencies of the reference signal. As discussed before, these are in fact values of the transfer
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functions of the (stabilised) systems (A+BKPC,B,C) and (A+BK,B,C), respectively. If
the matrices A, B, and C are known, then for given choices of KP or K, these values are
easy to compute using the formulas

PKP
(λ) = C(λ− A−BKPC)

−1B, and PK(λ) = C(λ− A−BK)−1B.

However, the matrices (A,B,C) may not be known if we are controlling a physical process
which has not been modelled yet. In this situation it is desirable to access at least approxi-
mate values of PKP

(0) and PK(iωk) without the knowledge of A, B, and C. In this section
we show that these values can actually be measured by studying the output y(t) of the sys-
tem with suitable choice of the control input u(t). This is made possible by the following
result.

Lemma 3.4.1. Assume the system (A,B,C) is stabilisable and that K ∈ Cm×n is chosen so
that σ(A + BK) ⊂ C) ⊂ C−. Then for any ω ∈ R and v0 ∈ U and for any initial state
x0 ∈ X, the output y(t) of the system (A,B,C) with the input u(t) = Kx(t) + eiωtv0 satisfies∥∥y(t)− eiωtPK(iω)v0

∥∥→ 0 as t→∞. (3.7)

Proof. We can use the arguments presented in the proof of Theorem 3.2.3 to prove the
claim. Indeed, the input u(t) = Kx(t) + eiωtv0 is of the same form as the feedforward
control for the output tracking problem if we choose choosing q = 1, the frequencies ω0 = 0,
ω±1 = ±ω, and the amplitudes u1 = v0 and u0 = u−1 = 0. With these choices the formula
for y(t) in the proof of Theorem 3.2.3 shows that (recall that A in the formula needs to be
replaced with A+BK, since we considered the term Kx(t) to be part of the system)

y(t) = Ce(A+BK)tx0 −
q∑

k=−q

C(iωk − A−BK)−1e(A+BK)tBuk

+

q∑
k=−q

C(iωk − A−BK)−1Buke
iωkt

= Ce(A+BK)tx0 − C(iω − A−BK)−1e(A+BK)tBv0 + C(iω − A−BK)−1Bv0e
iωt

= Ce(A+BK)tx0 − C(iω − A−BK)−1e(A+BK)tBv0 + eiωtPK(iω)v0.

Similarly as in the proof of Theorem 3.2.3 the stability of (A+BK,B,C) implies that∥∥y(t)− Ce(A+BK)tx0
∥∥ =

∥∥Ce(A+BK)tx0 − C(iω − A−BK)−1eAtBv0
∥∥

≤ ∥C∥∥e(A+BK)t∥∥x0∥+ ∥C(iω − A−BK)−1∥∥e(A+BK)t∥∥Bv0∥ → 0

as t→∞, since limt→∞∥e(A+BK)t∥ = 0.

Since PKP
(0) is exactly PK(iω), when we choose K = KPC and ω = 0, Lemma 3.4.1 has

the following corollary concerning PKP
(0).

Corollary 3.4.2. Assume that (A,B,C) is stabilisable by output feedback and that KP ∈
Cm×p is chosen so that σ(A + BKPC) ⊂ C−. Then for any constant v0 ∈ U and for any
initial state x0 ∈ X the output y(t) of the system (A,B,C) with the input u(t) = KPy(t)+ v0
satisfies

lim
t→∞

y(t) = PKP
(0)v0. (3.8)
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Lemma 3.4.1 and Corollary 3.4.2 offer us a way of finding an approximate values for
PKP

(0) and PK(iωk) based on the outputs of the system. If the system only has a single
input, i.e., m = 1, then we can simply choose v0 = 1, and if we choose a time-instant
t0 > 0 which is sufficiently large, then the output y(t) of the system with the input u(t) =
Kx(t) + eiωkt satisfies

e−iωkt0y(t0) ≈ PK(iωk) ∈ Cp×1.

In the case of measuring PKP
(0), we set ωk = 0 and change the input to u(t) = KPy(t) + 1.

More generally, if the system has m ∈ N inputs, then choosing v0 = ek where ek ∈ U is the
kth Euclidean basis vector, we have that under input u(t) = Kx(t) + eiωktek for sufficiently
large t0 > 0 we have that

e−iωkt0y(t0) ≈ PK(iωk)ek ∈ Cp

where PK(iωk)ek is the kth column of the matrix PK(iωk). Combining these measure-
ments we get an approximation Pmeas

K ∈ Cp×m of the full matrix PK(iωk). In the proof
of Lemma 3.4.1 the convergence in (3.8) is in fact exponentially fast, and therefore the
values t0 > 0 do not typically need to be extremely large. However, this of course depends
entirely of the system.

Using the approximation Pmeas
KP

∈ Cp×m of the matrix PKP
(0) in the PI controller is made

possible by pertubration theory: More precisely, if PKP
(0) is surjective, then we have from

Theorem 3.1.3 that the choice KI = K0
I := −εPKP

(0)† leads to a stable closed-loop system
for any ε ∈ (0, ε∗]. However, if instead choose the we define KI = Kmeas

I := −ε(Pmeas
KP

)†,
then we can write the closed-loop system operator Ae as

Ae =

[
A+BKPC BKmeas

I

C 0

]
=

[
A+BKPC BK0

I

C 0

]
+

[
0 B(Kmeas

I −K0
I )

0 0

]
.

Now if the approximation error ∥Pmeas
KP
−PKP

(0)∥ is sufficiently small, also the norm ∥Kmeas
I −

K0
I ∥ = ε∥(Pmeas

KP
)† − PKP

(0)−1∥ is small, and the same is consequently true for the sec-
ond operator in the right-hand side of the above equation. Since the first operator on
the right-hand side generates an exponentially stable semigroup, then the continuity of
the eigenvalues of a matrix implies that if ∥Pmeas

KP
− PKP

(0)∥ is sufficiently small, then we
still have σ(Ae) ⊂ C−. Finally, by Theorem 3.1.2 the PI controller with the parameter
KI = Kmeas

I := −ε(Pmeas
KP

)† still solves the output tracking problem for the constant refer-
ence signals.



4. Nonlinear Systems

In this chapter we turn our attention to the study of nonlinear systems of the form

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 ∈ Rn (4.1a)
y(t) = h(t, x(t), u(t)). (4.1b)

Throughout the remaining chapters we only consider systems on real spaces, and therefore

f : [t0,∞)× Rn × Rm → Rn and g : [t0,∞)× Rn × Rm → Rp

are allowed to be fairly general continuous functions. This class of systems is clearly wider
than the class of linear systems, since the linear system (2.1) with parameters can be for-
mulated as a system of the form (4.1) with the choices

f(t, x, u) = Ax+Bu, h(t, x, u) = Cx+Du

for t ≥ t0 = 0, x ∈ Rn and u ∈ Rm.
In the case where the input is explicitly specified as a function of time u : [t0,∞)→ Rm

or it is constructed using state or output feedback u(t) = γ(x(t)) or u(t) = γ(y(t)), the
differential equation (4.1a) can be formulated as a system without an input,

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ Rn (4.2)

for some modified function f : [t0,∞)×Rn → Rn. Because of this, the analysis of equations
of the form (4.2) is an important part of control theory.

4.1 Examples of Nonlinear Systems

We begin by considering a few particular nonlinear control systems.

Example 4.1.1. One of the simplest examples of nonlinear dynamics arises from the study
of a pendulum, which describes the swinging motion of a mass m > 0 suspended by a rigid
and massless rod of length ℓ > 0 in Figure 4.1. We consider the free swinging motion of
the pendulum in one direction in a two-dimensional plane. The position of the pendulum
is characterised by the angle θ between the rod and the y-axis in the plane.

The dynamics of the pendulum can be derived based on the Newton’s second law of
motion. The angle θ(t) satisfies the second order differential equation

mℓθ̈(t) = −mg sin(θ(t))− kℓθ̇(t),

53
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θ(t)
m

mg

Figure 4.1: The Pendulum. The bob has massm, and is affected by the gravity with forcemg
(downwards). The angle between the pendulum and the vertical axis at time t is denoted
by θ(t).

where g is the gravitational acceleration and k ≥ 0 is the coefficient of the friction, which is
assumed to be proportional to the velocity of the mass object.

We can write the differential equation in the form (4.2) if we define the state as x(t) =
(x1(t), x2(t))

T with x1(t) = θ(t), x2(t) = θ̇(t). Then

ẋ(t) =
d

dt

[
θ(t)

θ̇(t)

]
=

[
θ̇(t)

−(g/ℓ) sin(θ(t))− (k/m)θ̇(t)

]
=

[
x2(t)

−(g/ℓ) sin(x1(t))− (k/m)x2(t)

]
.

The differential equation has an initial state

x(0) =

[
θ(0)

θ̇(0)

]
=

[
θ0
θ1

]
which determines the initial angle and velocity of the pendulum. In order to write the
pendulum in the standard form (4.2) we can define

f(t, x) =

[
x2

−(g/ℓ) sinx1 − (k/m)x2

]
, x = (x1, x2)

T .

We note that since x(t) is a two-dimensional real vector, the behaviour of the system can
be illustrated conveniently in the 2-dimensional (x, y)-plane. In particular, f is independent
of t, i.e., f(t, x) = f(x) for all t. Because of this, the state equation

ẋ(t) = f(x(t)), x(t0) = x0 (4.3)

implies that if at a time t the system is at the position x(t) of the 2−dimensional plane, then
the motion of the state at this time happens in the direction of the vector

f(x(t)) ∈ R2,

and the length ∥f(x(t))∥ of this vector determines the velocity of the state x(t) at this
position. This knowledge allows us to visualise the possible motions of the state x(t) in the 2-
dimensional plane by plotting at each point x ∈ R2 the corresponding vector f(x) ∈ R with



4.1. Examples of Nonlinear Systems 55

direction and (possibly scaled) length. In such a plot the state of the system corresponding
to the initial state x0 ∈ R2 is a curve which begins at the point x0, starts at the direction
of the vector f(x0), and at each later point x on this curve the vector f(x) is tangential to
the curve. Figure 4.2 illustrates these plots for the pendulum model. This process leads
to a plot which illustrates the so-called vector field R2 ∋ x 7→ f(x) ∈ R2 which determines
the dynamics of the autonomous system (4.3). In particular, any solution of (4.3) “follows
the arrows” in the vector field plot in the sense that at each point the vector field arrow is
tangential to the curve t 7→ (θ(t), θ̇(t)) of the solution. As an exercise you can think about
what different types of motions of the pendulum are represented by the different solutions
of the pendulum equation (the blue lines) in Figure 4.2.
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Figure 4.2: The vector field of the pendulum with k = 0 (left) and k > 0 (right). The arrows
indicate the direction and magnitude of the vector field x 7→ f(x) at each point (x1, x2). The
blue lines represent the solution of the pendulum model (angle θ(t) on the horizontal axis
and velocity θ̇(t) on the vertical) starting from a given initial state (θ0, θ1)

T .

⋄

Example 4.1.2. In Section 1.3.1 we considered the harmonic oscillator consisting of a mass
attached to a spring and a damper. In the case of small displacements and small velocities,
the force exerted by the spring can be assumed to be linearly dependent on the position
of the mass, and the force exerted by the damper can be assumed to depend linearly on
the velocity. We can alternatively consider the case where the mass is attached to a spring
and is sliding on a surface (see Figure 4.3), in which case the position q(t) of the oscillator
satisfies the differential equation

mq̈(t) = Fspring(t) + Ffriction(t) + F (t).

If we assume that the spring is linear, we have Fspring(t) = −kq(t). In general, the
force resulting from the friction can depend on the velocity q̇(t) and the position q(t) in a
nonlinear fashion, i.e., Ffriction(t) = −η(q(t), q̇(t)), which leads to the equation

mq̈(t) + kq(t) + η(q(t), q̇(t)) = F (t).

A function η modelling the change between static and kinetic friction can be defined as

η(q(t), q̇(t)) =


−µmg sign(q̇(t)) if |q̇(t)| > 0

−kq(t) if |q̇(t)| = 0 and |q(t)| ≤ µsmg/k

−µsmg sign(q(t)) if |q̇(t)| = 0 and |q(t)| > µsmg/k
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m
F (t)

Figure 4.3: The harmonic oscillator with nonlinear friction term. The oscillator has mass
m. It is affected by the force of the spring, the friction modelled by a nonlinear term, and
the external force F (t).

where µk > 0 and µs > 0 are the coefficients for the kinetic and static friction, respec-
tively [6, Sec. 1.1.3].

In the case of large large deflections |q(t)|, it is also possible that the force exerted by the
spring becomes a nonlinear function of the position. For example a spring which becomes
harder for larger deflections can be modelled with the function Fspring(t) = −k(1+aq(t)2)q(t)
for some parameter a > 0 [6, Sec. 1.1.3]. ⋄

Example 4.1.3. One particular class of nonlinear systems arises from applying nonlinear
feedback to a linear system of the form studied in earlier chapters. Indeed, if we have a
linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

y(t) = Cx(t)

and we apply output feedback of the form u(t) = ϕ(y(t)) + ũ(t), where ϕ : Rp → Rm and ũ
is a new input to our system, then the resulting system has the form

ẋ(t) = Ax(t) +Bϕ(Cx(t)) +Bũ(t), x(0) = x0 ∈ Rn

y(t) = Cx(t).

This class of models is often called Lur’e systems. The feedback configuration is illustrated
in Figure 4.4. The system can be written in the form (4.1) if we define

f(t, x, u) = Ax+Bϕ(Cx) +Bu, and h(t, x, u) = Cx

for all t ∈ R, x ∈ Rn, and u ∈ Rm. Sometimes the definition of the nonlinear function ϕ
requires us to restrict the definitions of f and h to x ∈ D where D ⊂ Rn.

In addition, there are also other relevant classes of systems where the nonlinearity ap-
pears only in a very particular role. A system which is otherwise linear, but has an input
nonlinearity, has the form

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ Rn

y(t) = Cx(t)
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P

ϕ

ũ(t) y(t)

Figure 4.4: A linear system with nonlinear output feedback.

for some function φ : Rm → Rm. Correspondingly, a system with output nonlinearity has
the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

y(t) = ψ(Cx(t))

for some function ψ : Rp → Rp. ⋄

4.2 Existence of Solutions

In this section we focus on the existence and uniqueness of the solution of the initial value
problem

ẋ(t) = f(t, x(t)), (4.4a)
x(t0) = x0 (4.4b)

where x0 ∈ Rn. We assume that f : [t0,∞) × Rn → Rn is continuous with respect to both
variables x and t.

