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1. Introduction to Linear Systems

1.1 Introduction

The purpose of this course is to give an introduction to the properties and control of linear
systems. In particular, we consider a system with a control input u(t), measured output y(t)
and possible disturbance signal w(t) affecting the system.
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Figure 1.1: The control system.

The general idea in control theory is usually to design and implement a control input
u(t) such that the output y(t) of the system behaves in a desired way despite the external
disturbance signals w(t).

On this course we concentrate on the control of linear systems that are described by
differential equations of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (1.1a)
y(t) = Cx(t) +Du(t). (1.1b)

Here x(·) : [0,∞) → X is a vector-valued function called the state of the system (1.1)
and ẋ(t) denotes the time-derivative of x(t). The control input u(·) : [0,∞) → U and the
measured output y(·) : [0,∞) → Y are either scalar or vector-valued functions depending
on the situation. The spaces U and Y are called the input space and the output space,
respectively.

With suitable choices of the state space X, and operators or matrices A, B, C and D it
is possible to study and control several different types of systems. In this first introductory
chapter we will consider some basic concepts related to systems theory and write different
types of mathematical models in the form (1.1).

Definition 1.1.1. In a situation where we choose X = Rn or X = Cn for some n ∈ N,
and A, B, C, and D are matrices of suitable sizes, the system (1.1) is a finite-dimensional
linear system.
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2 Chapter 1. Introduction to Linear Systems

For a finite-dimensional linear system the solution of the differential equation (1.1a) can
be given using the matrix exponential function etA associated to the square matrix A ∈ Cn×n.
In particular, for a given input u(·) ∈ L1

loc(0,∞;U) the solution x(t) of the equation (1.1a)
is then given by the familiar “variation of parameters formula”

x(t) = etAx0 +

∫ t

0

e(t−s)ABu(s)ds,

and substituting this expression into (1.1b) gives a formula

y(t) = CetAx0 + C

∫ t

0

e(t−s)ABu(s)ds+Du(t)

for the measured output y(t) of the system.
Besides finite-dimensional linear systems, we will also study systems that are formulated

on infinite-dimensional state spaces X.

Definition 1.1.2. In a situation where X is a Banach or a Hilbert space, and where A :
D(A) ⊂ X → X, B : U → X, C : D(C) ⊂ X → Y , and D : U → Y are linear operators,
the system (1.1) is an infinite-dimensional linear system.

In this situation the solvability and obtaining the solution of the infinite-dimensional
differential equation (1.1a) becomes more complicated. However, under suitable assump-
tions the state of the system (1.1) can be expressed using a strongly continuous semigroup
T (t) generated by the operator A. In fact, the strongly continuous semigroups generalize
the matrix exponential functions to situations where X is infinite-dimensional and where
A : D(A) ⊂ X → X is a bounded or an unbounded operator. Infinite-dimensional linear
systems and the theory of semigroups are studied in greater detail in Chapter 4.

1.2 Common Concepts in Systems Theory

In this section we outline some concepts related to control systems on a very general level.
We will also come back to many of these concepts and study them in greater detail in the
later chapters.

1.2.1 Stability of a System

One of the key concepts in systems theory is the stability of the system (1.1) to be controlled.
Often the goal in the control is to design a control u(t) to make the system (1.1) become
stable, or alternatively, the stability of the system may be a prerequisite for a proposed
control scheme to function properly.

There are many different ways to define stability for a system, and the appropriate
choice of a definition usually depends on the situation at hand. In addition, some of the
concepts are equivalent for certain subclasses of systems, such as the finite-dimensional
linear systems, but become distinct in the case of infinite-dimensional systems.

The first two stability types defined here concern the “internal stability” of the system as
they are defined in terms of the behaviour of the state x(t) of the system.



1.2. Common Concepts in Systems Theory 3

Definition 1.2.1. The system (1.1) is called asymptotically stable, if in the case of the
constant zero input u(t) ≡ 0 the state of the system (1.1) satisfies x(t) → 0 as t → ∞ for
all x0 ∈ X.

In the second stability type it is in addition required that the norms of the solutions x(t)
of (1.1a) decay at a uniform exponential rate.

Definition 1.2.2. The system (1.1) is called exponentially stable, if there exist ω > 0 and
M ≥ 1 such that in the case of the constant zero input u(t) ≡ 0 the state of the system (1.1)
satisfies

‖x(t)‖ ≤Me−ωt‖x0‖, ∀t ≥ 0, x0 ∈ X.

Even though exponential stability is a strictly stronger definition than asymptotic sta-
bility, these two concepts coincide for finite-dimensional linear systems. In addition, the
stability of the system can in this case be determined directly from the locations of the
eigenvalues σ(A) of the matrix A.

Theorem 1.2.3. If X = Cn, then the following are equivalent.

(i) The system (1.1) is asymptotically stable.

(ii) The system (1.1) is exponentially stable.

(iii) Reλ < 0 for every λ ∈ σ(A).

Proof. See Theorem 2.2.1.

On the other hand, we will see that even for simple infinite-dimensional systems the
asymptotic stability and exponential stability become two distinct concepts. In particular,
for infinite-dimensional systems the solutions x(t) can decay to zero at rates that are strictly
slower than exponential as t→∞. Moreover, for infinite-dimensional systems the stability
of the system can only very rarely be determined only from the location of the spectrum
σ(A) of the operator A.

Finally, the next stability concept is an example of “external stability” — a stability type
that is not concerned with the state of the system but instead on how the input affects the
output of the system.

Definition 1.2.4. The system (1.1) is called input-output stable, if a “stable input” u(t) to
the system produces a “stable output” y(t).

There are several variants of input-output stability, the most common ones are

L2-input-output stability: If u(·) ∈ L2(0,∞;U), then y(·) ∈ L2(0,∞;Y )

L∞-input-output stability: If u(·) ∈ L∞(0,∞;U), then y(·) ∈ L∞(0,∞;Y ), i.e., a
bounded input results in a bounded output.
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1.2.2 Controllability and Observability

The questions of controllability and observability deal with very essential control theoretic
properties of the linear system (1.1). In particular, controllability is related to the question
of how much and how accurately can the state of the system be affected with the control input,
and observability is related to whether or not all changes in the state of the system affect the
measured output of the system. The controllability of the system can be formulated in the
following way:

Definition 1.2.5. The system (1.1) is controllable (in time τ > 0) if for every initial state
x0 ∈ X and for every target state x1 ∈ X there exists a control input u(·) ∈ L1(0, τ ;U)
such that at time τ > 0 the state of the system is x(τ) = x1.

The above definition requires that the state of the system can be steered from any initial
state x0 ∈ X to any final state x1 ∈ X in the finite time τ > 0 with an appropriate control
input. It turns out that for infinite-dimensional linear systems this is rarely the case, and
thus the above definition is usually too strict a requirement. For this reason, a number of
alternative weaker concepts have been defined for system on infinite-dimensional spaces [7,
Ch. 4].

The controllability of a system does not depend on the operators or matrices C and D
of the system (1.1). For finite-dimensional systems there are well-known criteria for testing
the controllability of a system using the properties of the matrices A and B, such as the
Popov–Belevitch–Hautus Test (or simply PBH Test) [12].

The observability of a system means that the knowledge of the input u(t) and the output
y(t) of the system on a time-inverval [0, τ ] uniquely determines the state of the system on
this interval. In mathematical terms this can be formulated in the following way.

Definition 1.2.6. The system (1.1) is observable (in time τ > 0) if there exists kτ > 0 such
that ∫ τ

0

‖Cx(t)‖2dt ≥ k2τ‖x0‖2.

What the above definition actually requires is that the linear map from the initial state
x0 to the output with zero input Cx(·), i.e.,

x0 ∈ X 7→ Cx(·) ∈ L2(0, τ ;Y ),

is bounded from below. In particular this means that the given output on the inverval
[0, τ ] determines the initial state x0 uniquely. The state on the full inverval [0, τ ] is then
determined by the evolution of the state of the system (1.1).

The concept of observability again only depends on the matrices or operators A and C
of the system (1.1). In addition, the controllability and the observability of a system are
dual concepts of each other, which rougly means that the controllability (observability) of
a system (A,B,C,D) is equivalent to the observability (controllability) of its dual system
(A∗, C∗, B∗, D∗). This is true especially for finite-dimensional linear systems. The detailed
definition of duality for infinite-dimensional systems requires a more careful consideration,
and the result depends on the precise versions of controllability and observability that are
employed, but in general the duality of the concepts is also true for infinite-dimensional
systems [7, Ch. 4], [17, Ch. 11].
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1.2.3 Feedback

In many situations it is beneficial to choose the input u(t) that is dependent on either the
state x(t) or the output y(t) of the system itself. This results in feedback, that is commonly
encountered in control applications. Feedback can in particular be used to make the system
stable.

Definition 1.2.7. In state feedback the input u(t) of the system is chosen to depend on the
state x(t) in such a way that u(t) = Kx(t) + ũ(t), where K : X → U is a linear operator
and ũ(·) is the new input to the system.