Definition 4.2.1. A continuously differentiable function x : [t0, t1) → Rn is a solution
of (4.4) (on the interval [t0, t1) with t1 > t0 or t1 = ∞) if x(t0) = x0 and (4.4a) holds for
every t ∈ (t0, t1).

It should be noted that there are also more general ways to define a “solution” of the
differential equation (4.4). This is in particular required if the function f is not continuous
with respect to the variable t, in which case x(t) is in general not continuously differentiable.
This additional generality is required especially if we are interested in using control inputs
which are discontinuous functions, such as step functions. On this course we simplify our
definitions by assuming that f is continuous with respect to both t and x, but the results
also remain valid for under slightly more general assumptions.

In the case of linear and autonomous initial value problems, where f(t, x) = Ax, the ex-
istence, uniqueness and continuous dependence (on x0) of the solution x(t) are guaranteed
by the matrix exponential function t 7→ eAt. Moreover, in the case where f(t, x) = A(t)x for
some continuous function A(·) : [t0,∞) → Rn×n, the differential equation (4.4) always has
a unique solution on [t0,∞) and this solution depends continuously on x0. In the case of
general nonlinear functions f , the question of the solvability of the equation (4.4) becomes
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more complicated. In particular, even for nicely behaving functions f , the equation (4.4)
may not have a solution or it may not be unique. Moreover, solutions may “blow up in finite
time”, meaning that ∥x(t)∥ → ∞ as t → t1 ∈ R. This kind of behaviour is not possible in
the case of linear differential equations. The following theorem shows that the additional
property of Lipschitz continuity of f near x0 is sufficient to guarantee the existence and
uniqueness of a solution to (4.4).

Theorem 4.2.2. Let x0 ∈ Rn, t0 ∈ R, and t1 > t0. Assume that f : [t0, t1] × Rn → Rn is
continuous and that there exist L, r > 0 such that the Lipschitz condition

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥ (4.5)

holds for all x, y ∈ { z ∈ Rn | ∥z − x0∥ ≤ r } and for all t ∈ [t0, t1]. Then there exists δ > 0
such that (4.4) has a unique solution x(t) on the interval [t0, t0 + δ].

Proof. See [6, Thm. 3.1].

Exercise 4.2.3. Use Theorem 4.2.2 to prove the existence of solutions to the equation

ẋ(t) = x(t)2, x(0) = c ∈ R

for different values of c ∈ R. Find the explicit form of the solutions and show that the
solutions can only exist on time intervals of the form [0, t1], where t1 is finite. ⋄

In Exercise 4.2.3 we saw that the time-interval [t0, t0 + δ] on which the solution of (4.4)
exists can be limited. In order to guarantee that the solution exists on arbitrarily large
intervals [t0, t1], we can posed additional conditions on the function f .

In Theorem 4.2.2 the Lipschitz estimate (4.5) was assumed to hold in a neighbourhood
of the intial value x0 (more precisely, in closed ball centered at x0 with radius r). In such a
case the Lipschitz property of the function f holds locally in the space Rn. We can impose a
stronger assumption if we instead assume that this estimate holds on the whole space Rn,
in which case the Lipschitz property is global. More precisely, we use the terminology in the
following definition. Here B(x0, r) = {x ∈ Rn | ∥x − x0∥ < r } denotes the open ball with
radius r centered at x0 ∈ Rn.

Definition 4.2.4. Let f : [t0, t1] ×D → Rn where D ⊂ Rn is open and connected and let
W ⊂ D.

• f is locally Lipschitz (uniformly in t) if for every x0 ∈ D there exist r0, L0 > 0 such
that B(x0, r) ⊂ D and

∥f(t, x)− f(t, y)∥ ≤ L0∥x− y∥, ∀x, y ∈ B(x0, r), t ∈ [t0, t1].

• f is Lipschitz on W (uniformly in t) if there exists L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, ∀x, y ∈ W, t ∈ [t0, t1].

• f is globally Lipschitz (uniformly in t) if there exists L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn, t ∈ [t0, t1].
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The Lipschitz property poses limitations on how fast the values of the function can
change with respect to the change in the variable x. Because of this, it is natural that
the size of the derivatives of f with respect to x can be used to provide sufficient conditions
for Lipschitz continuity. To express the condition, we can use the Jacobian matrix

∂f

∂x
(t, x) =


∂f1
∂x1

(t, x) · · · ∂f1
∂xn

(t, x)
...

...
∂fm
∂x1

(t, x) · · · ∂fm
∂xn

(t, x)

 , f(x) =

f1(x)...
fm(x)

 , x ∈ Rn. (4.6)

We say that f : [t0, t1] × D → Rn is continuously differentiable with respect to x on an open
set D ⊂ Rn if (t, x) 7→ ∂f

∂x
(t, x) is continuous on [t0, t1]×D. This is equivalent to the property

that all partial derivatives (t, x) 7→ ∂fk
∂xj

(t, x) are continuous on [t0, t1]×D.

Lemma 4.2.5. Assume f : [t0, t1] × D → Rn where D ⊂ Rn is open and connected and
assume that f is continuously differentiable with respect to x. If ∥∂f

∂x
∥ is uniformly bounded

on [t0, t1]×W whereW ⊂ D is a closed and convex set, then f is Lipschitz onW . In particular,
if the derivatives are uniformly bounded on [t0, t1]× Rn, then f is globally Lipschitz.

Proof. See [6, Lem. 2.2].

Example 4.2.6. In this example we consider the Lipschitz properties for functions f :
[t0, t1] × D ⊂ R → R which are constant with respect to t. The function f(t, x) = x2 is
Lipschitz on W whenever W ⊂ R is a compact (closed and bounded) interval. This func-
tion is not globally Lipschitz because the points with large |x| require larger and larger
values of the constant L > 0 in the Lipschitz condition.

The function f(t, x) = x1/3 defined on R is continuous (see Figure 4.5). Its derivative
∂f
∂x
(t, x) = 1

3
x−2/3 is continuous on R \ {0}, but not at x = 0. The function is locally Lipschitz

on R \ {0} (but not on R). Moreover, by Theorem 4.2.2 the function is Lipschitz on W
whenever W is a closed and bounded subinterval of (−∞, 0) or (0,∞) (since 1

3
x−2/3 is

uniformly bounded on such intervals).
Let k > 0 and let fmin, fmax ∈ R be such that fmin < 0 < fmax. The function f : [t0, t1] ×

R→ R defined as (see Figure 4.5)

f(t, x) =


fmax if kx > fmax

kx if fmin ≤ kx ≤ fmax

fmin if kx < fmin

is continuous but its derivative is discontinuous. We will prove that f is globally Lipschitz
as an exercise. Functions of this form often arise from saturation, which we will discuss in
greater detail in the next chapter.

The function f(t, x) = sin(x), x ∈ R, is continuously differentiable. Its derivative
∂f
∂x
(t, x) = cos(x) is uniformly bounded with respect to x ∈ R. By Lemma 4.2.5 the function

f is globally Lipschitz.
⋄

Example 4.2.6 illustrates that Lipschitz continuity is a strictly stronger condition than
continuity (since f(t, x) = x1/3 is continuous but not Lipschitz continuous at x = 0). On the
other hand, the example also demonstrates that a function can be globally Lipschitz without
being continuously differentiable.
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Figure 4.5: The function f(t, x) = x1/3 (left) and the “saturation function” (right).

Example 4.2.7. In the pendulum equation considered in Example 4.1.1, the function f is
defined as

f(t, x) =

[
x2

−(g/ℓ) sinx1 − (k/m)x2

]
.

In particular f does not depend on the variable t. Moreover, the components of f are
continuously differentiable with respect to x1 and x2, and the Jacobian matrix of f is given
by

∂f

∂x
=

[
0 1

−(g/ℓ) cosx1 −k/m

]
.

Therefore f : [t0, t1] × R2 → R2 is continuously differentiable with respect to x for any
t0 < t1. If we choose t0 < t1, then Lemma 4.2.5 shows that f is globally Lipschitz. Therefore
Theorem 4.2.2 implies that there exists δ > 0 such that the pendulum system has a unique
solution on [t0, t0 + δ]. ⋄

We can now present two results which allow us to deduce that the differential equa-
tion (4.4) has a solution which is defined on the whole interval [t0, t1]. The first result is
based on the assumption that f is globally Lipschitz. In the case where f : [t0, t1]×Rn → Rn

is continuous and globally Lipschitz for any value of t1, the result guarantees the existence
of the solution on arbitrary intervals [t0, t1] with t1 > t0, and therefore the solution exists on
[t0,∞).

Theorem 4.2.8. Assume that f : [t0, t1] × Rn → Rn is continuous and globally Lipschitz
(uniformly in t), and that x0 ∈ Rn. Then the differential equation (4.4) has a unique
solution on the time interval [t0, t1].

Proof. See [6, Thm. 3.3].

Example 4.2.9. We already saw in Example 4.2.7 that f associated to the pendulum system
is globally Lipschitz. Because f is constant with respect to t, it satisfies the continuity
assumptions of Theorem 4.2.2. Because of this, Theorem 4.2.2 guarantees that for any
x0 ∈ R2 and t0 ∈ R the pendulum system has a unique solution on the interval [t0,∞). ⋄

Often the requirement for f being globally Lipschitz is an unnecessarily strict require-
ment. The next result guarantees existence of the solution in the case where f is only locally
Lipschitz. This is not a sufficient assumption by itself, but the existence of the solution is
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guaranteed if we can show that the solution x(t) stays bounded. This additional property
can often be deduced as part of the Lyapunov stability analysis, which is the topic of the
next chapter.

Theorem 4.2.10. Let D ⊂ Rn be open and connected. Assume that f : [t0,∞)×D → Rn is
locally Lipschitz (uniformly in t). Let W ⊂ D be a compact set and x0 ∈ W . If every solution
of

ẋ(t) = f(t, x(t)), x(t0) = x0 (4.7)

has the property that x(t) ∈ W for all t ≥ t0, then (4.7) has a unique solution which is
defined for all t ≥ t0.

Proof. See [6, Thm. 3.4].

Besides existence and uniqueness of the solution, the third essential part of the “well-
posedness” of the differential equation (4.4) requires that the solution x depends continu-
ously on x0. Also this property of the equation can be verified under the assumption that f
is locally Lipschitz. This topic is investigated in detail in [6, Sec. 2.3].



5. Nonlinear Stability Analysis

In this chapter we investigate the stability of nonlinear systems. We focus on analysis of
systems without inputs, and also limit our attention to autonomous systems, meaning that
f does not depend on time. Because of this, the systems we consider have the form1

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn (5.1)

for t ∈ [0, t1]. We assume throughout the chapter that f : D ⊂ Rn → Rn is locally Lipschitz.
It is worth noting that even if we assume that the system doesn’t have an input, our stability
analysis is extremely relevant from the point of view of control, since if we apply state or
output feedback of the forms u(t) = g(x(t)) or u(t) = g(y(t)) to an autonomous nonlinear
control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn

y(t) = h(x(t), u(t)),

then the state of the system is determined by a differential equation of the form (5.1).

5.1 Equilibrium Points

The equation (5.1) is linear if and only if f(x) = Ax for some matrix A ∈ Rn×n. In this case
we already defined stability in Chapter 2 as the property that all solutions of (5.1) decay
to zero as t → ∞, and proved that this is equivalent to the property σ(A) ⊂ C−. Based on
these definitions, all solutions of a stable linear system converge to the same point 0 ∈ Rn as
t→∞. In this case, the point 0 ∈ Rn of the linear system is called an equilibrium point.

The situation regarding equilibrium points is more diverse in the case of nonlinear sys-
tems of the form (5.1). In particular, even in the case where all solutions of a nonlinear
system converge to equilibrium points as t→∞, the system may have either one, multiple,
or an infinite number of such points. Moreover, it is also possible that solutions converge to
an equilibrium point only if the initial state x0 is sufficiently close to the equilibrium point,
and will otherwise fail to converge.

More generally, an equilibrium point of the system is a point where the state of the
system can stay indefinitely. This concept can be defined mathematically in the following
way.

Definition 5.1.1. Let x∗ ∈ Rn. Then x∗ is an equilibrium point of the system (5.1) if
the solution of the equation corresponding to the initial state x0 = x∗ is constant, i.e.,
x(t) = x∗ for all t ≥ 0.

1Since f doesn’t depend explicitly on time, we can always assume t0 = 0, since otherwise we can shift
time by defining x̃(t) = x(t− t0).

62
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Since a constant solution x(t) ≡ x∗ satisfies ẋ(t) = 0 for all t ≥ 0, substituting this
information to (5.1) we can see that x∗ ∈ Rn can be an equilibrium point if and only if

0 = f(x∗).

Thus the equilibrium points of the system (5.1) are exactly the “zeros” of the function
f : Rn → Rn. On this course we mainly focus on the situation where the system (5.1) has
a finite number of equilibrium points. We can without generality assume that one of these
equilibria is at 0 ∈ Rn, meaning that f(0) = 0. Indeed, if x∗ ̸= 0 is an equilibrium point, we
can always consider a translated state x̃(t) = x(t) − x∗ and initial state x̃0 = x0 − x∗, and
define a function f̃ so that f̃(x) = f(x+ x∗). In this case, x̃(t) satisfies

˙̃x(t) = ẋ(t) = f(x(t)) = f̃(x̃(t)), and x̃(0) = x0 − x∗ = x̃0,

and 0 ∈ Rn is an equilibrium point of this system because f̃(0) = f(x∗) = 0.
As mentioned above, some systems (even linear ones) have infinite numbers of equi-

librium points. In addition, a system may exhibit “stable” behaviour in which the states
of the system do not converge to a point as t increases, but instead they converges to an
oscillating solution, called a limit cycle [6, Sec. 1.2.4]. Finally, also chaos can be considered
to be stable behaviour which can be exhibited by nonlinear systems. It is important to keep
these possibilities in mind, but on this course we nevertheless focus our attention to systems
which have a finite number of isolated equilibrium points.

We define stability of an equilibrium point x∗ of a system in the following way. In the def-
inition we implicitly assume that the system (4.1) has well-defined solutions corresponding
to the initial states x0 in a neighbourhood of the equilibrium point x∗.

Definition 5.1.2. Let x∗ be an equilibrium point of (5.1).

• The point x∗ is called Lyapunov stable if for every ε > 0 there exists a δ > 0 such that
if ∥x∗ − x0∥ < δ, then the solution x(t) of (5.1) satisfies

∥x(t)− x∗∥ < ε, t ≥ 0.

• The point x∗ is called unstable if it is not Lyapunov stable.

• The point x∗ is called asymptotically stable if it is Lyapunov stable and there exists a
δ > 0 such that if ∥x∗ − x0∥ < δ, then the solution x(t) of (5.1) satisfies

∥x(t)− x∗∥ → 0, as t→∞. (5.2)

• The point x∗ is called globally asymptotically stable if it is Lyapunov stable and if (5.2)
holds for all solutions originating from any initial condition x0 ∈ Rn.

• The point x∗ is called globally exponentially stable if there exist M,ω > 0 such that
for every x0 ∈ Rn the solution x(t) of (5.1) satisfies

∥x(t)− x∗∥ ≤Me−ωt∥x0 − x∗∥, t ≥ 0.

The concept of Lyapunov stability requires that solutions originating from initial states
close to the equilibrium point x∗ also stay close to x∗. We can note that the concepts of
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global asymptotic stability and global exponential stability correspond to the “asymptotic
stability” and “exponential stability” we defined for linear systems in Definition 2.1.1. In the
case of nonlinear systems, these are no longer the dominant types of stability, but we still
encounter them occasionally. Note that an equilibrium point x∗ of a system can be globally
asymptotically (or exponentially) stable only if it is the only equilibrium point of that system.
Indeed, by definition, the solution originating from any other equilibrium point would stay
constant, and therefore would not converge to x∗ as t→∞.

Exercise 5.1.3. Answer the following questions based on Definition 5.1.2.

(a) Show that a globally exponentially stable equilibrium point x∗ is Lyapunov stable.

(b) In the case where f(x) = Ax for some matrix A ∈ R2×2, characterise Lyapunov stabil-
ity in terms of the eigenvalues and eigenvectors of A.
Hint: You can assume that A is in its (real) Jordan canonical form.

⋄

Example 5.1.4. The equilibrium points of the pendulum system in Example 4.1.1 are the
points x∗ ∈ R2 satisfying f(x∗) = 0, i.e., x∗ = (x1, x2)

T such that[
x2

−(g/ℓ) sinx1 − (k/m)x2

]
= 0 ⇔

{
x2 = 0

sinx1 = 0
⇔

{
x1 = πj, j ∈ Z
x2 = 0.

Thus the equilibrium points of the pendulum system are exactly x∗ = (πj, 0)T for j ∈ Z.
The fact that the system has an infinite number of distinct equilibrium points represents
the fact that the pendulum can swing around a number of times before possibly converging
to an equilibrium. Half of the points, namely, x∗ = (2πj, 0)T for j ∈ Z correspond to
equilibria where the pendulum is hanging vertically downward, and the other half, i.e.,
x∗ = ((2j + 1)π, 0)T for j ∈ Z, correspond to situations where the pendulum is at rest
standing upward. ⋄

5.2 Lyapunov Stability Analysis

Even though the equilibrium points of an autonomous nonlinear system can be completely
characterised as a the solutions x∗ of the equation f(x∗) = 0, investigating their stability
properties can be a challenging task. On this course we will learn the fundamentals of
perhaps the most well-known and widely used technique, namely, Lyapunov stability analy-
sis. This analysis employs so-called Lyapunov functionals, which are scalar-valued functions
V : Rn → [0,∞). For a given equilibrium point x∗ (for example x∗ = 0), the purpose of a
Lyapunov functional V is to measure the distance of the state x(t) from x∗ so that

V (x(t)) > 0 if x(t) ̸= x∗

and
V (x(t)) = 0 if x(t) = x∗.

The goal in the Lyapunov stability analysis is to show that this distance V (x(t)) either stays
bounded (when we analyse Lyapunov stability of x∗), or it converges to zero as t → ∞
(when we analyse asymptotic or exponential stability of x∗).
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Of course, it would always be possible to consider the actual distance between x(t)
and x∗, namely, ∥x(t) − x∗∥, and attempt to show that this norm either stays bounded
or converges to zero. However, it is often difficult to directly analyse the behaviour of
∥x(t) − x∗∥ as a function of time t. This motivates defining the distance between x(t) and
x∗ in a more flexible way using a Lyapunov functional, and constructing V in such a way
that the behaviour of V (x(t)) is easy to analyse. In particular, the aim is always to choose
the Lyapunov functionals in such a way that t 7→ V (x(t)) is a non-increasing function of t
whenever x(t) is the solution of (5.1). One of the key advantages of this property is that it is
straightforward to verify by proving that the time-derivative of t 7→ V (x(t)) is non-positive,
i.e.,

d

dt
V (x(t)) ≤ 0, for t ≥ 0,

when x(t) satisfies (5.1). Moreover, if this derivative is strictly negative for t ≥ 0, we can
(ideally) deduce that the distance between x(t) and x∗ decreases as t→∞. As we will see
below, under suitable additional assumptions on V we can also deduce that V (x(t)) → 0
and ∥x(t) − x∗∥ → 0 as t → ∞, and this allows us to use Lyapunov functional in the study
of asymptotic and exponential stability of x∗.

As mentioned above, the Lyapunov functionals in general measure the distance of x(t)
and x∗ in a different way than the norm ∥x(t) − x∗∥. In fact, on the conceptual level, the
use of Lyapunov functionals is more closely related to the consideration of energy of the
solutions. In fact, for many mechanical systems, such as the pendulum or the harmonic
oscillator, the Lyapunov functional V can be defined in such a way that V (x(t)) measures
the total energy Ex0(t) of the system at time t, consisting of the kinetic and potential energy.
Indeed, in a closed system the energy Ex0(t) is always non-increasing, and when the state
x(t) of the system converges to a steady state, we expect the energy to converge to zero. The
difference between the behaviour of ∥x(t) − x∗∥ and Ex0(t) is demonstrated in Figure 5.1,
which depicts the behaviour of the norm distance and the energy for one particular solution
of the damped pendulum in Example 4.1.1.
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Figure 5.1: The distance ∥x(t) − x∗∥ from the equilibrium point x∗ for a solution x(t) of
the damped pendulum system (left) and total energy Ex0(t) of the same solution (right).
Observe that the energy decreases monotonously with respect to t ≥ 0, while the distance
does not.

The discussion above motivates us to pose the following general requirements for a
Lyapunov functional V : D ⊂ Rn → R. Here x∗ is the equilibrium point of (5.1) under
consideration, and x(t) is the solution of (5.1) corresponding to the initial state x0 ∈ Rn.

• The function t 7→ V (x(t)) should be non-negative, i.e., V (x(t)) ≥ 0 for all t ≥ 0, and
V (x(t)) = x∗ if x(t) = x∗.
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• The function t 7→ V (x(t)) should be continuously differentiable.
• The function t 7→ V (x(t)) should be non-increasing, i.e., V (x(t)) ≤ V (x(s)) for all
t ≥ s ≥ 0.

The last property that t 7→ V (x(t)) is non-increasing can be shown by verifying that
its time-derivative is non-positive. This time-derivative can be computed using the chain
rule for vector-valued functions. Indeed, if we denote x(t) = (x1(t), . . . , xn(t))

T and f(x) =
(f1(x), . . . , fn(x))

T , then

d

dt
V (x(t)) =

∂V

∂x1
(x(t))ẋ1(t) + · · ·+

∂V

∂xn
(x(t))ẋn(t) =

∂V

∂x
(x(t))ẋ(t) =

∂V

∂x
(x(t))f(x(t))

where ∂V
∂x

is the Jacobian matrix of V (defined in (4.6)), i.e.,

∂V

∂x
(x) =

[
∂V

∂x1
(x), . . . ,

∂V

∂xn
(x)

]
∈ R1×n.

We will now present results which allow us to use Lyapunov functionals in analysing the
stability of a given equilibrium point x∗ of (5.1).

Theorem 5.2.1 (Lyapunov stability and asymptotic stability). Let f : D → Rn be a locally
Lipschitz function, where D ⊂ Rn be an open and connected set, and let x∗ ∈ D be an
equilibrium point of (5.1). If there exists a continuously differentiable function V : D → R
such that

V (x) > 0 for x ∈ D \ {x∗} (5.3a)

V (x∗) = 0, (5.3b)

∂V

∂x
(x)f(x) ≤ 0, for x ∈ D, (5.3c)

then there exists r > 0 such that for all x0 ∈ D satisfying ∥x0 − x∗∥ ≤ r the equation (5.1)
has a unique solution on [0,∞). Moreover, the equilibrium point x∗ is Lyapunov stable. If V
also satisfies

∂V

∂x
(x)f(x) < 0, for x ∈ D \ {x∗}, (5.4)

then x∗ is locally asymptotically stable.

Proof. As discussed in Section 5.1, we can without loss of generality assume that x∗ = 0,
and thus f(0) = 0. Assume that (5.3a)–(5.3c) hold. We begin by showing that (5.1) has a
solution on [0,∞) provided that ∥x0∥ is sufficiently small, and that 0 is a Lyapunov stable
equilibrium point. Since f is locally Lipschitz, we have from Theorem 4.2.2 that the intial
value problem has a unique local solution for any x0 ∈ D.

Let ε > 0 be arbitrary. We can without loss of generality assume that ε > 0 is small
enough so that B(0, ε) = {x ∈ Rn | ∥x∥ ≤ ε } ⊂ D. If we define α = min∥x∥=ε V (x), then
α > 0 due to the continuity of V and (5.3a). We define a subset Ωα of B(0, ε) as

Ωα = {x ∈ B(0, ε) | V (x) ≤ α/2 }.
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We note that the continuity of V implies that Ωα is a closed and bounded set (you can
check this as an exercise!), and thus it is compact. Moreover, the set Ωα cannot touch the
boundary of the ball B(0, ε), since V (x) ≥ α for all x ∈ B(0, ε) with ∥x∥ = ε, whereas
V (x) ≤ α/2 < α for all x ∈ Ωα. Thus Ωα lies in the interior of B(0, ε).

Our aim is to show that if x0 ∈ Ωα, then the (local) solution x(t) of (5.1) satisfies
x(t) ∈ Ωα for all t ≥ 0. But indeed, if x0 ∈ Ωα, then condition (5.3c) implies that for all
t > 0 we have

d

dt
V (x(t)) =

∂V

∂x
(x(t))f(x(t)) ≤ 0 ⇒ V (x(t)) ≤ V (x(0)) = V (x0) ≤

α

2
.

Thus V (x(t)) ∈ Ωα provided that we also have ∥x(t)∥ ≤ ε. However, since t 7→ ∥x(t)∥ is a
continuous function and since ∥x(0)∥ = ∥x0∥, we can have ∥x(t)∥ > ε only if ∥x(t1)∥ = ε
for some t1 ∈ (0, t). However, at this point t1 we would have V (x(t1)) ≥ min∥x∥=ε V (x) = α,
and this would contradict above argument above showing that V (x(t1)) ≤ α/2 < α. Thus
we have x(t) ∈ Ωα whenever t ≥ 0. Since Ωα ⊂ D is a compact set, Theorem 4.2.10 implies
that for any x0 ∈ Ωα, the initial value problem (5.1) has a unique solution which is defined
on [0,∞).

Since the function x 7→ V (x) is continuous on D and V (0) = 0 by assumption, we can
choose δ > 0 such that B(0, δ) ⊂ Ωα. With this choice we have that if ∥x0∥ ≤ δ, then
x0 ∈ Ωα, and the initial value problem (5.1) has a unique solution on [0,∞). Moreover, as
shown above, this solution satisfies x(t) ∈ Ωα for all t ≥ 0, and since Ωα is contained in the
interior of B(0, ε), we have

∥x(t)∥ < ε, ∀t ≥ 0.

Since ε > 0 was arbitrary, x∗ = 0 is Lyapunov stable by definition.
It remains to show that x∗ = 0 is asymptotically stable under the additional condition

on V . To this end, assume that (5.4) holds. We will show that if δ > 0 is chosen as
above (corresponding to some sufficiently small ε > 0), then the solutions x(t) of (5.1)
corresponding to x0 ∈ B(0, δ) satisfy ∥x(t)∥ → 0 as t→∞. In Exercise 5.2.2 you will show
that it is in fact sufficient to prove that V (x(t))→ 0 as t→∞. Since (5.3c) implies that the
function t 7→ V (x(t)) is non-increasing, and it is bounded from below by 0, this function has
a limit

lim
t→∞

V (x(t)) = a ≥ 0.

We will show that a = 0 using a contradiction argument. Since V is continuous and V (0) =
0, there exists κ ∈ (0, ε) such that V (x) ≤ a/2 whenever ∥x∥ ≤ κ. Since V (x(t))→ a > a/2,
we have that ∥x(t)∥ > κ for all t ≥ 0. Since x 7→ ∂V

∂x
(x)f(x) is continuous on B(0, ε) ⊂ D

and negative on D \ {x∗}, we can define

β = max
κ≤∥x∥≤ε

∂V

∂x
(x)f(x) < 0.

As we saw above, we have ∥x(t)∥ > κ for all t ≥ 0, and in the first part of the proof we
showed ∥x(t)∥ < ε for t ≥ 0 as well. Thus the definition of β also implies that

d

dt
V (x(t)) =

∂V

∂x
(x(t))f(x(t)) ≤ β < 0.
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This in turn shows that for all t > 0 we have

V (x(t)) = V (x(0)) +

∫ t

0

d

ds
V (x(s))ds ≤ V (x(0)) +

∫ t

0

βds = V (x(0)) + βt.

However, since β < 0, we have that V (x(t)) < 0 for all t > V (x(0))/|β|, which is a contradic-
tion with our assumption (5.3a). Thus we must necessarily have a = 0, and this completes
the proof.

Exercise 5.2.2. Show that if V (x(t)) → 0 to t → ∞ in the last part of the proof of Theo-
rem 5.2.1, then ∥x(t)∥ → 0 as t→∞.
Hint: You can for example use sets which are defined similarly as Ωα in the proof. ⋄

Example 5.2.3. In the particularly useful class of quadratic Lyapunov functionals, the func-
tion V has the form

V (x) = ⟨Q(x− x∗), x− x∗⟩Rn = (x− x∗)TQ(x− x∗), x ∈ D ⊂ Rn,

where Q is a symmetric and positive definite matrix. Then V : D → R is continuous and
continuously differentiable for any open and connected set D ⊂ Rn, and the assumption
that Q is (strictly) positive definite immediately implies that V has the the properties (5.3a)
and (5.3b). Moreover, the derivative of V with respect to x is given by (using the property
that Q is symmetric, i.e., QT = Q)

∂V

∂x
(x) =

∂

∂x

[
(x− x∗)TQ(x− x∗)

]
=

[
∂

∂x
(x− x∗)

]T
Q(x− x∗) + (x− x∗)TQ

[
∂

∂x
(x− x∗)

]
= 2(x− x∗)TQ

[
∂

∂x
(x− x∗)

]
= 2(x− x∗)TQ.