A direct substitution of u(t) = Kx(t) + ũ(t) to the equations (1.1) shows that after the
state feedback the system becomes

ẋ(t) = (A+BK)x(t) +Bũ(t), x(0) = x0 ∈ X
y(t) = (C +DK)x(t) +Dũ(t).

State feedback is a powerful tool in control, but in many situations the state x(t) of the
system is not known, and it cannot therefore be used in designing the control input u(t).
Indeed, in many cases it is only possible to obtain indirect knowledge of the system via the
measured output y(t).

Definition 1.2.8. In output feedback the input u(t) of the system is chosen in such a way
that u(t) = Ky(t) + ũ(t), where K : Y → U is a linear operator and ũ(·) is the new input
to the system.

The output feedback scheme is depicted in Figure 1.2.

P

K

ũ(t) y(t)

Figure 1.2: The system with output feedback.

If the operator I − DK is boundedly invertible, then we can derive equations for the
controlled system after application of output feedback. Indeed, if we substitute u(t) =
DKy(t) + ũ(t) to the equation (1.1b), we get

y(t) = Cx(t) +Du(t) = Cx(t) +DKy(t) +Dũ(t)

⇔ (I −DK)y(t) = Cx(t) +Dũ(t)

⇔ y(t) = (I −DK)−1Cx(t) + (I −DK)−1Dũ(t).
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Substituting this into (1.1a) yields

ẋ(t) = Ax(t) +BKy(t) +Bũ(t)

= (A+BK(I −DK)−1C)x(t) +BK(I −DK)−1Dũ(t) +Bũ(t)

= (A+BK(I −DK)−1C)x(t) +B
[
K(I −DK)−1D + I

]
ũ(t)

= (A+BK(I −DK)−1C)x(t) +B(I −KD)−1ũ(t),

where we have used the property that

K(I −DK)−1D + I = (I −KD)−1KD + I = (I −KD)−1(KD − I + I) + I

= −I + (I −KD)−1 + I = (I −KD)−1.

Combining these we see that the system with the output feedback becomes

ẋ(t) = (A+BK(I −DK)−1C)x(t) +B(I −KD)−1ũ(t) x(0) = x0 ∈ X
y(t) = (I −DK)−1Cx(t) + (I −DK)−1Dũ(t).

This system is again a linear system of the form (1.1), but with the operators of the system
have changed in the following way:

A→ (A+BK(I −DK)−1C)

B → B(I −KD)−1

C → (I −DK)−1C

D → (I −DK)−1D.

1.2.4 Output Tracking

One of the control problems that we consider on this course are concerned with ouput
tracking and disturbance rejection, where the aim is to make the output of the plant converge
to a given reference signal yref (·) as t→∞.

Definition 1.2.9. Let yref (·) : [0,∞)→ Y is a given function. In output tracking the aim is
to choose the input u(t) of the system in such a way that

‖y(t)− yref (t)‖ → 0 as t→∞.

Usually the reference signal is a linear combination of trigonometric functions. With
such functions it is possible to approximate, for example, continuous periodic functions by
truncating their Fourier series.

1.2.5 Robustness and Robust Control

The term robustness refers to a property that makes the control tolerant to changes and
uncertainties in the parameters (A,B,C,D) of the controlled system (1.1). There is no
one universal definition for “robustness”, but instead its use and meaning depend on the
situation at hand. For example, the controller could be required to achieve its goal even if
the parameters (A,B,C,D) of the system (1.1) are replaced with

A+ ∆A, B + ∆B, C + ∆C , D + ∆D,
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respectively, where ∆A,∆B,∆C ,∆D are matrices or bounded linear operators satisfying
‖∆A‖ < δ, ‖∆B‖ < δ, ‖∆C‖ < δ, and ‖∆D‖ < δ for some fixed δ > 0.

Robustness is clearly a desirable property when designing control laws for real world
systems due to the fact that any mathematical model can only describe the actual physical
system with certain limited accuracy. Indeed, the difference between the real world con-
trol system and the mathematical model can be seen as a level of “uncertainty”, and the
designed controller must function properly despite it. We will later learn that incorporating
feedback into the control is essential to achieving robustness.

1.2.6 Frequency Domain Theory and Transfer Functions∗

Besides studying the behaviour of the control system (1.1) by considering the solution x(t)
of the differential equation (1.1a), we could alternatively only study the way how the input
u(t) affects the output of the system y(t). One very convenient way to do this is to instead
study the Laplace transforms û and ŷ of the functions u and y.

If we assume that B, C, and D are bounded linear operators and σ(A) ⊂ C−β = {λ |
Reλ < β } ⊂ ρ(A) for some β ∈ R, then if γ > β is such that e−γ·x(·) ∈ L1(0,∞;X),
e−γ·u(·) ∈ L1(0,∞;U) and e−γy(·) ∈ L1(0,∞;Y ), we can take Laplace transforms from the
equations (1.1) and evaluate them at λ ∈ C with Reλ > γ. The Laplace transform of the
time-derivative ẋ(t) is equal to L (ẋ) (λ) = λx̂(λ)− x(0), where we have denoted L(x) = x̂.
The transformed equation (1.1) has the form

λx̂(λ)− x(0) = Ax̂(λ) +Bû(λ)

and using λ ∈ ρ(A) = C \ σ(A) (which implies that λ − A is boundedly invertible) and
x(0) = x0 imply

λx̂(λ)− x(0) = Ax̂(λ) +Bû(λ)

⇔ (λ− A)x̂(λ) = x0 +Bû(λ)

⇔ x̂(λ) = (λ− A)−1x0 + (λ− A)−1Bû(λ).

We can similarly take the Laplace transforms of the equation (1.1b) that determines the
output of the system to obtain

ŷ(λ) = Cx̂(λ) +Dû(λ) = C(λ− A)−1x0 +
[
C(λ− A)−1B +D

]
û(λ).

The first term in the expression for ŷ(λ) depends only on the initial state x0 of the system,
and the second one depends only on the input û(λ). In particular, if we ignore the effect of
the intial state, or equivalently consider the case x(0) = x0 = 0, we then get an expression

ŷ(λ) =
[
C(λ− A)−1B +D

]
û(λ) = P (λ)û(λ)

for the output ŷ in terms of the input û. The operator-valued function P (·) that maps the
input û to the output ŷ has a special name.

Definition 1.2.10. For λ ∈ ρ(A) = C \ σ(A) the operator-valued function

P (λ) = C(λ− A)−1B +D

is called the transfer function of the system (1.1).
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Many of the imporant questions of control theory that are studied for linear systems
of the form (1.1) (as well as some additional ones) can be equivalently studied in the
frequency domain by considering only the transfer functions of the plant. In many cases the
analysis of the transfer function of the system leads to simpler and more natural analysis and
control techniques. The use of transfer functions in control engineering actually predates
the analysis using differential equations, and particularly the state space representation (1.1)
was developed only in the 1960’s by Rudolph Kálmán (who also developed the Kalman
filter).

In the case of a finite-dimensional control system transfer function P (·) is a matrix-
valued function whose components are rational functions. The definition of P (·) can be
extended analytically to all points λ that are not eigenvalues of A. Conversely, if we are
given a matrix-valued function P (·) consisting of rational functions, then the control system
corresponding to this transfer function can be written as a linear system of the form (1.1)
(this is called the realization of the transfer function). This means that finite-dimensional
linear systems have a good correspondence with the matrix-valued functions consisting of
rational functions.

Also most classes of infinite-dimensional systems, especially those described by partial
differential equations, can be studied using their transfer functions [11, Ch. 12]. However,
in many cases the connection between the original time-domain system and its transfer
function is considerably weaker than in the case of finite-dimensional systems. As is the
case for the time-domain theory of infinite-dimensional system, also their frequency domain
theory and realization theory are under active research.

1.3 Finite-Dimensional Examples

1.3.1 A Damped Harmonic Oscillator

The motion of a simple damped harmonic oscillator (see Figure 1.3) is described by the
equations [11, Ex. 1.1.3]

mq̈(t) + rq̇(t) + kq(t) = F (t)

where m, k > 0 and r ≥ 0. The situation r = 0 corresponds to the undamped oscillator. In
this example we consider external force F (t) as our control input, i.e., u(t) = F (t), and we
measure the position q(t) of the oscillator, i.e., y(t) = q(t).

By choosing the state space as X = R2 and the state of the system as x(t) = (q(t), q̇(t))T ,
we can see that our system is described by the equations

ẋ(t) =

[
q̇(t)
q̈(t)

]
=

[
q̇(t)

− r
m
q̇(t)− k

m
q(t) + 1

m
F (t)

]
=

[
0 1
− k
m
− r
m

]
x(t) +

[
0
1
m

]
u(t)

y(t) = q(t) =
[
1 0

]
x(t).

This system is of the form (1.1) with matrices

A =

[
0 1
− k
m
− r
m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0 ∈ R.
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k

r

m
F (t)

Figure 1.3: A damped harmonic oscillator.