Therefore in the verification of conditions (5.3c) and (5.4) we are investigating the term

∂V

∂x
(x)f(x) = 2(x− x∗)TQf(x).

In particular, if the dimension of the state space Rn of the system is low, e.g., n = 2 or
n = 3, it is possible to consider the elements of the symmetric matrix Q as parameters of
the Lyapunov function, and we can aim to choose these parameters in such a way that the
conditions (5.3c) and (5.4) are satisfied. Indeed, in the particular case of n = 2, the fact
that QT = Q implies that

Q =

[
q1 q3
q3 q2

]
for some q1, q2, q3 ∈ R. Moreover, the matrix Q is positive definite if and only if all of
its “principal minors” are positive, which in our case is equivalent to the assumptions that
q1, q2 > 0 and q1q2 > q23. Finally, since multiplying Q with a positive scalar does not change
its positive definiteness or affect the conditions (5.3c) and (5.4), we can freely assume that
q1 = 1, and we are left with only two parameters q2 and q3, which, which are required
satisfy q2 > 0 and q23 < q2. ⋄
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Example 5.2.4. Let us consider the pendulum system in Example 4.1.1 with mass m > 0,
length ℓ > 0, and damping coefficient k ≥ 0 and consider the stability properties of the
equilibrium point x∗ = 0. As we discussed above, the Lyapunov functions are motivated by
the “energy” of the solutions, and in the case of our mechanical system, we can define a
Lyapunov functional which is exactly the total energy of the pendulum at time t. If we take
the reference of the potential energy to match the lowest possible position of the bob, the
energy Ex0(t) associated to the solution originating from the intial state x0 is defined as

Ex0(t) = mgℓ× (elevation of the bob) +
1

2
m× (tangential velocity)2.

A simple geometric argument based on Figure 4.1 shows that the elevation of the bob at
time t is exactly ℓ− ℓ cos(θ(t)). Since the tangential velocity of the bob at time t is equal to
ℓθ̇(t), we get

Ex0(t) = mgℓ(1− cos(θ(t))) +
1

2
mℓ2(θ̇(t))2

We can now define a Lyapunov functional based on the energy, i.e., define V : D → R with
D ⊂ R2 so that

V (x) = mgℓ(1− cos(x1)) +
1

2
mℓ2x22.

We can see that V is continuously differentiable and V (x) ≥ 0 for all x ∈ R2. Moreover, if
we define the domain2 D ⊂ R2 as D = { (x1, x2) ∈ R2 | −π < x1 < π }, then we also have
V (x) > 0 for all x ̸= 0 and V (x∗) = V (0) = 0. Thus V satisfies (5.3a) and (5.3b). In order
to use Theorem 5.2.1 to show that x∗ = 0 is Lyapunov stable, we still need to verify (5.3c)
which will imply that the functions t 7→ V (x(t)) are non-increasing. A direct computation
yields

∂V

∂x
(x)f(x) =

[
∂V

∂x1
(x),

∂V

∂x2
(x)

]
f(x) =

[
mgℓ sin(x1),mℓ

2x2
] [ x2
−(g/ℓ) sin(x1)− (k/m)x2

]
= mgℓ sin(x1)x2 −mgℓ sin(x1)x2 − kℓ2x22 = −kℓ2x22 ≤ 0

since the friction coefficient satisfies k ≥ 0. Because of this (5.3c) holds and Theorem 5.2.1
tells us that the origin x∗ = 0 is a Lyapunov stable equilibrium point of the pendulum
system. This means that the solutions originating from an initial state sufficiently close to
x∗ = 0 will also remain in the neighbourhood of the equilibrium.

We can also observe that if there is no friction, i.e., k = 0, then the derivative is zero,
meaning that V (x(t)) is constant. This agrees with our knowledge that the energy in a
closed system is constant. On the other hand, if the pendulum does have friction, i.e.,
k > 0, then we can intuitively imagine that the equilibrium point x∗ = 0 should also be
asymptotically stable. Indeed, the friction constantly reduces the energy of the pendulum
until its motion comes to rest at angle θ = 0. However, Theorem 5.2.1 and our current
Lyapunov functional V cannot be used to deduce asymptic stability due to the fact that we
also have ∂V

∂x
f(x) = 0 whenever x1 ̸= 0, which violates condition (5.4). ⋄

2With this choice the only equilibrium point contained in D is x∗ = 0.
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In the previous example we saw that the Lyapunov functional defined based on the
energy of the solutions didn’t satisfy (5.4), and therefore we were not able to use it to
show asymptotic stability of x∗ = 0. However, this example demonstrates the fact that
the conditions in Theorem 5.2.1 are only sufficient for stability, and even in the case where
the equilibrium point x∗ really is asymptotically stable, all Lyapunov functionals do not
necessarily have the property (5.4). In the next exercise we modify the second term of the
Ex0(t) to define a Lyapunov functional which does satisfy (5.4).

Exercise 5.2.5. In the case where k > 0, use a Lyapunov functional of the form

V (x) = mgℓ(1− cos(x1)) + xTPx,

to analyse the asymptotic stability of the equilibrium point x∗ = 0 of the pendulum system.
Hint: Choose the elements of P ∈ R2 so that P is a symmetric and positive definite matrix
and so that (5.4) is satisfied. ⋄

Theorem 5.2.1 gives us conditions for local asymptotic stability. In order to use Lyapunov
functionals to investigate global stability, we need a Lyapunov functional V which is defined
on all of Rn, but also need to pose additional conditions on the behaviour of V as ∥x∥ → ∞.

Theorem 5.2.6 (Global asymptotic stability). Let f : Rn → Rn be a locally Lipschitz func-
tion and let x∗ ∈ D be an equilibrium point of (5.1). If there exists a continuously differen-
tiable function V : Rn → R such that

V (x) > 0 for x ̸= x∗

V (x∗) = 0,

V (x)→∞ if ∥x∥ → ∞,

∂V

∂x
(x)f(x) < 0, for x ̸= x∗,

then the equation (5.1) has a unique solution on [0,∞). Moreover, the equilibrium point x∗

is globally asymptotically stable.

Proof. The proof is similar to the proof of Theorem 5.2.1. The assumption that V (x) → ∞
as x→∞ guarantees that the set Ωα in the proof is bounded, and therefore compact.

Example 5.2.7. Consider a first-order scalar differential equation of the form

ẋ(t) = −g(x(t)), x(0) = x0 ∈ R, (5.5)

where g : R→ R is locally Lipschitz continuous and satisfies g(0) = 0 and g(x)x > 0 for all
x ̸= 03. This assumption implies that x∗ = 0 is the only equilibrium point of the system. To
consider the stability of this point, we can use a Lyapunov functional of the form

V (x) =

∫ x

0

g(z)dz.

3The “saturation function” in Example 4.2.6 satisfies these conditions.
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Indeed, we clearly have V (0) = 0, and since g(x) > 0 for x > 0 and g(x) < 0 for x < 0,
we also have V (x) > 0 whenever x ̸= 0. Moreover, since the derivative of V is simply
∂V
∂x
(x) = g(x), we have

∂V

∂x
(x)f(x) = −g(x)2 < 0 ∀x ∈ R \ {0}.

Thus by Theorem 5.2.1 the system (5.5) has a unique global solution for any x0 sufficiently
close to 0, and the origin is an asymptotically stable equilibrium point.

In addition, if we assume

lim inf
|x|→∞

|g(x)| > 0,

then V (x) → ∞ as |x| → ∞. Under this additional assumption Theorem 5.2.6 implies
that (5.5) has a unique global solution for any x0 ∈ Rn, and the origin is a globally asymp-
totically stable equilibrium point. ⋄

Exercise 5.2.8. Show that a linear system ẋ(t) = Ax(t) is globally asymptotically stable if
and only if there exists a (unique) positive definite Q ∈ Rn×n such that

ATQ+QA = −I. (5.6)

The equation (5.6) is called the Lyapunov equation.
Hint: In the “if” part you can use a quadratic Lyapunov functional based in Q. In the “only
if” part you can show that the solution of the Lyapunov equation is

Q =

∫ ∞

0

eA
T teAtdt.

⋄

5.3 LaSalle’s Invariance Principle

In Example 5.2.4 we saw that we were not able to deduce asymptotic stability of the equi-
librium point x∗ = 0 of the pendulum system using the Lyapunov functional V based on
the energy. This was due to the fact that V did not satisfy condition (5.4) arising from the
requirement that t 7→ V (x(t)) should have a negative derivative whenever x(t) ̸= 0. How-
ever, if we investigate this condition more closely, we can notice that condition (5.4) can be
violated only at the points x ∈ D satisfying

∂V

∂x
(x)f(x) = 0 ⇔ −kℓ2x22 = 0 ⇔ x2 = 0.

In terms of the solutions x(t) = (θ(t), θ̇(t))T ∈ D of (5.1) this means that the energy V (x(t))
of the solution is decreasing whenever θ̇(t) ̸= 0. Moreover, if the solution x(t) is not at
the equilibrium state, the points of time t where V (x(t)) does not decrease are necessarily
isolated, because they physically correspond to passing the instances of time when the
pendulum instantenously stops at the end of the swing before changing direction. In a
situation like this, the function t 7→ V (x(t)) decays to zero as t → ∞. To formulate this
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more rigorously, we can note that if there exists a time interval (t1, t2) such that θ̇(t) for all
t ∈ (t1, t2), then the differential equation of the pendulum implies that

θ̇(t) = 0 for t ∈ (t1, t2)

⇒ θ̈(t) = 0 for t ∈ (t1, t2)

⇒ sin(θ(t)) = 0 for t ∈ (t1, t2)

⇒ θ(t) = kπ for t ∈ (t1, t2),

which means that the solution x(t) is already at the equilibrium x(t) = x∗.
This type of closer analysis of the regions where the function t 7→ V (x(t)) is not strictly

decreasing is facilitated by the so-called LaSalle’s invariance principle, which states roughly
that if V has the property that the function t 7→ V (x(t)) can be constant only for constant
solutions, then x(t) must necessarily converge to an equilibrium of the system.

Theorem 5.3.1. Let f : D → Rn be a locally Lipschitz function, where D ⊂ Rn is an
open and connected set, and let x∗ ∈ D be an equilibrium point of (5.1). Let V : D → R
be a continuously differentiable function which satisfies (5.3a)–(5.3c). If the only solution
x(·) : [0,∞)→ D of (5.1) which can satisfy

∂V

∂x
(x(t))f(x(t)) = 0 ∀t ≥ 0

is the constant solution x(t) ≡ x∗, then x∗ is locally asymptotically stable.
If D = Rn and V (x) → ∞ as ∥x∥ → ∞, then under the above conditions x∗ is globally

asymptotically stable.

Proof. This proof is studied in the exercises.

Example 5.3.2. In the case of the pendulum system and the Lyapunov functional V : D →
R2 with D = { (x1, x2)T ∈ R2 | −π < x1 < π } defined by

V (x) = mgℓ(1− cos(x1)) +
1

2
mℓ2x22,

our computations in Example 5.2.4 imply that for x = (x1, x2)
T ∈ D we have

∂V

∂x
(x)f(x) = 0 ⇔ x2 = 0.

If x(t) = (x1(t), x2(t))
T a state of the pendulum system satisfying x2(t) = 0 for all t ≥ 0,

then the equation ẋ(t) = f(x(t)) and the formula for f implies that on (0,∞) we have

x2(t) ≡ 0 ⇒ ẋ2(t) ≡ 0 ⇒ sin(x1(t)) ≡ 0 ⇒ x1(t) ≡ 0.

Thus the solution x(t) is indeed the constant solution x(t) ≡ x∗. Theorem 5.3.1 thus shows
that x∗ = 0 is locally asymptotically stable. ⋄

5.4 Linearisations and Stability

Some nonlinear systems can be approximated with linear systems near their (stable) equi-
librium points. This leads to the concept of the linearisation of the original nonlinear system.
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Depending on the original system, the linearisation can give a relatively accurate approxi-
mation which is valid in a large neighbourhood of the equilibrium point x∗, or alternatively
the approximation may only be valid very near x∗. Consider

ẋ(t) = f(x(t)), x(0) = x0. (5.7)

Using a coordinate transformation of the form x̃(t) = x(t) − x∗, we can assume that (5.7)
has an equilibrium point at the origin, x∗ = 0.

Definition 5.4.1. If f is continuously differentiable in an open and connected set contain-
ing the origin, then the linearisation of (5.7) around x∗ = 0 is given by

ẋ(t) = Ax(t), where A =
∂f

∂x
(0).

In the definition A is the Jacobian matrix (4.6) of f evaluated at the equilibrium point
x∗ = 0. For more detailed analysis of linearisations of nonlinear systems, see [6, Sec. 4.7].

The linearisation can often be used to determine the (local) asymptotic stability of the
equilibrium point at x∗ = 0. Indeed, if A is Hurwitz, then x∗ = 0 is locally asymptotically
stable, and if A has eigenvalues with positive real parts, then x∗ = 0 is unstable. This is
stated in the following theorem.

Theorem 5.4.2. Assume that f is continuously differentiable in an open and connected set
containing an equilibrium point x∗ of (5.7). Then the following hold.

(a) If
∂f

∂x
(x∗) is Hurwitz, then x∗ is locally asymptotically stable.

(b) If
∂f

∂x
(x∗) has at least one eigenvalue with a positive real part, then x∗ is unstable.

Proof. See [6, Thm. 4.7].

Example 5.4.3. In the pendulum equation considered in Example 4.1.1, the function f is
defined as

f(x) =

[
x2

−(g/ℓ) sinx1 − (k/m)x2

]
.

In Example 4.2.9 we noted that f is continuously differentiable and its Jacobian matrix is
given by

∂f

∂x
(x) =

[
0 1

−(g/ℓ) cosx1 −k/m

]
.

Since x∗ = 0 is an equilibrium point, the linearisation of the pendulum around x∗ = 0 has
the form

ẋ(t) =

[
0 1

−(g/ℓ) cos 0 −k/m

]
x(t) =

[
0 1
−g/ℓ −k/m

]
x(t).

We can note that this is exactly of the same form as the harmonic oscillator!
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We can use Theorem 5.4.2 to analyse the stability of the equilibrium points x∗ = (2jπ, 0)T

and x∗ = ((2j + 1)π, 0)T for j ∈ Z. We have

∂f

∂x
(2jπ) =

[
0 1

−(g/ℓ) cos(2jπ) −k/m

]
=

[
0 1

−(g/ℓ) −k/m

]
.

Similarly as in Section 1.3.1, we can deduce that the eigenvalues of this matrix have nega-
tive real parts if k > 0. By Theorem 5.4.2 the equilibrium points x∗ = (2jπ, 0)T are locally
asymptotically stable for all j ∈ Z.

On the other hand, we have

∂f

∂x
((2j + 1)π) =

[
0 1

−(g/ℓ) cos((2j + 1)π) −k/m

]
=

[
0 1
g/ℓ −k/m

]
.

The eigenvalues of this matrix are

λ1,2 =
−k ±

√
k2 + 4gm/ℓ

2m
.

For all values of m, ℓ > 0 and k ≥ 0 one of the eigenvalues is positive. Therefore by
Theorem 5.4.2 the equilibrium points x∗ = ((2j + 1)π, 0)T are unstable for all j ∈ Z. ⋄

The above example demonstrates that linearisations can offer a convenient way to anal-
yse the local stability properties of an equilibrium point, and they are often especially handy
in showing instability. The main limitations of this approach are that f needs to be contin-
uously differentiable (which is stronger that Lipschitz continuity), and it is not possible to
investigate global stability. In addition, the Lyapunov approach may in certain situations
provide information about the region of attraction of the equilibrium point x∗, which is the
set of initial conditions x0 for which we have x(t)→ x∗ as t→∞.



6. Nonlinear Control Design

In this final chapter we will take a closer look at two particular cases on control design
in the presence of nonlinearities. In general, nonlinear control is a very wide and active
research field, and on our course we could only hope to scratch its surface. Instead of
trying to present an overview of several techniques and problem settings, we will focus on
problems with a common theme, namely, control design under limitations on the values of
the control input u(t). In mathematical terms, we assume that for some predefined umin ∈ R
and umax ∈ R we should solve a control problem in such a way that the control input
satisfies u(t) ∈ [umin, umax] for all t ≥ 0.

These kinds of limitations on the control input can arise due to one of several reasons,
for instance, limited ranges of physical actuators (if our motor can only produce torques
of limited magnitudes), saturation (if our system can only register inputs between some
magnitude range), or safety considerations (if we are required to only use voltages and
currents which are not lethal).

We will take a closer look at two control design situations. In both cases we study control
design for a linear system (A,B,C), but pose conditions on the values of u(t). We begin by
considering feedback stabilisation of the system in Section 6.1. Subsequently in Section 6.2
we will consider output tracking of a constant reference using an integral controller which
is designed to ensure that the control input stays within a predefined range.

6.1 Stabilisation of Systems with Input Saturation

In this section we study control design for a system which is otherwise linear, but suffers
from saturation of the input. This means that the input u(t) acts in a linear way when
u(t) ∈ [umin, umax] ⊂ R for some umin < 0 < umax, but increasing the value above umax or
decreasing it below umin no longer has any effect on the system. This scenario leads to a
system with an input nonlinearity like the one we studied in Example 4.1.3. More precisely,
the considered system is of the form

ẋ(t) = Ax(t) +Bϕ(u(t)), x(0) = x0 ∈ Rn (6.1a)
y(t) = Cx(t), (6.1b)

where the saturation function ϕ : R→ R is defined so that

ϕ(u) =


umax if u > umax

u if u ∈ [umin, umax]

umin if u < umin.

(6.2)

75
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Saturation constraints arise naturally in a wide variety of applications, since the physical
devices which implement the control input in a system almost always have some limited
range of operation. For instance, electrical power supplies have maximum and minimum
voltages that they can supply, elecrical motors have a maximum amount of torque they are
capable of producing, electrical heaters are usually only capable of adding heat and not
cooling, and so on.

Control and stabilisation of a system can become very challenging in the case of satu-
ration or other input nonlinearities. For example, state feedback of the form u(t) = Kx(t)
cannot be used to stabilise the system asymptotically if A has at least one eigenvalue with a
strictly positive real part. In this section we will show that a certain class of systems can nev-
ertheless be stabilised with state feedback even in the presence of staturation constraints.
More precisely, we focus on the situation where A is Q-dissipative in the sense defined in
Section 2.3.

Definition 6.1.1. Let Q ∈ Rn×n be a positive definite matrix. The matrix A ∈ Rn is called
Q-dissipative if ⟨QAx, x⟩ ≤ 0 for all x ∈ Rn.

We note that since for all x ∈ Rn we have

2⟨QAx, x⟩ ≤ 0 ⇔ ⟨QAx, x⟩+ ⟨ATQx, x⟩ ≤ 0, ⇔ ⟨(QA+ ATQ)x, x⟩ ≤ 0,

a matrix A is Q-dissipative if and only if QA + ATQ is negative semi-definite. Since Q is
assumed to be positive definite, there exist constants mQ,MQ > 0 such that

m2
Q∥x∥2 ≤ ⟨Qx, x⟩ ≤M2

Q∥x∥2, ∀x ∈ Rn. (6.3)

The following theorem introduces a feedback law stabilising the system (6.1) with input
saturation. The proof relies on the use of the LaSalle’s invariance principle.

Theorem 6.1.2. Consider the system (6.1) with input saturation on X = Rn with U = R.
Assume that there exists a positive definite matrix Q ∈ Rn×n for which A is Q-dissipative and
the pair (AT , QB) is stabilisable. If κ > 0, then under the state feedback

u(t) = −κBTQx(t), t ≥ 0

the origin 0 ∈ Rn is a globally asymptotically stable equilibrium of the system (6.1a), and
thus ∥x(t)∥ → 0 as t→∞ for every x0 ∈ Rn.

Proof. Applying the state feedback u(t) = −κBTQx(t) to the initial value problem (6.1a),
we get

ẋ(t) = Ax(t) +Bϕ(−κBTQx(t)), x(0) = x0. (6.4)

The system can be written as a nonlinear initial value problem with the choice f(x) =
Ax + Bϕ(−κBTQx). Since ϕ : R → R is a globally Lipschitz function by Example 4.2.6,
also f : Rn → Rn is globally Lipschitz (you can check this as an exercise). Because of
this, Theorem 4.2.8 guarantees that the system has a unique global solution for any initial
condition x0 ∈ Rn.

Our aim is to show that x∗ = 0 is a globally asymptotically stable equilibrium point
of (6.4) using LaSalle’s invariance principle in Theorem 5.3.1. The point x∗ = 0 is indeed
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an equilibrium point of the system since f(0) = A0 + Bϕ(−κBTQ0) = 0. As the Lyapunov
functional V : Rn → R we can choose1

V (x) =
1

2
⟨Qx, x⟩, x ∈ Rn.

Then V is positive, satisfies V (0) = 0, and V (x) → ∞ as ∥x∥ → ∞ due to the fact that
⟨Qx, x⟩ ≥ c∥x∥2 for some constant c > 0 since Q is positive definite. We will now verify that
∂V
∂x
(x)f(x) ≤ 0 for all x ∈ Rn. A direct computation shows that ∂V

∂x
(x) = xTQ, and thus the

Q-dissipativity of A implies

∂V

∂x
(x)f(x) = xTQ(Ax+Bϕ(−κBTQx)) = ⟨QAx, x⟩+ (xTQB)ϕ(−κBTQx)

≤ 1

κ
(κBTQx)ϕ(−κBTQx)

since xTQB = BTQx ∈ R. It is easy to check that the function ϕ satisfies uϕ(−u) ≤ 0 for all
u ∈ R, and thus the above estimate implies

∂V

∂x
(x)f(x) ≤ 1

κ
(κBTQx)ϕ(−κBTQx) ≤ 0

for all x ∈ Rn. Thus V satisfies the first assumptions in Theorem 5.3.1.
In order to deduce that x∗ = 0 is globally asymptotically stable, we only need to verify

that the only solution x(·) : [0,∞)→ Rn of (6.4) which can satisfy

∂V

∂x
(x(t))f(x(t)) = 0, ∀t ≥ 0 (6.5)

is the zero solution x(t) ≡ 0. To this end, assume that x(t) is a solution of (6.4) and (6.5)
holds. Then using our estimates above we have

0 =
∂V

∂x
(x(t))f(x(t)) = ⟨QAx(t), x(t)⟩+ (BTQx(t))ϕ(−κBTQx(t))

≤ 1

κ
(κBTQx(t))ϕ(−κBTQx(t)) ≤ 0

for all t ≥ 0. Since uϕ(−u) < 0 for all u ̸= 0, the above inequalities imply that necessarily
BTQx(t) = 0 for all t ≥ 0. Since x(t) is the solution of (6.4), we have

ẋ(t) = Ax(t) +Bϕ(−κBTQx(t)) = Ax(t)

and thus x(t) = eAtx0. We are now getting ready to use our assumption that (AT , QB) is
stabilisable. The assumption (6.5) implies d

dt
V (x(t)) = ∂V

∂x
(x(t))f(x(t)) = 0 for all t ≥ 0,

and thus

t 7→ V (x(t)) = ⟨Qx(t), x(t)⟩ = ⟨QeAtx0, e
Atx0⟩

1The coefficient 1/2 in the Lyapunov functional is not at all crucial, but you could just as well take any
other value in its place! The coefficient 1/2 is often used in quadratic Lyapunov functionals, because it cancels
out the factor 2 in the derivative ∂V

∂x .
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is a constant function, which implies that ⟨QeAtx0, e
Atx0⟩ = ⟨Qx0, x0⟩ for all t ≥ 0. The

estimates in (6.3) imply that for all t ≥ 0

∥eAtx0∥2 ≤
1

m2
Q

⟨QeAtx0, e
Atx0⟩ =

1

m2
Q

⟨Qx0, x0⟩ ≤
M2

Q

m2
Q

∥x0∥2.

Completing an analogous estimate in the opposite direction shows that (mQ/MQ)∥x0∥ ≤
∥eAtx0∥ ≤ (MQ/mQ)∥x0∥ for t ≥ 0.

Using the Jordan canonical form (see Appendix A.3) we can write

x0 = x−0 + x+0 ,

where x+0 is a linear combination of the generalised eigenvectors of A associated to eigen-
values λ of A satisfying Reλ ≥ 0, and correspondingly x−0 is a linear combination of
the generalised eigenvectors associated to eigenvalues satisfying Reλ < 0. These defi-
nitions and Theorem A.3.1 imply that ∥eAtx−0 ∥ → 0 as t → ∞. This and the estimate
∥eAtx0∥ ≤ (MQ/mQ)∥x0∥ for t ≥ 0 above imply that ∥eAtx+0 ∥ has to be uniformly bounded
with respect to t ≥ 0. However, Theorem A.3.1 shows us that this can only happen if x+0 is a
linear combination of eigenvectors λ of A with exactly zero real parts, i.e., Reλ = 0. Indeed,
if x+0 would have components related to either eigenvalues with Reλ > 0, or alternatively
generalised eigenvectors associated to eigenvalues with Reλ = 0, then we would necessarily
have ∥eAtx+0 ∥ → ∞ as t→∞. Because of this, we can write

x+0 =

q∑
k=1

αkϕk,

where q ∈ {1, . . . , n} and αk ∈ C and where {ϕk}qk=1 ⊂ Cn are linearly independent and
satisfy Aϕk = λkϕk with {λk}qk=1 ⊂ σ(A) ∩ iR. Our assumption that (AT , QB) is stabilisable
and Theorem 2.3.3 imply that BTQϕk ̸= 0 for all k ∈ {1, . . . , q}. Moreover, Remark 2.3.5
implies that the geometric multiplicity of λk as eigenvalues of A are equal to 1, meaning
that λk ̸= λj for all k, j ∈ {1, . . . , q} such that k ̸= j. Now the property BTQx(t) ≡ 0 on
[0,∞) and eAtϕk = eλktϕk imply

0 ≡ BTQeAtx0 = BTQeAtx−0 +BTQeAtx+0 = BTQeAtx−0 +BTQ

(
q∑

k=1

αke
λktϕk

)

= BTQeAtx−0 +

q∑
k=1

eλktαkB
TQϕk.

Since ∥BTQeAtx−0 ∥ ≤ ∥BTQ∥∥eAtx−0 ∥ → 0 as t → ∞, also the sum in the second term has
to decay to zero as t → ∞. However, since λk ∈ iR, and λk ̸= λj for k ̸= j, this can only
happen if2

αkB
TQϕk = 0 ∀k ⇒ αk = 0 ∀k.

Thus x+0 =
∑q

k=1 αkϕk = 0, and consequently x(t) = eAtx−0 . However, we saw above that
∥eAtx0∥ ≥ (mQ/MQ)∥x0∥, and because of this we have ∥x0∥ ≤ (MQ/mQ)∥eAtx−0 ∥ → 0 as
t → ∞, which implies that in fact x0 = 0 and x(t) = eAtx0 ≡ 0. Since the only solution
of (6.4) which can satisfy (6.5) is the trivial solution x(t) ≡ 0, Theorem 5.3.1 shows that
x∗ = 0 is globally asymptotically stable.

2This follows for example from Fourier theory.
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Remark 6.1.3. The last part of the proof of Theorem 6.1.2 becomes a bit simpler if we
assume that (AT , QB) is controllable (which is in general a stronger property than stabilis-
ability). If (AT , QB) is controllable and x(t) is a solution of (6.4) which satisfies (6.5), then
we can deduce x(t) ≡ 0 in the following way. We again necessarily have x(t) = eAtx0 and
BTQeAtx0 ≡ 0 on [0,∞). By Theorem 2.2.2 and Lemma 2.2.4 we know that the controlla-
bility Gramian of (AT , QB) defined as

Wτ =

∫ τ

0

eA
T sQBBTQeAsds ∈ Rn×n

is nonsingular for any fixed τ > 0. As we saw in Section 2.2, Wτ is positive semi-definite,
and since it is nonsingular, it is also positive definite. Thus there exists a constant cτ > 0
such that ⟨Wτx0, x0⟩ ≥ cτ∥x0∥2. Since BTQx(t) ≡ 0, this implies

cτ∥x0∥2 ≤ ⟨Wτx0, x0⟩ =
∫ τ

0

⟨eAT sQBBTQeAsx0, x0⟩ds =
∫ τ

0

∥BTQeAsx0∥2ds = 0.