The characteristic polynomial of A is

p(λ) = det(λ− A) = λ2 +
r

m
λ+

k

m
,

and thus the eigenvalues of A are given by

σ(A) =

{
−r ±

√
r2 − 4km

2m

}
.

Since k,m > 0, the real parts of the eigenvalues ofA are negative whenever r > 0, and equal
to zero if r = 0. By Theorem 1.2.3 we thus have that the oscillator system is exponentially
stable whenever r > 0, and that it is not asymptotically stable if r = 0.

0 5 10 15 20

−0.5

0

0.5

1

0 2 4 6 8 10

0

0.5

1

Figure 1.4: The damped harmonic oscillator with r = 0.5 (left) and r = 2 (right)

1.3.2 Moving Robots

A very simple linearized model for a small moving robot can be given by

ẋ(t) = u(t), x(0) ∈ C

where x(·) and u(·) are both complex-valued functions. The solution x(t) of the above
differential equation describes the motion of the robot in the xy-plane once we identify the
real axis of C with the x-axis and the imaginary axis with the y-axis.
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The system consisting of n ∈ N identical robots xk(t) is then described by the equations

ẋ1(t) = u1(t), x1(0) ∈ C
ẋ2(t) = u2(t), x2(0) ∈ C

...
ẋn(t) = un(t), xn(0) ∈ C.

If we measure the positions of the robots in the xy-coordinates, this leads to measure-
ments yk(t) = xk(t) for k ∈ {1, . . . , n}. If we choose the state space of the full sys-
tem as X = Cn and the state of the system as x(t) = (x1(t), . . . , xn(t))T ∈ Cn, with
u(t) = (u1(t), . . . , un(t))T ∈ Cn, and y(t) = (y1(t), . . . , yn(t))T ∈ Cn, then the behaviour
of the group of n robots is described by the equations

d

dt

x1(t)...
xn(t)

 =

u1(t)...
un(t)

 ,
x1(0)

...
xn(0)

 ∈ X
y1(t)...
yn(t)

 =

x1(t)...
xn(t)


which is of the form (1.1) with matrices

A = 0n×n, B = In×n, C = In×n, D = 0n×n.

Since A = 0 ∈ Cn×n, its eigenvalues are given by σ(A) = {0}. By Theorem 1.2.3 the
system of robots is therefore not asymptotically stable. We can, however, make the system
stable using state feedback. Indeed, we can implement a control law which steers each of
the robots to the direction of the origin if there is no other input present. This can be done
by commanding each robot to move into the direction −xk(t), which is exactly the direction
of the origin. We can therefore choose a control law uk(t) = −αxk(t)+ ũk(t), where α > 0 is
a constant parameter that expresses how fast we want the robots to move, and where ũk(t)
is the new input. Since

u(t) = −αx(t) + ũ(t),

where ũ(t) = (ũ1(t), . . . , ũn(t)), the feedback operator K : X → U is given by K = −αIn×n.
With this state feedback the system of robots becomes

ẋ(t) = −αx(t) + ũ(t), x(0) = x0 ∈ X
y(t) = x(t),

which is exponentially stable by Theorem 1.2.3 since σ(A+BK) = σ(−αI) = {−α} ⊂ C−.
Figure 1.5 depicts the behaviour of the stabilized system of robots for two different initial
configurations.
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x1(0)

x2(0)
x3(0)

Figure 1.5: Stabilized system of robots.

1.4 Infinite-Dimensional Examples

In this section we present some examples of control systems modeled by linear partial
differential examples. On this course we concentrate on simple examples such as the one-
dimensional heat and wave equations. However, the approach that we use can also be used
in dealing with more complicated equations.

1.4.1 A One-Dimensional Heat Equation

The distribution of heat in a uniform metal rod of a unit length can be modeled by a partial
differential equation of the form

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1) (1.2a)

v(0, t) = 0, v(1, t) = 0, (1.2b)

v(ξ, 0) = v0(ξ), (1.2c)

where α > 0 describes the thermal conductivity of the material. The boundary conditions
v(0, t) = 0 and v(1, t) = 0 indicate that the two ends of the metal rod are kept at constant
temperatures (zero degrees), and v(ξ, 0) = v0(ξ) is an initial condition that describes the
solution of the system at time t = 0.

The control input of the system acts effectively adds or removes heat from certain parts
of the rod that are determined by the function b ∈ L2(0, 1;R). Different choices of the
function b describe different types of control systems. For example, if the rod can be heated
or cooled down from the part corresponding to the interval [0, 1/2], we can choose the
function b defined using an indicator function

b(ξ) = 2 · χ[0,1/2](ξ) =

{
2 ξ ∈ [0, 1/2]

0 ξ ∈ (1/2, 1]
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In this example we assume that the state of the heat system can be observed by measur-
ing a weighted average of the temperature on certain parts of the rod. Such a measurement
can be written in the form

y(t) =

∫ 1

0

v(ξ, t)c(ξ)dξ

with a given function c ∈ L2(0, 1;R). For example, if we measure the average temperature
on the interval [1/2, 1], we can choose an appropriate function c(·) = 2 · χ[1/2,1](·), and the
output of the heat system is given by

y(t) =

∫ 1

0

v(ξ, t) · 2 · χ[1/2,1](ξ)dξ = 2

∫ 1

1/2

v(ξ, t)dξ.

The controlled heat equation can be written in the form (1.1) on an infinite-dimensional
Hilbert space X = L2(0, 1;C) (the solutions of the original heat equation are real-valued,
but on this course we consider complex Hilbert spaces for the sake of being uniform). We
choose the state x(t) ∈ X to be the solution of the equation (1.2) at time t ≥ 0, i.e.,
x(t) = v(·, t) ∈ L2(0, 1). The system operator A is an unbounded second order differential
operator with respect to the spatial variable ξ ∈ (0, 1)

Af = αf ′′(·)

for a function f ∈ X that belongs to the domain of definition of the operator A that includes
the boundary conditions of the original heat equation,

D(A) =
{
f ∈ L2(0, 1)

∣∣ f, f ′ are absolutely continuous f ′′ ∈ L2(0, 1), and f(0) = f(1) = 0
}
.

The absolute continuity of f and f ′ for the elements f ∈ D(A) guarantee that the two
derivatives can be computed in a suitable sense, and that the resulting function Af belongs
to the original space X = L2(0, 1).

The inputs and outputs of the heat system are scalar-valued functions, and we therefore
have U = C and Y = C. The operators B : C → X and C : X → C are bounded linear
operators defined by

Bu = b(·)u ∈ X, ∀u ∈ C

Cx =

∫ 1

0

x(ξ)c(ξ)dξ, ∀x ∈ X.

1.4.2 A One-Dimensional Wave Equation

The vibrations in a uniform undamped string that is fixed at constant positions at both ends
are described by the partial differential equation

∂2w

∂t2
(ξ, t) + α

∂2w

∂ξ2
(ξ, t) = b(ξ)u(t), ξ ∈ (0, 1) (1.3a)

w(0, t) = 0, w(1, t) = 0, (1.3b)

w(ξ, 0) = w0(ξ),
dw

dt
(ξ, 0) = w1(ξ). (1.3c)
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The solution w(ξ, t) of the equation determines the displacement of the string at the position
ξ ∈ (0, 1) and at the time instant t ≥ 0. Here w(0, t) = 0 and w(1, t) = 0 are again the
boundary conditions of the equation, and the second order time derivative in the equation
requires that the states of the equation are given at time t = 0 for both the solution of the
system and its first order time derivative. If the measured output of the system is a weighted
average of the displacement of the string, then

y(t) =

∫ 1

0

w(ξ, t)c(ξ)dξ, t ≥ 0

for some function c ∈ L2(0, 1;R).
In order to write the controlled wave system (1.3) in the form (1.1) we in particular

need to reduce the order of differentiations with respect to the variable t. This can formally
be done with a similar approach that is used to reduce higher order ordinary differential
equations to systems of first order equations. Namely, we choose the state x(t) to include
both the solution w(·, t) of the equation as its time derivative (for brevity, we denote the time
derivative as wt(·, t) = dw

dt
(·, t)) so that x(t) = (w(·, t), wt(·, t))T . Now a direct computation

shows that

ẋ(t) =
d

dt

[
w(·, t)
wt(·, t)

]
=

[
wt(·, t)
wtt(·, t)

]
=

[
wt(·, t)

−αwξξ(·, t) + b(·)u(t)

]
=

[
0 I
−A0 0

] [
w(·, t)
wt(·, t)

]
+

[
0
b(·)

]
u(t),

where the operator A0 is the second order differentiation with respect to the spatial variable
ξ ∈ (0, 1), which is exactly the same as the operator A in the example concerning the heat
equation in the previous section. Since the measured output can be written in the form

y(t) =

∫ 1

0

w(ξ, t)c(ξ)dξ =

∫ 1

0

[
c(ξ), 0

] [w(ξ, t)
wt(ξ, t)

]
dξ

we could choose the operators A, B, and C in the system (1.1) as

A =

[
0 I
−A0 0

]
, Bu =

[
0
b(·)

]
u, C

[
f1
f2

]
=

∫ 1

0

[
c(ξ), 0

] [f1(ξ)
f2(ξ)

]
dξ.