This implies that necessarily x0 = 0, which finally also implies that x(t) = eAtx0 ≡ 0.
Since the only solution of (6.4) which can satisfy (6.5) is the trivial solution x(t) ≡ 0,
Theorem 5.3.1 shows that x∗ = 0 is globally asymptotically stable.

Example 6.1.4. In this example we consider the stabilisation of the undamped harmonic
oscillator in Section 1.3.1 in the case where the amount of the force we can use is limited.
The dynamics of the oscillator without damping are given by

mq̈(t) + kq(t) = F (t) (6.6)

where m, k > 0. We consider F (t) as the input and measure the velocity y(t) = q̇(t) of the
mass. In this example consider the case where we are only allowed to use force inputs F (t)
in the range [Fmin, Fmax] ⊂ R for some Fmin < 0 < Fmax. Since the force is our control input,
i.e., u(t) = F (t), we can model the limitation on the sise of F (t) by defining a saturation
function ϕ using the formula (6.2) with umin = Fmin and umax = Fmax. The system is then
of the form (6.1) where (A,B,C) are given by

A =

[
0 1
− k

m
0

]
, B =

[
0
1
m

]
, C =

[
0 1

]
.

The matrixA is notQ-dissipative withQ = I unless k = m. However, if we defineQ = [ k 0
0 m ],

then for all x = (x1, x2)
T we have

⟨QAx, x⟩ =
〈[

0 k
−k 0

] [
x1
x2

]
,

[
x1
x2

]〉
= kx2x1 − kx1x2 = 0,

and A is Q-dissipative. In order to use Theorem 6.1.2 we need to check that the pair
(AT , QB) is stabilisable. The eigenvalues and corresponding eigenvectors of A are

λ1,2 = ±i
√
k

m
, ϕ1,2 =

[
1

±i
√
k/m

]
.
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Since Reλj = 0 and BTQϕj = [0, 1]ϕj = ±i
√
k/m ̸= 0 for j = 1, 2, Theorem 2.3.3 shows

that (AT , QB) is stabilisable. Theorem 6.1.2 therefore shows that for any κ > 0 the feedback

u(t) = −κBTQx(t) = −κ[0, 1]
[
q(t)
q̇(t)

]
= −κq̇(t)

stabilises the system so that x(t) → 0 for any x0 ∈ R2. We can also note that since our
output is the velocity measurement y(t) = q̇(t), the control is in fact output feedback, i.e.,
y(t) = −κy(t).

Note that our original system (6.6) did not have input saturation, but instead we only
used ϕ as a way to model that we want F (t) to have values between [Fmin, Fmax]. When
implementing the control for the original system, we should therefore ensure that force
input F (t) we use is limited to the interval [Fmin, Fmax]. However, this can be done easily by
defining the force that we actually use using the saturation function ϕ so that

F (t) = ϕ(u(t)) = ϕ(−κq̇(t)).

Figure 6.1 depicts the behaviour of the state of the controlled oscillator with m = 2 and
k = 1 and the control input which is constrained on the interval F (t) = [−1, 1/2] and has
control gain κ = 2.
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Figure 6.1: The state (left) and the control input (right) of the undamped harmonic oscil-
lator with constrained stabilising feedback.

The simulation can be implemented using the following Matlab code.

% Example: Stabilising the undamped harmonic oscillator with a constraint
% on the magnitude of the force input F(t)
%
% Copyright (C) 2019 by Lassi Paunonen (lassi.paunonen@tuni.fi)

r = 0; % Consider the undamped oscillator
k = 1; m = 2;

A = [0 1;-k/m -r/m];
B = [0;1/m];
C = [0,1]; % velocity measurement
D = 0;

% Define Q so that A is Q-dissipative
Q = diag([k,m]);
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Fmin = -1;
Fmax = 1/2;

% Define the saturation function
phi = @(u) max(min(u,Fmax),Fmin);

x0 = [2;2]; % Initial position and velocity
tspan = [0, 18];

% Control is of the form F(t)=\phi(-\kappa*B^T*Q*x(t)) with \kappa>0
% (Alternatively, we could write F(t)=\phi(-\kappa*y(t)) )
kappa = 2;

% Since the differential equation is nonlinear, we directly use ode45 to
% simulate the system
odefun = @(t,x) A*x + B*(-kappa*B.'*Q*x);

sol = ode45(odefun,tspan,x0);

figure(1)
LinSysStatePlot(sol,301,[tspan 1.1*[min(min(sol.y)) max(max(sol.y))]],2);
title('The position $q(t)$ (blue) and the velocity $\dot q(t)$ (red)', ...

'Interpreter','latex','FontSize',18)
grid on

% LinSysStatePlot(sol,100,[],2);
figure(2)
% Compute and plot the control input
tt = linspace(tspan(1),tspan(2),701);
uvals = phi(-kappa*B.'*Q*deval(sol,tt));
plot(tt,uvals,'LineWidth',2)
axis([tspan(1),tspan(2),Fmin-.2,Fmax+.2])
title('The control input $F(t)$','Interpreter','latex','FontSize',18)
grid on

⋄

6.2 Constrained Integral Control

In this section we continue to study the case where the system is linear, but the values
u(t) ∈ R of the input are restricted to an interval [umin, umax] ⊂ R. This time we are
interested in solving the output tracking problem for a constant reference signal yref ∈ R.
This means that we are interested in constructing a control input u(t) in such a way that

|y(t)− yref | → 0, as t→∞

and the values of u(t) satisfy umin ≤ u(t) ≤ umax for all t ≥ 0. We want to solve the
problem using the integral controller (meaning the PI-controller with KP = 0) due to its
advantageous robustness properties. However, we need to modify the controller to ensure
that the control input satisfies the constraint u(t) ∈ [umin, umax] for all t ≥ 0. We can do
this by introducing the constrained integral controller which was studied in detail in the
reference [7].
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The constrained integrator (or “saturating integral controller”) is defined by introducing
a function

S (u, y) =


max{y, 0} if u ≤ umin,

y if u ∈ (umin, umax),

min{y, 0} if u ≥ umax.

(6.7)

and defining the control input u(t) as the state of the controller, which is a nonlinear differ-
ential equation

u̇(t) = S (u(t), κ(yref − y(t))), u(0) = u0 (6.8)

for some fixed gain parameter κ > 0 and initial value u0 ∈ R. The role of the function
S is to ensure that if u0 ∈ [umin, umax], then also u(t) ∈ [umin, umax] for all t ≥ 0. Indeed,
if u0 is strictly between umin and umax, i.e., u0 ∈ (umin, umax), then by definition we have
S (u0, κ(yref − y(t))) = κ(yref − y(t)). In fact, function S acts like the identity function as
long as umin < u(t) < umax. In particular, if t1 > 0 is such that u(t) ∈ (umin, umax) for all
t ∈ [0, t1], then

u̇(t) = S (u(t), κ(yref − y(t))) = κ(yref − y(t))

for all t ∈ (0, t1), which has the unique solution

u(t) = u0 + κ

∫ t

0

(yref − y(s))ds.

Thus on the interval (0, t1) the controller (6.8) has exactly the same form as the linear
integral controller we studied in Section 3.1. However, once u(t) meets the boundary of the
interval [umin, umax], the function S begins to have an effect on u(t). Indeed, if u(t) = umax
for some t ≥ 0, then we have by definition that

u̇(t) = S (u(t), κ(yref − y(t))) = min{κ(yref − y(t)), 0}.

This means that if κ(yref−y(t)) ≥ 0, then the value of the right-hand side is equal to 0, which
means that the value u(t) cannot increase further, but instead it will stay constant as long
as κ(yref − y(t)) ≥ 0 holds. However, if the sign changes and we will have κ(yref − y(t)) < 0
some later time instance t, then the right-hand side above becomes κ(yref − y(t)), which is
negative, and this will cause the value of u(t) to decrease. This way, the function S prevents
input κ(yref − y(t)) from increasing the value of u(t) beyond its predefined maximum umax,
but at the same time it allows κ(yref − y(t)) to decrease it away from this maximal value.
The same happens in the opposite direction when u(t) is close to the lower limit umin of the
interval [umin, umax]. This behaviour is illustrated in Figure 6.2, which depicts the state of
the integrator (6.8) in the case where its input κ(yref − y(t)) is a sinusoid.

When we interconnect the saturated integrator to a linear system (A,B,C) we obtain a
closed-loop system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)

u̇(t) = S (u(t), κ(yref − y(t))), u(0) = u0.
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Figure 6.2: The state u(t) of the constrained integrator (left) when the input κ(yref −y(t)) is
a periodic function (right). The colors indicate the time intervals where the input function
has positive (blue) or negative (red) values.

This a nonlinear system on the space Rn+1 with state xe(t) = (x(t), u(t)), with (constant)
input yref , and output y(t). We can write this system as an autonomous nonlinear system of
the form (5.1), i.e.,

ẋe(t) = fe(xe(t)), xe(0) =

[
x0
u0

]
(6.9a)

y(t) = he(xe(t)) (6.9b)

if we define fe : Rn+1 → Rn+1 and he : Rn+1 → R for xe = (xT , u)T ∈ Rn+1 by

fe(xe) =

[
Ax+Bu

S (u, κ(yref − Cx))

]
, he(xe) = Cx.

Note that the input yref is now interpreted as part of the function fe.

The following theorem shows that if the linear system (A,B,C) is stable and P (0) =
C(−A)−1B > 03, then the saturated integrator solves the output tracking problem for suffi-
ciently small values of κ > 0. The proof is similar to the one presented in the reference [8].
We should note that since the function S : R× R→ R is not continuous with respect to u,
the function fe : Rn+1 → Rn+1 is not continuous. Because of this we in particular require a
generalised concept of a “solution” of (6.9a), which is not necessarily continuously differ-
entiable. It is also highly nontrivial to show that the closed-loop system (6.9) does have a
well-defined state xe(t) = (x(t)T , u(t))T , and that the part u(t) of this solution satisfies the
differential equation (6.8) for almost every t ≥ 0. Some of the details can be found in [8,
Sec. III], but on this course we will only focus on analysing the convergence of the output
to the reference. For this we will use Lyapunov stability analysis.

3The result can be used whenever P (0) ̸= 0. Indeed, if we instead have P (0) < 0, we can redefine our
output y(t) = Cx(t) as y(t) = −Cx(t). This changes the sign of P (0), and we can track the reference signal
−yref .
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Theorem 6.2.1. Assume that σ(A) ⊂ C− and P (0) = C(−A)−1B > 0. There exists κ∗ > 0
such that for any κ ∈ (0, κ∗] the controller (6.8) solves the output tracking in the sense that
for any reference yref ∈ R which satisfies

umin <
yref

P (0)
< umax

and for all initial conditions x0 ∈ Rn and u0 ∈ R the output of the closed-loop system (6.9)
satisfies |y(t)− yref| → 0 as t→∞.

Before we present the proof of the theorem, a couple of comments are in order. The con-
dition on the size of yref in terms of P (0), umin, and umax is unavoidable. Indeed, similarly as
in our analysis in Section 3.2 revealed, if we apply a constant input u(t) ≡ ur to a stable lin-
ear system (without the constraints on u(t)), then the output converges to P (0)ur. Thus the
input which “asymptotically” produces the reference output yref equal to ur = yref/P (0). We
need this value to be between umin and umax, because otherwise we cannot hope to produce
the correct reference output yref with any control on the interval [umin, umax]. Technically,
we could hope to still get convergence of y(t) to yref if umin = yref/P (0) or umax = yref/P (0),
but these two scenarios can lead to the integrator to behave in a way which is more difficult
to analyse.

We note that even though our problem setting is motivated by the requirement that
u(t) ∈ [umin, umax], in which case it is also natural to assume that u(0) = u0 ∈ [umin, umax],
Theorem 6.2.1 guarantees the convergence of the output even if u0 is outside the interval
[umin, umax]. In this situation, the dynamics of the integrator (6.8) will first lead the control
input u(t) to the inside of the integral [umin, umax] during some finite time-interval. This
is due to the fact that the values of u(t) cannot increase while u(t) > umax, and cannot
decrease while u(t) < umin. After this, the values of u(t) will stay in [umin, umax].

The function S appears when we differentiate our Lyapunov functional, and therefore
we need following the in the following Lemma in our analysis.

Lemma 6.2.2. If P (0) > 0 and u∗ ∈ [umin, umax], then the function S defined in (6.7)
satisfies |S (u, y)| ≤ |y| and

(u− u∗)S (u, P (0)(u∗ − u)− y) ≤ −P (0)(u− u∗)2 + |u− u∗||y| (6.10)

for all u, y ∈ R.

Proof. The estimate |S (u, y)| ≤ |y| follows directly from (6.7) since |max{y, 0}| ≤ |y| and
|min{y, 0}| ≤ |y|. In order to show the second estimate, we can consider three cases,
u ≤ umin, u ∈ (umin, umax), and u ≥ umax. If u ∈ (umin, umax), then the definition of S
implies

(u− u∗)S (u, P (0)(u∗ − u)− y) = (u− u∗)(P (0)(u∗ − u)− y)
= −P (0)(u− u∗)2 − (u− u∗)y ≤ −P (0)(u− u∗)2 + |u− u∗||y|,

and thus the estimate holds. On the other hand if u ≤ umin, then we have u∗ − u ≥ 0 (due
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to our assumption that u∗ ∈ [umin, umax]), and the definition of S implies

(u− u∗)S (u, P (0)(u∗ − u)− y) = (u− u∗)max{P (0)(u∗ − u)− y), 0}

=

{
0 if y ≥ P (0)(u∗ − u)
(u− u∗)(P (0)(u∗ − u)− y) otherwise

=

{
0 if y ≥ P (0)(u∗ − u)
−P (0)(u∗ − u)2 + (u∗ − u)y otherwise.

In the “otherwise” case we have

−P (0)(u∗ − u)2 + (u∗ − u)y ≤ −P (0)(u− u∗)2 + |u∗ − u||y|

and our intended estimate holds. On the other hand, if y ≥ P (0)(u∗ − u), then |y| = y ≥ 0,
|u∗ − u| = u∗ − u ≥ 0, and

0 ≤ (u∗ − u)(y − P (0)(u∗ − u)) = −P (0)(u− u∗)2 + (u∗ − u)y
= −P (0)(u− u∗)2 + |u∗ − u||y|,

and thus our estimate holds in this case as well. This completes the proof that the claim
holds if u ≤ umin. Finally, the remaining case u ≥ umax can be analysed similarly as the case
u ≤ umin.

Proof of Theorem 6.2.1. Let yref ∈ R satisfying yref ∈ (umin/P (0), umax/P (0)) be fixed. Our
aim is to show that the initial value problem of the closed-loop system (6.9a) has a globally
asymptotically stable equilibrium point x∗e and that at this equilibrium we have y(t) ≡ h(x∗e).
The equilibrium points of (6.9a) are characterised by the condition fe(x

∗
e) = 0. Since A is

nonsingular due to the assumption σ(A) ⊂ C−, we have

fe(x
∗
e) = 0 ⇔

[
Ax∗ +Bu∗

S (u∗, κ(yref − Cx∗))

]
=

[
0
0

]
⇔

{
x∗ = −A−1Bu∗

S (u∗, κ(yref − C(−A)−1Bu∗)) = 0
⇔

{
x∗ = −A−1Bu∗

S (u∗, κ(yref − P (0)u∗)) = 0.

The definition of S in (6.7) implies that we in particular have S (u, y) = 0 whenever y = 0.
Because of this, fe(x∗e) = 0 holds if yref − P (0)u∗ = 0 and x∗ = −A−1Bu∗. Thus

x∗e =

[
x∗

u∗

]
=

[
−A−1Bu∗

yref/P (0)

]
=

[
−A−1Byref/P (0)

yref/P (0)

]
is an equilibrium point of (6.9a). From the expressions above we cannot yet rule out other
possible equilibria, but this is also not necessary. Once we have shown that x∗e is a globally
asymptotically stable, this property will also guarantee that the system cannot have other
equilibrium points.

If we can show that the x∗e defined above is globally asymptotically stable, then x(t)→ x∗

as t → ∞ for all initial states x0 ∈ Rn and u0 ∈ R, and the continuity of h implies that the
output of the closed-loop system (6.9) satisfies

y(t) = h(xe(t)) = Cx(t)→ Cx∗ = C(−A)−1Byref/P (0) = yref
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as t → ∞. Thus the proof is complete once we prove that x∗e is globally asymptotically
stable for all sufficiently small κ > 0.

We define the Lyapunov functional V : Rn+1 → R so that

V (xe) = ⟨Q(x+ A−1Bu), x+ A−1Bu⟩+ 1

2
(u− u∗)2, xe =

[
x
u

]
,

where u∗ = yref/P (0), and where Q ∈ Rn×n is the positive definite solution of the Lyapunov
equation ATQ + QA = −I, which exists by Exercise 5.2.8. We first note since Q is positive
definite, we have V (xe) ≥ 0 for all xe ∈ Rn+1, and V (x∗e) = 0, since x∗ = −A−1Bu∗.
Moreover, to show that V (xe) > 0 for xe ∈ Rn+1 \ {x∗e}, let xe = (xT , u)T ̸= x∗e. If u ̸= u∗,
then clearly V (xe) ≥ 1

2
(u − u∗)2 > 0. On the other hand, if u = u∗, then V (xe) = ⟨Q(x +

A−1Bu∗), x + A−1Bu∗⟩, and the fact that Q is positive definite implies that we can have
V (xe) = 0 only if x + A−1Bu∗ = 0, or equivalently x = −A−1Bu∗ = x∗. Thus V (xe) > 0
for all xe ∈ Rn+1 \ {x∗e}. Finally, you can show that V (xe) → ∞ whenever ∥xe∥ → ∞ as an
exercise.

If xe = (xT , u) ∈ Rn+1, then

∂V

∂xe
(xe) =

[
∂V

∂x
(xe),

∂V

∂u
(xe)

]
and a direct computation can be used to verify (similarly as in Exercise 5.2.3)

∂V

∂x
(xe) = 2(x+ A−1Bu)TQ, and

∂V

∂u
(xe) = 2(x+ A−1Bu)TQA−1B + u− u∗.

If we denote z = x+A−1Bu for brevity, then Ax+Bu = Az, and the identity yref = P (0)u∗

implies yref −Cx = P (0)u∗ −Cz −C(−A)−1Bu = P (0)(u∗ − u)−Cz. Using these formulas
we have have

∂V

∂xe
(xe)fe(x) =

[
∂V

∂x
(xe),

∂V

∂u
(xe)

]
fe(x)

=
[
2zTQ, 2zTQA−1B + u− u∗

] [ Ax+Bu
S (u, κ(yref − Cx))

]
=
[
2zTQ, 2zTQA−1B + u− u∗

] [ Az
κS (u, P (0)(u∗ − u)− Cz)

]
= 2zTQAz + 2κzTQA−1BS (u, P (0)(u∗ − u)− Cz)

+ κ(u− u∗)S (u, P (0)(u∗ − u)− Cz)
≤ 2zTQAz + 2κ∥z∥∥QA−1B∥|S (u, P (0)(u∗ − u)− Cz)|

+ κ(u− u∗)S (u, P (0)(u∗ − u)− Cz).

We note that the first term is equal to 2zTQAz = 2⟨QAz, z⟩ = ⟨(QA + ATQ)z, z⟩ =
⟨−z, z⟩ = −∥z∥2 due to the choice of Q. In the second term we can apply the first es-
timate in Lemma 6.2.2 to obtain |S (u, P (0)(u∗ − u) − Cz)| ≤ P (0)|(u∗ − u) − Cz| ≤
P (0)(|u∗−u|+ ∥C∥∥z∥). Finally, in the third term we can directly apply the estimate (6.10)
in Lemma 6.2.2 and |Cz| ≤ ∥C∥∥z∥. Combining these three estimates shows that

∂V

∂xe
(xe)fe(xe) ≤ −∥z∥2 + 2κ∥z∥∥QA−1B∥P (0)(|u∗ − u|+ ∥C∥∥z∥)

− κP (0)(u− u∗)2 + κ|u− u∗|∥C∥∥z∥.
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Since our aim is to show that the derivative is negative, we need to show that the two neg-
ative terms on the right-hand side are larger in magnitude compared to the other positive
terms. It is fairly clear from the expression that this cannot happen unless κ > 0 is suffi-
ciently small. In our estimate we will employ a very useful scalar inequality, called Young’s
inequality4 . The inequality, which may already be familiar to you, states that if a, b ≥ 0,
then 2ab ≤ a2 + b2. The real power of this inequality in Lyapunov analysis arises from the
fact that if a, b ≥ 0 and ε > 0, then we can write5

ab =
√
εa · b√

ε
≤ εa2

2
+
b2

2ε
.

If we let ε > 0 be arbitrary, we can use Young’s inequality to estimate

∂V

∂xe
(xe)fe(x) ≤ −∥z∥2 + 2κ∥z∥∥QA−1B∥P (0)(|u∗ − u|+ ∥C∥∥z∥)

− κP (0)(u− u∗)2 + κ|u− u∗|∥C∥∥z∥
= −

(
1− 2κP (0)∥QA−1B∥∥C∥

)
∥z∥2 + κ|u∗ − u|

(
2P (0)∥QA−1B∥+ ∥C∥

)
∥z∥

− κP (0)(u− u∗)2

≤ −
(
1− 2κP (0)∥QA−1B∥∥C∥

)
∥z∥2 + κ

ε|u∗ − u|2

2

+ κ

(
2P (0)∥QA−1B∥+ ∥C∥

)2∥z∥2
2ε

− κP (0)(u− u∗)2

= −

(
1− 2κP (0)∥QA−1B∥∥C∥ − κ

(
2P (0)∥QA−1B∥+ ∥C∥

)2
2ε

)
∥z∥2

− κ(P (0)− ε)(u− u∗)2.

The last expression shows that if we fix ε ∈ (0, P (0)) (for example define ε = P (0)/2), then
the coefficient in the second term is negative. Moreover, for this fixed ε, we can choose
κ∗ > 0 so that for every κ ∈ (0, κ∗] the coefficient in the first term is negative as well. For
such a choice of κ ∈ (0, κ∗] we have that ∂V

∂xe
(xe) < 0 for all xe ̸= x∗e. Because of this,

Theorem 5.3.1 implies that the equilibrium point x∗e is globally asymptotically stable.
To summarise, we have used Theorem 5.3.1 to prove that there exists κ∗ > 0 such that

for every κ ∈ (0, κ∗] the equilibrium x∗e is a globally asymptotically stable equilibrium point
of (6.9a), and that y(t)→ yref as t→∞. Thus the proof is complete.

Remark 6.2.3. Our estimates in the proof of Theorem 6.2.1 could in fact be used to de-
duce that for every κ ∈ (0, κ∗] the equilibrium x∗e is in fact globally exponentially stable [8,
Thm. 4.4]. This implies that also the converge y(t)→ yref as t→∞ is exponentially fast.

Example 6.2.4. In this example we consider output tracking for the temperature profile in
the one-dimensional heat equation studied in Example 3.2.5. If we denote by v(ξ, t) the

4This inequality also has a slightly more general version than the one we use here.
5Or alternatively, ab = (

√
εa/2)(2b/

√
ε) ≤ εa2 + b2/(4ε).
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temperature at time t ≥ 0 and at point ξ ∈ [0, 1], then v(ξ, t) satisfies

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t) + b(ξ)u(t)

∂v

∂ξ
(0, t) = 0,

∂v

∂ξ
(1, t) = 0, v(ξ, 0) = v0(ξ)

y(t) = 2

∫ 1

1/2

v(ξ, t)dξ,

where α > 0 is the (constant) conductivity of heat and b is a function such that b(ξ) = b0 for
ξ ∈ [0, 1/2] and b(ξ) = 0 for ξ ∈ (1/2, 1]. The function v0 determines the temperature profile
at time t = 0.

We again approximate the temperature profile with

x(t) ≈
[
v(0, t), v

(
1

n− 1
, t

)
, . . . , v

(
n− 2

n− 1
, t

)
, v(1, t)

]T
∈ Rn

with a sufficiently large n ∈ N, and x(t) is the state of the linear system (A,B,C) with

A = α(n− 1)2



−2 2
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
2 −2


, B = b0



1
...
1
0
...
0


and C = 2

n−1

[
0, . . . , 0, 1, . . . , 1

]
.

The matrix A has eigenvalue 0 ∈ iR, and because of this we cannot directly design a
constrained integrator for (A,B,C). However, we can “pre-stabilise” the system with output
feedback of the form A+BK0C where K0 < 0 and |K0| is sufficiently small, and design the
controller for (A+BK0C,B,C)

6.
Because the system A+BK0C is exponentially stable, for given umin and umax satisfying

umin < umax we can connect the system (A+BK0C,B,C) to the constrained integrator

u̇(t) = S (u(t), κ(yref − y(t))), u(0) = u0.

The transfer function P0(λ) = C(λ−A−BK0C)
−1B satisfies P (0) = 1/K0 (we saw this in the

exercises, and it can be checked using the properties R(A) ∩ R(B) = {0} and N (B) = {0}
of the heat system). Theorem 6.2.1 tells us that the controller achieves output tracking for
any reference signal yref which satisfies

umin

K0

< yref <
umax

K0

.

The behaviour of the output, the control input and the state of the controlled heat equation
are illustrated in Figure 6.3.

The simulation was completed with the following Matlab code.
6When we do this, it’s important to note that our full control input to the system is u(t) = BK0y(t)+uI(t),

where uI(t) is the state of the constrained integrator. Because of the first part, the limits [umin, umax] of the
integrator cannot not guarantee that we would have u(t) ∈ [umin, umax]. Because of this, pre-stabilisation
can be problematic from the point of view of constraints on u(t), but we are not too concerned about that in
this example.
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Figure 6.3: The controlled output y(t) and the control input u(t) of the heat system (left)
and the controlled temperature profile (right).

% Example: Output tracking of constant reference signals for the heat
% equation using the constrained integrator.
%
% Copyright (C) 2023 by Lassi Paunonen (lassi.paunonen@tuni.fi)

% reference signal
yref = 1;

% Gain parameter \kappa>0 of the integrator
kappa = 1;

% Parameters of the heat equation:
alpha = 1; % heat diffusivity
b0 = 1; % control gain parameter
n = 20; % size of the Finite Difference approximation

% Construct the matrices A, B, and C of the approximation for the heat
% equation

spgrid = linspace(0,1,n);
ee = ones(n,1);
A = alpha*(n-1)^2*full(spdiags([ee,-2*ee,ee],-1:1,n,n));
A(1,2) = 2*alpha*(n-1)^2; A(n,n-1) = 2*alpha*(n-1)^2;
B = b0*(spgrid<1/2)';
C = 2/(n-1)*(spgrid>=1/2);
D = 0;

% The system is unstable because A has eigenvalue zero, but we will first
% pre-stabilize it with output feedback u(t)=K_0*y(t)+u_1(t) with K = -1.
K0 = -1;

A = A+B*K0*C;

% The limits of the integrator.
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umin = 0.2;
umax = 1.2;

% Check that the reference can be produced by a control in the range
% (umin,umax)
P0 = -C*(A\B);
if yref<= umin*P0 || yref>P0*umax

warning('The reference cannot be produced with a control in the range (umin,umax)!')
end

% Define the S-function of the integrator
Sfun = @(u,y) (u<=umin).*max(y,0) + (u<umax && u>umin).*y + (u>=umax).*min(y,0);

% Initial state of the heat system
x0 = 2*ones(n,1);
%x0 = zeros(n,1);
%x0 = (spgrid.*(1-spgrid))';
x0 = (3-1/2*tanh(10*(spgrid-1/2)))';

% Initial state of the integrator
u0 = 0.5;

xe0 = [x0;u0];

tspan = [0, 18];

% Since the nonlinear closed-loop system. We directly use ode45 to
% simulate the system
odefun = @(t,xe) [A*xe(1:n) + B*xe(end);Sfun(xe(end),kappa*(yref-C*xe(1:n)))];

sol = ode45(odefun,tspan,xe0);
tt = linspace(tspan(1),tspan(2),401);
xevals = deval(sol,tt);
yy = C*xevals(1:n,:);

% Plot the output and the reference signal
figure(1)
hold off, cla
plot(tt,yref*ones(size(tt)),'color',[0.8500 0.3250 0.0980],'Linewidth',2)
hold on
plot(tt,yy,'color',[0 0.4470 0.7410],'Linewidth',2)
title(['Output of the controlled heat system.'],'Interpreter','Latex','Fontsize',16)
grid on

% Plot the control input and the integrator limits umin and umax
figure(2)
hold off, cla
plot(tspan',[umax,umax;umin,umin]','color',[0 0.4470 0.7410],'Linewidth',2)
hold on
plot(tt,xevals(end,:),'color',[0.8500 0.3250 0.0980],'Linewidth',2)
title(['The control input of the heat system.'],'Interpreter','Latex','Fontsize',16)
grid on

% Plot the state of the controlled heat equation
figure(3)
plotskip = 1;
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tt = unique([linspace(0,1/2,9),linspace(1/2,2,12),linspace(2,tspan(2),51)]);
xevals = deval(sol,tt);
surf(tt(1:plotskip:end),spgrid,xevals(1:n,1:plotskip:end))
set(gca,'ydir','reverse')
xlabel('time $t$','fontsize',18,'Interpreter','latex')
ylabel('position $\xi$','fontsize',18,'Interpreter','latex')

%%
tt = linspace(tspan(1),tspan(2),401);
xevals = deval(sol,tt);
xx = xevals(1:n,:);
axlims = [0,1,min(min(xx)),max(max(xx))];
figure(3)

for ind = 1:size(xx,2)

plot(spgrid,xx(:,ind).','Linewidth',2)
axis(axlims)
xlabel('$\xi$','Interpreter','latex','Fontsize',20)
title(['Time $=\; ' num2str(tt(ind)) '$'],'Interpreter','latex','Fontsize',20)
drawnow
pause(0.03)

end

⋄
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A. Finite-Dimensional Differential
Equations

A.1 The Matrix Exponential Function

In this appendix we review some basic properties of the matrix exponential function eAt,
where A ∈ Rn×n and t ∈ R. This function plays a crucial role in studying systems of linear
differential equations. We will see that the matrix exponential function can be computed
conveniently using the Jordan canonical form.