However, it turns out that the state space X must be chosen with care, and in particular
the most obvious choice X = L2(0, 1;C) × L2(0, 1;C) does not lead to a useful infinite-
dimensional system (1.1). The choice of the spaceX is discussed in detail later in Chapter 3.

1.5 Numerical Simulation with Matlab

In this section we develop techniques to simulate the behaviour of the system and its out-
put using Matlab. We begin by considering finite-dimensional linear systems. Simulating
systems modeled by partial differential equations require more involved numerical approx-
imations, and these techniques will be considered separately in the later chapters.

Matlab has its own powerful tools for simulation and control of linear systems. These
include Simulink, Robust Control Toolbox, Control System Toolbox, Model Predictive Con-
trol Toolbox, and Model Identification Toolbox (see the Matlab documentation for more
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infomation). On this course we aim to understand how the simulation and the control
algorithms work, and for this reason we write our own simple codes. However, you are
also encouraged to get to know and experiment with the built-in Matlab methods related
to linear systems and control. There the best place to start is the Control System Toolbox
which concentrates on the analysis and control of finite-dimensional linear systems of the
form (1.1).

In the following sections we start writing some helpful functions for simulation, analysis,
and tweaking of a finite-dimensional control system of the form (1.1).

1.5.1 LinSysSim — Simulation of the State of the System

We begin by writing a Matlab function LinSysSim that simulates the state of the sys-
tem (1.1) with given matrices A and B and given initial state x0 and a control function
u(·) over a specified time-interval. This data is given in the following variables

A, B Matrices A and B of the system

x0 The initial state x0

ufun The control function u(·) (Matlab function handle)

tspan The start and end times of the simulation (a vector with two elements)

The differential equation

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (1.4)

can be solve numerically using one of the available solvers in Matlab. There are many
variations of the solver, e.g., ode23, ode45 and ode15s. We choose to use the solver ode15s,
because it can handle some difficulties that arise later in the simulation of approximations
of partial differential equations. As the output from the function LinSysSim we return
the solution structure sol that we obtain from the differential equation solver ode15s. The
structure sol contains the instances t of time at which the numerical solution was computed
in the variable “sol.x” and the corresponding values in the variable “sol.y”. We will see
that the structure is very convenient way of storing the information about the state x(t) of
the system.

The code for the function is presented in the following. The first lines of comment are
documentation for the function and they can be shown by typing “help LinSysSim” in the
Matlab command line.

function sol = LinSysSim(A,B,x0,ufun,tspan)
% function sol = LinSysSim(A,B,x0,ufun,tspan)
%
% Simulate the state of the differential equation x'(t)=Ax(t)+Bu(t)
% with initial state x(0)=x0, and u(t) = ufun(t) ('ufun' is a function
% handle) over the time interval 'tspan'. The returned variable 'sol' is
% the output of the Matlab's differential equation solver 'ode15s'.

odefun = @(t,x) A*x + B*ufun(t);

sol = ode15s(odefun,tspan,x0);
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The first line of the code defines how the derivative ẋ(t) in the equation (1.4) depends
on the variable t and the function x(t). Here we compute the value of the input function
u(t) using the function handle ufun provided as the parameter in the function LinSysSim.

On the second line we ask the solver ode15s to solve the differential equation (1.4) on
the time-interval determined by the input variable tspan.

1.5.2 LinSysOutputPlot — Plotting the Output of the System

The second function that we write uses the output of our first function LinSysSim to plot
the output of the system (1.1). The input parameters we provide are the variable “sol”
containing the solution of the differential equation (1.4), matrices C and D, the input
function u(·) and a parameter N specifying how many points we want to use in the plotting.
We also give a possibility to provide two optional parameters axlim and LineW that can
be used to customize the style of the plot (feel free to add your additional customization
parameters if you like!)

sol The output of the function LinSysSim

C, D Matrices C and D of the system

ufun The control function u(·) (Matlab function handle)

N Number of points used in the plotting

axlim Custom limits for the axes of the plot, set to “[ ]” for default limits

LineW Line width in the plots, default is equal to 1.

In addition to the plotting the function returns the vector tt of points where the output
was plotted and a vector yy of corresponding values of the function y(t).

function [tt,yy] = LinSysOutputPlot(sol,C,D,ufun,N,axlim,LineW)
% function [tt,yy] = LinSysOutputPlot(sol,C,D,ufun,N,axlim,LineW)
%
% Plots the measured output of a linear system when 'sol' is the solution
% variable obtained from the ODE solver, C and D are parameters of the
% system and 'ufun' is the function handle for the input function. Uses a
% uniform grid with N points.
% 'axlim' are the limits for the axes (input '[]' for default) and 'LineW'
% is the line width.

tt = linspace(sol.x(1),sol.x(end),N);
yy = C*deval(sol,tt)+D*ufun(tt);

if nargin <= 6
LineW = 1;

end

plot(tt,yy,'Linewidth',LineW);

if nargin >5 && ~isempty(axlim)
axis(axlim)

end
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The first line of the code initializes an evenly spaced grid of N points on the interval
where the state x(t) of the system was solved. The second line uses the Matlab function
deval to evaluate the numerical solution x(t) at these points (the command deval(sol,tt))
and computes the output y(t) at these points. Finally, the output is plotted with the com-
mand plot.

1.5.3 LinSysStatePlot — Plotting the State of the System

There are situations where we might want to plot the state x(t) of the system as well. For
this purpose, we can modify the function LinSysOutputPlot in the following way. The
input variables are the same as in the case of the function LinSysOutputPlot, and the
output variable xx contains the values of x(t) evaluated at the points tt of the grid.

function [tt,xx] = LinSysStatePlot(sol,N,axlim,LineW)
% function [tt,xx] = LinSysStatePlot(sol,N,axlim,LineW)
%
% Plots the state variables of a linear system when 'sol' is the solution
% variable obtained from the ODE solver. Uses a uniform grid with N points.
% 'axlim' are the limits for the axes (input '[]' for default) and 'LineW'
% is the line width.

tt = linspace(sol.x(1),sol.x(end),N);
xx = deval(sol,tt);

if nargin <= 3
LineW = 1;

end

plot(tt,xx,'Linewidth',LineW);

if nargin >2 & ~isempty(axlim)
axis(axlim)

end

1.5.4 Example: Simulating the Damped Harmonic Oscillator

We can use our new functions for simulating the behaviour of the damped harmonic oscil-
lator in Section 1.3. The following code defines the matrices (A,B,C,D) of the system, and
calls the functions LinSysSim and LinSysOutputPlot to simulate the behaviour output of
the plant with a chosen input function u(·).

r = 1; k = 1; m = 2;

A = [0 1;-k/m -r/m];
B = [0;1/m];
C = [1 0];
D = 0;

x0 = [1;0];
tspan = [0 15];
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ufun = @(t) zeros(size(t));
%ufun = @(t) sin(t).*cos(t);
%ufun = @(t) sin(t).^2;
%ufun = @(t) sqrt(t);
%ufun = @(t) rem(t,2)<=1;

sol = LinSysSim(A,B,x0,ufun,tspan);
LinSysOutputPlot(sol,C,D,ufun,200,[],2);

1.6 References and Further Reading

• Finite-dimensional linear systems [12, 10]

• Semigroup Theory [1, 8, 9, 7]

• Infinite-dimensional linear systems and control [11, 7, 2, 17]

• Free books (in the TAU network)! [8, 9, 11]



2. Finite-Dimensional Control Theory

In this chapter we concentrate on investigating the controllability and stability of finite-
dimensional linear systems. Although the considered results do not directly generalize to
infinite-dimensional systems, considering these questions for finite-dimensional systems il-
lustrates the common methodology in the field of control theory. In particular, investigating
the degree to which the behaviour of the system of can be influenced using its inputs is a
fundamental question that is equally relevant for all classes and types of control systems.

As the second main topic of the chapter we consider the well-known Proportional-
Integral Control (PI-control) for finite-dimensional linear systems in Section 2.4. The pur-
pose of this particular type of feedback control is to drive the measured output of the linear
system to a predefined constant value. The characteristic feature of PI-control is that it
is very tolerant to uncertainties in the parameters of the system, and because of this the
control design will achieve its goal even if the matrices A, B, C, and D are not known
exactly.

2.1 Controllability of Finite-Dimensional Systems

In this section we will study the controllability of a finite-dimensional linear system. For
this we will use the following concepts.

Definition 2.1.1. Let X = Cn and u(·) : [0,∞) → U = Cm. The controllability matrix
associated to the system (1.1) is defined as[

B AB · · · An−1B
]
∈ Cn×nm.

For t > 0 its controllability Gramian is

Wt =

∫ t

0

eAsBB∗eA
∗sds ∈ Cn×n.