It should be noted that the usefulness of the matrix exponential function in studying
differential equations is mainly of theoretical nature: Numerical computation of an expo-
nential matrix is very difficult, and therefore the differential equations should rather be
solved numerically using other approaches, such as the Runge-Kutta-methods.

For a scalar a ∈ R the exponential function eta can be expressed using the series repre-
sentation

eta =
∞∑
k=0

(ta)k

k!
.

This same series representation can be used to define the exponential of a matrix. In view
of the applications to solving differential equation, we define the exponential of a matrix
directly for a matrix tA, where t ∈ R.

Definition A.1.1. Matrix exponential function. Let A ∈ Cn×n. We define eAt as the
matrix

eAt =
∞∑
k=0

(At)k

k!
∈ Cn×n. (A.1)

Remark A.1.2. In order for the definition to be sensible, it is important to ensure that the
series in (A.1) is convergent. We, however, omit the proof in these lecture notes.

Exercise A.1.3. Use the definition to compute eAt, when t ∈ R, and (a) when A = αI ∈
Cn×n and α ∈ C (b) when A = O ∈ Cn×n (use the convention that O0 = I). ⋄

Exercise A.1.4. Prove that if A,B ∈ Cn×n commute, i.e., AB = BA, then we have e(A+B)t =
eAteBt = eBteAt and BeAt = eAtB. These identities are in particular true if B = αI for some
α ∈ C, or B = A−1 (since AA−1 = A−1A = I). It’s also worth noting that in general none
of these identities hold if A and B do not commute! ⋄
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A.2 Linear Systems of Differential Equations

The most important application of the matrix exponential function is that the solutions of
linear systems of differential equations can be expressed using the matrix function eAt. Let
us consider a homogenic first order initial value problem

d
dt
x1(t) = a11x1(t) + a12x2(t) + a13x3(t) + · · ·+ a1nxn(t)

d
dt
x2(t) = a21x1(t) + a22x2(t) + a23x3(t) + · · ·+ a2nxn(t)

...
d
dt
xn(t) = an1x1(t) + an2x2(t) + an3x3(t) + · · ·+ annxn(t)

,


x1(0) = x01,

x2(0) = x02,
...

xn(0) = x0n,

with n equations and n unknown functions x1(t), . . . xn(t). The initial values x01, . . . , x
0
n ∈ R

are known. The system of equations can be written as a homogenic first order matrix
differential equation

d

dt
x(t) = Ax(t), x(0) = x0, (A.2)

for all t ≥ 0, where x(t) = (x1(t), . . . , xn(t))
T ∈ R is an unknown vector-valued function.

The differentiation of x(t) with respect to t is understood component-wise, i.e.,

d

dt
x(t) =

[
d

dt
x1(t), . . . ,

d

dt
xn(t)

]T
.

The initial value of the equation (A.2) is the vector x0 = (x01, x
0
2, . . . , x

0
n)

T ∈ Rn.
The following theorem states that the solution of the matrix differential equation (A.2)

can be expressed using the matrix exponential function.

Theorem A.2.1. The differential of the matrix exponential function with respect to t satisfies

d

dt
eAt = AeAt = eAtA. (A.3)

The initial value problem (A.2) has a unique solution

x(t) = eAtx0.

Proof. We omit the proof of the differentiation formula (A.3). It can be proved using the
series expression in (A.1), but this requires detailed consideration for the convergences of
all the series involved.

We will first show that the function x(t) = eAtx0 is a solution of the initial value
problem (A.2). It is immediate from the definition of the matrix exponential function
that e0·A = eO = I. This implies that the function x(t) satisfies the initial condition
x(0) = e0·Ax0 = Ix0 = x0. Using the differentiation formula (A.3) we can also see that
for all t > 0 we have

d

dt
x(t) =

d

dt

(
eAtx0

)
=

(
d

dt
eAt

)
x0 =

(
AeAt

)
x0 = A

(
eAtx0

)
= Ax(t).

This concludes that x(t) is a solution of the initial value problem (A.2).
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To prove the uniqueness of the solution, let us assume y(t) is a solution to the initial
value problem (A.2). Our aim is to show that y(t) = eAtx0 for all t ≥ 0.

Let us consider the derivative of the difference z(t) = y(t)−eAtx0. Using the knowledge
that y(t) is a solution of (A.2) we get

d

dt
z(t) =

d

dt
y(t)− d

dt

(
eAtx0

)
= Ay(t)− AeAtx0 = A

(
y(t)− eAtx0

)
= Az(t)

and z(0) = y(0) − e0·Ax0 = x0 − x0 = 0. This implies that z(t) is a solution of the initial
value problem

d

dt
z(t) = Az(t), z(0) = 0. (A.4)

Let t > 0 be arbitrary. Define a function u(s) = e(t−s)Az(s) for 0 ≤ s ≤ t. Using the
differentiation rules for the product of two functions and for composition of functions we
can see that

d

ds
u(s) =

d

ds

(
e(t−s)Az(s)

)
=

(
d

ds
e(t−s)A

)
z(s) + e(t−s)A

(
d

ds
z(s)

)
= (−1)e(t−s)AAz(s) + e(t−s)AAz(s) = 0.

This implies that (u1(s), . . . , un(s))T = u(s) = (0, . . . , 0)T , and therefore u(s) is a constant
function. In particular, we can see using the initial condition in (A.4) that

z(t) = e(t−t)Az(t) = u(t) = u(0) = e(t−0)Az(0) = eAt0 = 0.

Because t > 0 was arbitrary, we have shown that z(t) = 0 for all t ≥ 0. This immediately
implies that y(t) = eAtx0 for all t ≥ 0.

A.3 Computing the Matrix Exponential Function

The matrix exponential function eAt can be computed conveniently using the Jordan canon-
ical form A = SJS−1 of the matrix A. If we consider a single term in the series (A.1), we
then have

(At)k

k!
=
tk

k!

k kpl︷ ︸︸ ︷
AA · · ·A =

tk

k!
(SJS−1)(SJS−1) · · · (SJS−1) =

tk

k!
SJS−1SJS−1 · · ·SJS−1

=
tk

k!
SJkS−1 = S


(tk/k!)Jk

1 0 · · · 0
0 (tk/k!)Jk

2 · · · 0
... . . . ...
0 · · · 0 (tk/k!)Jk

p

S−1.
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Because of this, the matrix exponential function eAt can be written in the form (omitting
the considerations for the convergence of the series)

eAt =
∞∑
k=0

(At)k

k!
=

∞∑
k=0

StkJkS−1

k!
= S diag

(
∞∑
k=0

(tJ1)
k

k!
,

∞∑
k=0

(tJ2)
k

k!
, . . . ,

∞∑
k=0

(tJp)
k

k!

)
S−1

= S


etJ1 0 · · · 0
0 etJ2 · · · 0
... . . . ...
0 · · · 0 etJp

S−1

This way, computing eAt is reduced to computing the exponential matrices etJj of the indi-
vidual blocks of J . Since the blocks Jj are of particular forms, the following theorem covers
all possible situations.

Theorem A.3.1. The matrix exponential functions of the blocks Jj satisfy the following.

• If Jj = λ ∈ C1×1, then etJj = etλ.

• If

Jj =

[
α β
−β α

]
∈ R2×2, then etJj = etα

[
cos(βt) sin(βt)
− sin(βt) cos(βt)

]
.

• If Jj = [ λ 1
0 λ ] ∈ C2×2, then etJj = etλ[ 1 t

0 1 ].

• If

Jj =

λ 1 0
0 λ 1
0 0 λ

 ∈ C3×3, then etJj = etλ

1 t t2

2

0 1 t
0 0 1

 .
• If

Jj =


λ 1 0 · · · 0
0 λ 1 · · · 0
... . . . ...
0 · · · · · · λ 1
0 · · · · · · 0 λ

 ∈ Cq×q, then etJj = etλ


1 t t2

2!
· · · tq−1

(q−1)!

0 1 t · · · tq−2

(q−2)!
... . . . ...
0 · · · · · · 1 t
0 · · · · · · 0 1

 .



B. Other Helpful Results

B.1 Useful Inequalities

In the following we state a few useful inequalities. Recall that the Lebesgue space norms
are defined as

∥f∥p =
(∫ τ

0

|f(t)|pdt
)1/p

f ∈ Lp(0, τ), 1 ≤ p <∞

∥f∥∞ = ess sup
t∈[0,τ ]

|f(t)| f ∈ L∞(0, τ),

Lemma B.1.1. Let τ > 0 or τ =∞.

• Hölder’s Inequality: Let p, q > 1 and 1
p
+ 1

q
= 1, or p = 1 and q = ∞. If f ∈ Lp(0, τ)

and g ∈ Lq(0, τ), then fg ∈ L1(0, τ) and

∥fg∥1 ≤ ∥f∥p∥g∥q.

• Cauchy–Schwarz Inequality: If f, g ∈ L2(0, τ), then fg ∈ L1(0, τ) and

∥fg∥1 ≤ ∥f∥2∥g∥2.

• Minkowski’s Inequality: If p ≥ 1 or p =∞, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p, f, g ∈ Lp(0, τ).

Lemma B.1.2 (Young’s Inequality for Convolutions). Let f ∈ Lp(0,∞) and g ∈ Lq(0,∞)
for some p, q ≥ 1 and define h : [0,∞)→ C by

h(t) =

∫ t

0

f(s)g(t− s)ds, t ≥ 0.

If r ≥ 1 is such that

1

p
+

1

q
=

1

r
+ 1,

then h ∈ Lr(0,∞) and ∥h∥r ≤ ∥f∥p∥g∥p.
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Lemma B.1.3 (Grönwall’s Inequality). Let f : [0,∞) → R be a continuously differentiable
function. If there exists β > 0 such that

ḟ(t) ≤ −βf(t), ∀t > 0,

then f(t) ≤ e−βtf(0).

Proof. Define g(t) = e−βt. Since ḟ(t) ≤ −βf(t) and ġ(t) = −βg(t), we have for all t > 0

d

dt

(
f(t)

g(t)

)
=
ḟ(t)

g(t)
− f(t)ġ(t)

g(t)2
=
ḟ(t)g(t)− f(t)ġ(t)

g(t)2
≤ −βf(t)g(t) + f(t)βg(t)

g(t)2
= 0.

Because of this, f(t)/g(t) is non-increasing, and thus for all t > 0

eβtf(t) =
f(t)

g(t)
≤ f(0)

g(0)
= f(0),

which implies the claim.



Translations of Important Terms

Abstract Cauchy problem. Abstrakti Cauchy-ongelma
Adjoint operator. Adjugaatti-operaattori
Asymptotically stable. Asymptoottisesti stabiili

Banach space. Banach-avaruus
Basis (of a subspace). (Aliavaruuden) kanta

Control. Ohjaus
Controllability matrix. Ohjattavuusmatriisi
Controller. Säätäjä

Detectable. Havaittava
Diagonal. Diagonaalinen
Diagonalisable. Diagonalisoituva
Diagonalisation. Diagonalisointi
Differential equation. Differentiaaliyhtälö
Distributed parameter system. Jakautunut järjestelmä
Disturbance rejection. Häirösignaalin vaimentaminen
Domain (of an operator). (Operaattorin) määrittelyjoukko

Eigenfunction. Ominaisfunktio
Eigenvalue. Ominaisarvo
Eigenvector. Ominaisvektori
Exponentially stable. Eksponentiaalisesti stabiili

Feedback. Takaisinkytkentä
Finite-dimensional. Äärellisulotteinen
Function space. Funktioavaruus

Half-plane C±. Puolitaso C±
Heat equation. Lämpöyhtälö
Hilbert space. Hilbert-avaruus

Infinite-dimensional. Ääretönulotteinen
Inner product. Sisätulo
Input. Sisääntulo, ohjaus

Jordan canonical form. Jordanin kanoninen muoto

Linear. Lineaarinen
Linear system. Lineaarinen järjestelmä
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Matrix exponential function. Matriisieksponenttifunktio

Nonlinear. Epälineaarinen
Norm. Normi

Observable. Tarkkailtava
Observer. Tarkkailija
Operator. Operaattori
Optimal control. Optimisäätö
Output. Mittaus, ulostulo

Partial differential equation. Osittaisdifferentiaaliyhtälö
Plant. Järjestelmä

Robust. Robusti
Robust output regulation. Robusti regulointi
Robustness. Robustisuus

Semigroup. Puoliryhmä
Space. Avaruus
Stabilisable. Stabiloituva
Stable. Stabiili
State. Tila
State feedback. Tilatakaisinkytkentä
State Space. Tila-avaruus
Strongly continuous semigroup. Vahvasti jatkuva puoliryhmä
Strongly stable. Vahvasti stabiili (= asymptoottisesti stabiili)
Subspace. Aliavaruus
System. Järjestelmä

Transfer function. Siirtofunktio

Unbounded. Ei-rajoitettu
Uniformly bounded. Tasaisesti rajoitettu
Uniformly continuous. Tasaisesti jatkuva

Vector space. Vektoriavaruus

Wave equation. Aaltoyhtälö
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