For any t > 0 the controllability Gramian has the properties that

(Wt)
∗ =

∫ t

0

(
eAsBB∗eA

∗s
)∗
ds =

∫ t

0

eAsBB∗eA
∗sds = Wt

〈Wtx, x〉 =

∫ t

0

〈eAsBB∗eA∗sx, x〉ds =

∫ t

0

‖B∗eA∗sx‖ds ≥ 0 ∀x ∈ Cn.

This means that for all t > 0 the matrix Wt is symmetric (or Hermitian) and positive semi-
definite. The controllability matrix and the controllability Gramian are related in the fol-

18
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lowing way. Here R(Q) denotes the range space of a matrix Q ∈ Cm×n, i.e., R(Q) = { y ∈
Cm | y = Qx for some x ∈ Cn }.

Lemma 2.1.2. For every t > 0 we have

R
([
B AB · · · An−1B

])
= R (Wt)

and Wt is nonsingular if and only if rank
[
B AB · · · An−1B

]
= n.

Proof. See [11, Prop. 3.1.5].

The following theorem shows that the controllability of a finite-dimensional system can
be tested simply by computing the number of linearly independent columns in the control-
lability matrix.

Theorem 2.1.3. Let X = Cn. The following are equivalent for every τ > 0.

(a) The system (1.1) is controllable in time τ , i.e., for every initial state x0 ∈ X and for
every target state x1 ∈ X there exists a control input u(·) ∈ L1(0, τ ;U) such that at
time τ > 0 the state of the system satisfies x(τ) = x1.

(b) The controllability matrix satisfies rank
[
B AB · · · An−1B

]
= n.

Proof. We begin by showing that (b) implies (a). Assume rank
[
B AB · · · An−1B

]
= n

and let x0, x1 ∈ X be arbitrary. To achieve x(τ) = x1 we need to find an input u(·) such that

x1 = x(τ) = eAτx0 +

∫ τ

0

eA(τ−s)Bu(s)ds.

By Lemma 2.1.2 the controllability Gramian Wτ is invertible. Our aim is to use this prop-
erty in finding a suitable input. In particular, if we choose a function of the form u(s) =
B∗eA

∗(τ−s)y for some y ∈ X and for all s ≥ 0, then u(·) ∈ L1(0, τ ;U) and

x1 − eAτx0 =

∫ τ

0

eA(τ−s)Bu(s)ds =

∫ τ

0

eA(τ−s)BB∗eA
∗(τ−s)yds =

∫ τ

0

eArBB∗eA
∗rydr = Wτy.

This implies that if we choose y = W−1
τ (x1 − eAτx0) in the control, then x(τ) = x1.

For the proof of the implication from (a) to (b), see [11, Thm. 3.1.6].

The proof of Theorem 2.1.3 shows that the controllability of a finite-dimensional system
for some time τ > 0 implies the controllability of the same system for any time τ > 0. In
particular, we can steer a controllable system to any target state in any arbitrarily small
time τ > 0. However, a faster control necessarily requires a control input with a large
norm, which in applications is subject to physical constraints. This is also visible in the
chosen control input

u(t) = B∗eA
∗(τ−t)W−1

τ (x1 − eAτx0).

Indeed, if τ > 0 becomes small, then also the norm Wτ will be small, which in turn implies
that W−1

τ will have large norm due to

‖W−1
τ ‖ ≥

1

‖Wτ‖
.
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Example 2.1.4. Consider the damped harmonic oscillator in Section 1.3.1. The matrices of
the linear system were given by

A =

[
0 1
− k
m
− r
m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0 ∈ R

with m, k > 0 and r ≥ 0 (r = 0 corresponds to the situation with no damping). A direct
computation shows that the controllability matrix is (now n = 2)

[
B AB

]
=

1

m

[
0 1
1 −r/m

]
which has rank equal to 2 for all r ≥ 0 and m > 0. Thus the system is controllable. �

2.2 Stability of a System

In Chapter 1 we learned that the asymptotic and exponential stability of a finite-dimensional
linear system can be determined based on the locations of the eigenvalues of the matrix A.
We already applied the result in the examples presented in Section 1.3. We will now prove
the result using the properties of the matrix exponential function eAt.

Theorem 2.2.1. If X = Cn, then the following are equivalent.

(i) The system (1.1) is asymptotically stable.

(ii) The system (1.1) is exponentially stable.

(iii) Reλ < 0 for every λ ∈ σ(A).

Proof. Clearly (ii) implies (i). We will begin by showing that (i) implies (iii). To this end,
assume the system is asymptotically stable. With the constant input u(t) ≡ 0 the state x(t)
of the system is given by x(t) = eAtx0. The asymptotic stability of the system (1.1) therefore
means that ‖eAtx‖ → 0 as t → ∞ for all x ∈ X. Let λ ∈ σ(A) and let x 6= 0 be such that
Ax = λx. Then also Akx = λkx and

eAtx =
∞∑
k=0

tkAkx

k!
=
∞∑
k=0

tkλk

k!
x = eλtx

(both infinite series converge absolutely and uniformly for t on compact intervals of R).
The assumption ‖eAtx‖ → 0 as t→∞ now implies that

0← ‖eAtx‖ = ‖eλtx‖ = |eλt|‖x‖ = eReλt‖x‖

as t→∞. Since ‖x‖ 6= 0, this is only possible if Reλ < 0. Since λ ∈ σ(A) was arbitrary, we
have that (iii) holds.

Finally, assume that (iii) holds. Let A = SJS−1 be the Jordan canonical form of A where
J = diag(J1, . . . , Jq). We have (see Section A.3)

‖eAt‖ = ‖SeJtS−1‖ ≤ ‖S‖‖S−1‖‖eJt‖ ≤ ‖S‖‖S−1‖ ·max
{
‖eJ1t‖, . . . , ‖eJqt‖

}
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For every k ∈ {1, . . . , q} the matrix-valued function eJkt is of the form eJkt = eλktQ(t) where
λk is the eigenvalue of the Jordan block and ‖Q(t)‖ ≤ M̃k max{1, tnk−1} where nk = dim Jk
(see Theorem A.3.1). If we choose any 0 > ωk > Reλk, then there exists Mk ≥ 0 such that
‖eJkt‖ ≤Mke

ωkt for all t ≥ 0. Since this holds for all k ∈ {1, . . . , q}, we can estimate

‖eAt‖ ≤ ‖S‖‖S−1‖max
{
‖eJ1t‖, . . . , ‖eJqt‖

}
≤ ‖S‖‖S−1‖max

{
M1e

ω1t, . . . ,Mqe
ωqt
}
≤Meωt

if we choose M = ‖S‖‖S−1‖max{M1, . . . ,Mq} and ω = max{ω1, . . . , ωq} < 0. This immedi-
ately implies that the system is exponentially stable, and thus (ii) holds.

2.3 Stabilizability of a System

In this section we consider a weaker notion of stabilizability of the system. As the following
definition shows, this concept means that the system can be made stable with state feedback
u(t) = Kx(t) + ũ(t). We remark that stabilizability is defined in a more general way in [11,
Def. 4.1.3], but it is shown in [11, Sec. 4.2] that the two properties coincide.

Definition 2.3.1. Let X = Cn and U = Cm. The system (1.1) is stabilizable if there exists
K ∈ Cm×n such that σ(A+BK) ⊂ C−.

It is shown in [11, Cor. 4.2.6] that if the system (1.1) is controllable, then it is also
stabilizable. However, controllability actually implies a stronger property which allows us
to place the eigenvalues of the matrix A + BK arbitrarily in the complex plane with an
appropriate choice of a matrix K ∈ Cm×n. If the system has this latter property, then
it is said that the pole placement problem is solvable (the “poles” being the eigenvalues
of the matrix A + BK). This is a strictly stronger property than stabilizability, because
stabilizability does not require us to be able to move the eigenvalues of A that are already
in the “stable half-plane” C−. This is illustrated in the following example.

Example 2.3.2. Consider a system with

A =

1 1 0
0 1 0
0 0 −1

 , and B =

0
1
0


(the matrices C and D do not play a role in controllability and stabilizability). Now n = 3
and m = 1, and the matrices K ∈ Cm×n are of the form K = (k1, k2, k3) with kl ∈ C. We
have

A+BK =

 1 1 0
k1 1 + k2 k3
0 0 −1

 .
A direct computation shows that the characteristic polynomial of A+BK is

det(λ− A−BK) = (λ+ 1)(λ2 + (−k2 − 2)λ− k1 + k2 + 1).

If we choose k1 = −12 and k2 = −7, and k3 ∈ C, then the roots of det(λ − A − BK) are
σ(A+BK) = {−1,−2,−3}. Thus the system is stabilizable.
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However, the controllability matrix of the system is given by

[
B AB A2B

]
=

0 1 2
1 1 1
0 0 0


which has rank equal to 2 < n = 3. Because of this, the system is not controllable. We can
also observe that for all choices of K the matrix A+BK will still have one eigenvalue equal
to −1. Because of this, the full pole placement problem is not solvable. �

The stabilizability of the system can be tested using the eigenvalues and eigenvectors of
A∗ in the following way. Since σ(A∗) = σ(A), the corresponding eigenvalues of A and A∗

have the same real parts.

Theorem 2.3.3. Let X = Cn. The system (1.1) is stabilizable if and only if A and B have
the following property.

If λ ∈ σ(A∗) is such that Reλ ≥ 0 and A∗x = λx with x 6= 0, then B∗x 6= 0.

Proof. See [11, Thm. 4.3.1].

2.4 Proportional–Integral Control (PI-Control)

In this section we consider a particular example of controller design for a finite-dimensional
linear system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Cn (2.1a)
y(t) = Cx(t) (2.1b)

with u(t) ∈ U = Cm and y(t) ∈ Y = Cp. The “output tracking problem” for a given constant
reference output yref ∈ Rp is defined as follows.

Definition 2.4.1. Let yref ∈ Y = Cp be a constant output reference vector. In the output
tracking problem the aim is to choose the input u(t) of the system in such a way that

‖y(t)− yref‖ → 0 as t→∞.

In Proportional–Integral Control (PI Control) the output tracking problem is solved with
a control input u(t) which is based on the knowledge of the tracking error e(t) = y(t)− yref
and its cumulative integral over time, i.e.,1

u(t) = KP e(t) +KI

∫ t

0

e(s)ds, (2.2)

where KP , KI ∈ Cm×p are the parameters of the control input. PI Control was developed in
the early 1900’s, and it is extremely widely used in engineering and industry, for example
in process control. The Wikipedia article on PID Control provides a good overview to its

1The more general Proportional–Integral–Derivative Control (PID Control) also uses the derivative ė(t) of
the tracking error.

https://en.wikipedia.org/wiki/PID_controller
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history and typical applications. One of the main strengths of PI-control is that it is robust (in
the sense discussed briefly in Section 1.2.5), and in particular the tracking of the reference
yref will be achieved even if the matrices A, B, and C are not known exactly, or if they
experience changes (for example in RLC circuits the properties of the electronic components
change with temperature during the operation of the circuit).

The performance of the PI Controller is typically analysed in the frequency domain,
but in this section we use state space methods to present conditions for the solvability of
the output tracking problem. We begin by noting that if we define xc(t) =

∫ t
0
e(s)ds, then

d
dt
xc(t) = e(t) and xc(0) = 0. Because of this, the control signal u(t) in (2.2) can be written

as an output of another linear system, called the controller,

ẋc(t) = 0 · xc(t) + e(t), xc(0) ∈ Cp (2.3a)
u(t) = KIxc(t) +KP e(t) (2.3b)

on the space Xc = Cp. The initial state corresponding to (2.2) is xc(0) = 0 ∈ Cp. Note that
this system has an input e(t) and output u(t), and for this reason (2.3) is called an error
feedback controller. It is of the form (1.1), now with matrices (Ac, Bc, Cc, Dc) where Ac =
0 ∈ Cp×p, Bc = I ∈ Cp×p, Cc = KI ∈ Cm×p, and Dc = KP ∈ Cm×p. Together the controlled
system (2.1) and the controller (2.3) form a feedback interconnection in Figure 2.1.

PC
u(t) y(t)e(t)yref

−

Figure 2.1: The system P = (A,B,C) in a feedback interconnection with an error feedback
controller C = (Ac, Bc, Cc, Dc).

Using the system equations (2.1) and (2.3) and e(t) = y(t)− yref = Cx(t)− yref we can
see that the time-derivatives of the states x(t) and xc(t) satisfy

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +BKIxc(t) +BKP (Cx(t)− yref )

= (A+BKPC)x(t) +BKIxc(t)−BKPyref

ẋc(t) = e(t) = Cx(t)− yref .

The behaviour of the states x(t) and xc(t) can be studied together if we define xe(t) =
(x(t), xc(t)). The above equations now imply that

ẋe(t) =

[
ẋ(t)
ẋc(t)

]
=

[
(A+BKPC)x(t) +BKIxc(t)−BKPyref

Cx(t)− yref

]
=

[
A+BKPC BKI

C 0

] [
x(t)
xc(t)

]
+

[
−BKp

−I

]
yref

and

e(t) = Cx(t)− yref =
[
C, 0

] [ x(t)
xc(t)

]
+ (−I)yref .
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Note that the above differential equation for xe(t) and the expression for e(t) have the form
of another linear control system — now with state xe(t), (constant) input yref , and output
e(t). Indeed, if we define matrices

Ae =

[
A+BKPC BKI

C 0

]
∈ C(n+p)×(n+p), Be =

[
−BKP

−I

]
∈ C(n+p)×p,

Ce =
[
C 0

]
∈ Cp×(n+p), and De = −I ∈ Cp×p, then xe(t) and e(t) are the state and output,

respectively, of the so-called closed-loop system

ẋe(t) = Aexe(t) +Beyref , xe(0) =
[
x(0)
xc(0)

]
∈ Cn+p

e(t) = Cexe(t) +Deyref .

The role of the closed-loop system is to describe the behaviour of the states x(t) and xc(t) of
the system (2.1) and the PI-controller (or more generally, any dynamic feedback controller).

After these preliminaries, we can state a general condition on KP and KI which guar-
antees that the PI-controller solves the tracking problem for any reference yref ∈ Cp (note
that KP and KI do not depend on yref ).

Theorem 2.4.2. If KP , KI ∈ Cm×p are such that all eigenvalues of the matrix

Ae =

[
A+BKPC BKI

C 0

]
have negative real parts, then for any yref ∈ Cp the PI controller (2.2) solves the output
tracking problem. In particular, there exist constants M,ω > 0 such that for any yref ∈ Cp

and for all initial states x(0) ∈ Cn and xc(0) ∈ Cp we have

‖y(t)− yref‖Cp ≤Me−ωt
(
‖x(0)‖+ ‖xc(0)‖+ ‖yref‖

)
, ∀t ≥ 0.

Proof. Let KP , KI ∈ Cm×p be such that σ(Ae) ⊂ C− and let yref ∈ Cp be arbitrary. We
begin the proof by finding an expression for the tracking error e(t) = y(t)− yref in terms of
matrices (Ae, Be, Ce, De). The variation of parameters formula implies that

xe(t) = eAetxe(0) +

∫ t

0

eAe(t−s)Beyrefds = eAetxe(0) +

(∫ t

0

eAe(t−s)ds

)
Beyref .

Since Ae is nonsingular due to our assumption σ(Ae) ⊂ C−, we have∫ t

0

eAe(t−s)ds = A−1e

∫ t

0

Aee
Ae(t−s)ds = A−1e

∫ t

0

(
− d

ds
eAe(t−s)

)
ds

= A−1e
(
−eAe(t−t) + eAe(t−0)

)
= A−1e

(
eAet − I

)
.

Using this identity in the above formula for xe(t), we get (note that A−1e eAet = eAetA−1e )

xe(t) = eAet(xe(0) + A−1e Beyref )− A−1e Beyref

⇒ e(t) = Cexe(t) +Deyref

= Cee
Aet(xe(0) + A−1e Beyref ) + (−CeA−1e Be +De)yref .
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As the next step we show that the second term of e(t) is identically zero by showing that
−CeA−1e Be + De = 0. To show this, let y ∈ Cp be arbitrary and denote [ zzc ] = A−1e Bey. The
structures of the matrices Ae and Bc show that[

z
zc

]
= A−1e Bey ⇔ Ae

[
z
zc

]
= Bey ⇔

[
A+BKPC BKI

C 0

] [
z
zc

]
=

[
−BKP

−I

]
y

⇔

{
(A+BKPC)z +BKIzc = −BKPy

Cz = −y.

With this notation we thus have that

(−CeA−1e Be +De)y = −Ce
[
z
zc

]
+Dey = −

[
C 0

] [ z
zc

]
− y = −Cz − y = y − y = 0.

Since (−CeA−1e Be +De)y = 0 for an arbitrary y ∈ Cp, we indeed have −CeA−1e Be +De = 0.
With this property our formula for the tracking error e(t) becomes e(t) = Cee

Aet(xe(0) +
A−1e Beyref ). The assumption on KP and KI implies that there exist M0, ω > 0 such that
‖eAet‖ ≤M0e

−ωt for all t ≥ 0. Using this property we can estimate

‖e(t)‖ = ‖CeeAet(xe(0) + A−1e Beyref )‖ ≤ ‖Ce‖‖eAet‖(‖xe(0)‖+ ‖A−1e Be‖‖yref‖)
≤M0‖Ce‖max{1, ‖A−1e Be‖}e−ωt(‖xe(0)‖+ ‖yref‖).

The claim of the theorem holds with the choice M = M0‖Ce‖max{1, ‖A−1e Be‖}, since
‖xe(0)‖2 = ‖x(0)‖2 + ‖xc(0)‖2 ≤ ‖x(0)‖2 + 2‖x(0)‖‖xc(0)‖+ ‖xc(0)‖2 = (‖x(0)‖+ ‖xc(0)‖)2.

The condition on the parameters KP and KI in Theorem 2.4.2 is quite general, and does
not immediately show how these parameters should be chosen. The problem of choosing
KP and KI to guarantee that the PI controller solves the tracking problem and has desirable
performance is called “tuning the PI controller”, and several systematic methods have been
developed for this purpose. In the following theorem we present one such method (without
proof). In the statement the notation PKP

(0)† ∈ Cp×m refers to the (Moore–Penrose) pseu-
doinverse of the matrix PKP

(0) ∈ Cm×p, and if PKP
(0) has linearly independent columns,

then the pseudoinverse has the simple formula PKP
(0)† = PKP

(0)∗(PKP
(0)PKP

(0)∗)−1.

Theorem 2.4.3. Choose the matrices KP , KI ∈ Cm×p in the following way.

(1) Choose KP ∈ Cm×p in such a way that σ(A+BKPC) ⊂ C−.

(2) Denote PKP
(0) := C(−A−BKPC)−1B, and choose KI = −εPKP

(0)† with a parameter
ε > 0.

If the matrix PKP
(0) is surjective (i.e. has linearly independent rows), then there exists ε∗ > 0

such that for every value ε ∈ (0, ε∗] the PI controller with parameters KP and KI solves the
tracking problem for every reference yref ∈ Cp.

Proof. The choices of KP and KI guarantee that σ(Ae) ⊂ C− provided that ε > 0 is suffi-
ciently small, and thus the output tracking follows from Theorem 2.4.2. The detailed proof
is omitted.
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The above theorem requires two properties from the system (2.1). First of all, it must be
possible to choose KP ∈ Cm×p in such a way that the real parts of eigenvalues of A+BKPC
are negative. As shown in Section 1.2.3, A + BKPC is the main matrix of the system that
arises when applying output feedback of the form y(t) = KPu(t) + ũ(t) to the matrix to
the system (A,B,C, 0). Because of this, the condition essentially requires that the system
(A,B,C) needs to be stabilizable with output feedback2. This condition is always satisfied
if the system (A,B,C) is already stable (i.e., σ(A) ⊂ C−), and in this case it is possible to
choose KP = 0 ∈ Cm×p (though other choices of KP may improve the performance of the
controller).

The second condition is that the rows of PKP
(0) = C(−A − BKPC)−1B are linearly

independent. The choice of the notation “PKP
(0)” may seem strange, but it is justified

in the light of Section 1.2.6. In fact, this matrix is the transfer function of the system
(A + BKPC,B,C, 0), which has the formula PKP

(λ) = C(λ − A − BKPC)−1B, evaluated
at the point λ = 0. This condition can be verified easily if the matrices A, B, C, D, and
KP are known, and (quite remarkably!) this linear independence does not depend on the
choice of KP ∈ Cm×p, as long as the condition σ(A + BKPC) ⊂ C− is satisfied. The linear
independence of the rows of PKP

(0) also requires that the system (A,B,C) must have at
least as many inputs as outputs, i.e., necessarily m ≥ p.

The following Matlab routine forms the closed-loop system consisting of the control sys-
tem (A,B,C) and the PI-controller with given parameters. The behaviour of the controlled
system and the tracking error e(t) can then be investigated by simulating the closed-loop
system (Ae, Be, Ce, De) with the routine LinSysSim with the constant input yref .

function [Ae,Be,Ce,De] = LinSysPIClosedLoop(A,B,C,K_P,eps)
% function [Ae,Be,Ce,De] = LinSysPIClosedLoop(A,B,C,K_P,eps)
%
% Form the closed-loop system (Ae,Be,Ce,De) consisting of the linear system
% (A,B,C) and a Proportional-Integral Controller (PI Controller) with the
% parameters K_P (proportional part gain) K_I = eps*pinv(C*((A+B*K_P*C)\B))
% (integral part gain) where eps>0 is a low-gain parameter. The routine
% tests the stability of the closed-loop system.
%
% Parameters:
% A = nxn-matrix, B = nxm-matrix, C = pxn-matrix,
% K_P = mxp-matrix, eps>0

p = size(C,1); m = size(B,2);

if ~isequal(size(K_P),[m,p])
error('K_P has incorrect dimensions!')

end
if find(real(eig(A+B*K_P*C))>=0)

warning('The matrix A+B*K_P*C is not Hurwitz!')
end

P0 = -C*((A+B*K_P*C)\B);
if rank(P0,1e-10)<p

error('The transfer function of (A,B,C) is nearly non-surjective at s=0!')
end

2Note that this is a more restrictive condition than stabilizability considered in Section 2.3.
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K_I = -eps*pinv(P0);

Ae = [A+B*K_P*C,B*K_I;C,zeros(p)];
Be = [-B*K_P;-eye(p)];
Ce = [C,zeros(p)];
De = -eye(p);

% Test the stability of the closed-loop system, and print out the stability
% margin.
CLeigs = eig(Ae);
maxRe = max(real(CLeigs));

if maxRe>=0
error(['The closed-loop system matrix Ae is not Hurwitz!' ...
'Adjust controller parameters!'])

end

fprintf(['The largest real part of eigenvalues of Ae = ' num2str(maxRe) '\n'])

Example 2.4.4. In this example we consider tracking of the position of the damped har-
monic oscillator in Section 1.3.1 using the PI-controller. The parameters (A,B,C) of the
system (2.1) are

A =

[
0 1
− k
m
− r
m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
with k,m, r > 0. Since u(t) ∈ R and y(t) ∈ R, the PI-controller has the form

ẋc(t) = e(t), xc(0) ∈ R
u(t) = KIxc(t) +KP e(t)

for some scalars KI , KP ∈ R (for this model we can consider the controller with real pa-
rameters). We will choose these parameters using Theorem 2.4.3. Since the oscillator has
damping, it is already stable, and we can choose KP = 0. A direct computation shows that
we then have PKP

(0) = C(−A)−1B = 1/k > 0. Because of this, the choice of the parameters
are given by

KP = 0 ∈ R, KI = −εPKP
(0)† = − ε

C(−A)−1B
= −εk.

Theorem 2.4.3 now guarantees that for all sufficiently small ε > 0 the PI-controller achieves
the tracking for any reference output yref ∈ R. According to Theorem 2.4.2 the condition
for a suitable ε > 0 is that the eigenvalues of the matrix

Ae =

[
A+BKPC BKI

C 0

]
=

[
A −εkB
C 0

]
have negative real parts, and this condition can be easily checked for any fixed ε > 0.
Figure 2.2 shows the simulated output of the harmonic oscillator with different values of
parameters ε and KP . The code of the simulation is presented below. The code makes use
of another helpful function LinSysPlotEigs.

�



28 Chapter 2. Finite-Dimensional Control Theory

0 2 4 6 8 10 12 14 16 18 20

-5

-4

-3

-2

-1

0

1

0 2 4 6 8 10 12 14 16 18 20

-5

-4

-3

-2

-1

0

1

0 2 4 6 8 10 12 14 16 18 20

-6

-5

-4

-3

-2

-1

0

1

Figure 2.2: Output of the harmonic oscillator with the PI-controller.

% Harmonic oscillator with damping
r = 1; k = 1; m = 1;
A = [0 1;-k/m -r/m]; B = [0;1/m]; C = [1 0];

% Construct the PI-controller
% Choose parameters K_P to stabilize A+B*K_P*C,
% and the gain parameter eps>0
K_P = 0;
eps = 0.3;

[Ae,Be,Ce,De] = LinSysPIClosedLoop(A,B,C,K_P,eps);

% The choices of K_P and eps can be tested by plotting the spectrum of A_e
LinSysPlotEigs(Ae,[-1,0,-3,3])

yref = @(t) -4;
% yref = @(t) (-4)*(t<30) + (-2)*(t>=30);

% The closed-loop system can be simulated with 'LinSysSim', now with the
% input function 'yref(t)'

% Initial states of the oscillator and the PI-controller
x0 = [1;0];
xc0 = 0;

tspan = [0 20];
sol = LinSysSim(Ae,Be,[x0;xc0],yref,tspan);
tt = linspace(tspan(1),tspan(2),500);
xxe = deval(sol,tt);

% The output of the controlled system is C*x(t) = [C,zeros(p)]*x_e(t)
yy = [C,0]*xxe;

% Values of yref(t) for plotting
yrefvals = zeros(1,length(tt));
for ind = 1:length(tt), yrefvals(ind)=yref(tt(ind)); end

% Plot the output and the reference
plot(tt,[yrefvals;yy],'Linewidth',2)
title(['Output for $K_P= ' num2str(K_P) '$ and $\varepsilon= ' ...

num2str(eps) '$'],'Interpreter','Latex','Fontsize',16)



2.4. Proportional–Integral Control (PI-Control) 29

function LinSysPlotEigs(A,axlim)
% function PlotEigs(A,axlims)
%
% Plots the eigenvalues of A
% If 'axlim' is not given, limits determined from the spectrum.

Aspec = eig(full(A));

if nargin == 1
axlim=[min(real(Aspec)),max(real(Aspec)),min(imag(Aspec)),max(imag(Aspec))];

end

hold off, cla, hold on
plot(real(Aspec),imag(Aspec),'r.','Markersize',15)
% set the limits of the plot
axis(axlim)

% plot the axes
plot(axlim(1:2),[0 0],'k',[0 0],axlim(3:4),'k','Linewidth',1)

maxreal = num2str(max(real(Aspec)));
title(['Largest real part = $' maxreal '$' ],'Interpreter','Latex')



3. Infinite-Dimensional Differential
Equations

The purpose of this chapter is to study the behaviour and properties of infinite-dimensional
differential equations of the form

ẋ(t) = Ax(t), x(0) = x0 ∈ X (3.1)

and

ẋ(t) = Ax(t) + f(t), x(0) = x0 ∈ X (3.2)

when X is an infinite-dimensional vector space. We use terminology and properties of
vector spaces defined in Appendix B.

3.1 Strongly Continuous Semigroups

In this section we begin studying the extension of the matrix exponential function eAt to
infinite-dimensional spaces X and linear operators A. This leads to the theory of strongly
continuous semigroups of operators.

3.1.1 Characteristic Properties of the Matrix Exponential Function

The main property that of the matrix exponential function that we are interested in is that if
X = Cn, we can then express the solution of the initial value problem (3.1) as x(t) = eAtx0
for any x0 ∈ X. In view of the generalization to operators, the matrix exponential function
eAt has the following four fundamental properties.:

(1) eA0 = I (i.e., for t = 0 we have eAt = I).

(2) eA(t+s) = eAteAs if s, t ∈ R.

(3) The function t 7→ eAt is continuous.

(4) We have d
dt
eAt = AeAt = eAtA.

The properties (1)–(3) are related to the time-evolution of the differential equation (3.1).
In particular, if we consider the solution x(t) = eAtx0, then the property (2) tells us that if
we let the system evolve for t+s time units we end up in the same state as where we would
be if we first let the system evolve for s time units and then for another t time units. The

30



3.1. Strongly Continuous Semigroups 31

property (1) tells us that if no time passes, the state of the system does not change, and
finally, property (3) tells us that the changes in the state happen continuously.

The property (4) can be seen to provide a connection between the matrix exponential
function eAt and the matrix A. Indeed, we do use A in defining eAt either through the series
expansion or using the Jordan canonical form of A. However, if we were given a matrix
exponential function eAt, we could use property (4) to recover the matrix A. This can be
done by simply differentiating eAt with respect to t and by evaluating the result at t = 0,[

d

dt
etA
]
t=0

=
[
AeAt

]
t=0

= AeA0 = A.

Here we have also used the property (1).
Finally, a small remark on terminology. Besides thinking about eAt as a matrix-valued

function of the variable t ≥ 0, we can see
(
eAt
)
t≥0 as a family of matrices that is parametrized

by the variable t ≥ 0. In particular, for every t ≥ 0 we have that eAt is a matrix that maps
the initial state x0 of (3.1) to the solution x(t) of (3.1) at time t, i.e., x0 7→ eAtx0.

3.1.2 Strongly Continuous Semigroups

Motivated by the characteristic features of eAt, we define a family T (t) of bounded linear
operators on X with analogous properties. The family T (t) is parametrized by the variable
t ≥ 0, and T (t) ∈ L(X) (the space of bounded linear operators on X) for each t ≥ 0. Our
main objective is to carry out the axiomatic construction of the semigroup T (t) in such a
way that

The solution of the differential equation (3.1) can be written in the form
x(t) = T (t)x0 for all x0.

Definition 3.1.1. A family T (t) of bounded linear operators on X is a strongly continuous
semigroup if it has the following properties.

(1) T (0) = I.

(2) T (t+ s) = T (t)T (s) if t, s ≥ 0.

(3) The function t 7→ T (t) satisfies ‖T (t)x− x‖ → 0 as t→ 0+ for all x ∈ X.

It is clear that the properties (1) and (2) correspond directly to the first two properties
of the matrix exponential function. Part (2) is called the semigroup property. On the other
hand, it turns out that requiring the mapping t 7→ T (t) to be continuous would be too
restrictive. Because of this, we instead require property (3) which together with (2) implies
that the function t 7→ T (t)x (which we aim to be the solution of our differential equation)
is continuous for every x ∈ X. The property that t 7→ T (t)x is continuous for all x ∈ X is
called strong continuity of t 7→ T (t), as opposed to uniform continuity t → T (t) where we
require that ‖T (t)− T (s)‖ → 0 as t→ s for all t, s ≥ 0.

Lemma 3.1.2. If T (t) is a strongly continuous semigroup, then t 7→ T (t)x is a continuous
function for all x ∈ X, i.e., if x ∈ X, then

‖T (t)x− T (s)x‖ → 0 as t→ s, t, s ≥ 0.
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Proof. Let x ∈ X and s ≥ 0 be arbitrary. If s = 0 the continuity at s follows directly from
the property (3). On the other hand, if s > 0 and t ≥ s, then we can denote y = T (s)x ∈ X
and use the semigroup property (2) to deduce

‖T (t)x− T (s)x‖ = ‖T (t− s)T (s)x− T (s)x‖ = ‖T (t− s)y − y‖ → 0

as t→ s+ due to property (3). Moreover, if t < s, then

‖T (t)x− T (s)x‖ = ‖T (t)x− T (s− t)T (t)x‖ ≤ ‖T (t)‖‖x− T (s− t)x‖ → 0

as t → s provided that t 7→ T (t) is uniformly bounded on compact intervals. To prove this,
we will first show that there exists ε > 0 such that ‖T (t)‖ is bounded on [0, ε]. If this is
not true, then there exists (tk)k∈N such that tk → 0+ and ‖T (tk)‖ → ∞ as k → ∞. By the
uniform boundedness principle [9, Prop. A.2] there also exists x ∈ X so that ‖T (tk)x‖ → ∞
as k → ∞, but this contradicts property (3). Thus there exist ε > 0 and M ≥ 1 such that
sup0≤t≤ε‖T (t)‖ ≤ M < ∞. On the other hand, if t0 > 0 is arbitrary, then t0 < nε for some
n ∈ N and if t ∈ [0, t0] is such that t ∈ [mε, (m+ 1)ε), then

‖T (t)‖ = ‖T (mε+ t−mε)‖ = ‖T (ε) · · ·T (ε)T (t−mε)‖
≤ ‖T (ε)‖m‖T (t−mε)‖ ≤Mm+1 ≤Mn+1

and thus ‖T (t)‖ ≤Mn+1 for all t ∈ [0, t0]. This shows that the function t 7→ T (t) is uniformly
bounded on compact invervals of [0,∞) and further implies the continuity of t 7→ T (t)x.

Example 3.1.3. In this example we consider a diagonal semigroup. In particular, let (λk)
∞
k=1 ⊂

C be an ordered sequence of complex numbers and assume there exists ω ∈ R such
that Reλk ≤ ω for all k ∈ N. We will define the diagonal semigroup on the space
X = `2(C) = { (x1, x2, . . .) | xk ∈ C,

∑∞
k=1|xk|2 < ∞} of square summable infinite se-

quences (see also Example B.1.3 in Appendix B).
For every t ≥ 0 define the operator T (t) : X → X such that for x = (x1, x2, . . .) we have

T (t)x =
(
eλ1tx1, e

λ2tx2, . . .
)
.

This is of the same form as the matrix exponential function eAt of a diagonal matrix A =
diag(λ1, . . . , λn), since in that case eAtx = (eλ1tx1, . . . , e

λntxn)T for all x = (x1, . . . , xn)T .
Likewise, for every t ≥ 0 the operator T (t) defined above has a representation as an infinite
diagonal matrix, and we can denote T (t) = diag(eλ1t, eλ2t, . . .) ∈ L(X).

We need to verify that T (t) is a bounded operator for all t ≥ 0 and that the properties
(1)-(3) of the semigroup are satisfied. For all t, s ≥ 0 and for every x = (x1, x2, . . .) ∈ X

T (0)x =
(
eλ10x1, e

λ20x2, . . .
)

= (x1, x2, . . .) = x

T (t+ s)x =
(
eλ1(t+s)x1, e

λ2(t+s)x2, . . .
)

=
(
eλ1teλ1sx1, e

λ2teλ2sx2, . . .
)

= T (t)
(
eλ1sx1, e

λ2sx2, . . .
)

= T (t)T (s) (x1, x2, . . .) = T (t)T (s)x

and thus T (t) satisfies the properties (1) and (2). The proof of property (3) is left as an
exercise. �
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3.2 The Generator of a Semigroup

At this point we have been able to define a family T (t) of operators with properties that
are suitable for x(t) = T (t)x0 for x0 ∈ X to be a solution of some differential equation.
However, we have not yet linked the semigroup to any particular operator A. We will
accomplish this by defining the suitable operator A using the properties of the semigroup
T (t). In particular, since we want the operator A and T (t) to have a relationship that is
similar to the connection between a matrix A and eAt, we require that for every “suitable”
x ∈ X the derivative of T (t)x evaluated at t = 0 is equal to Ax. Below we will see that this
approach does indeed define a linear operator. Moreover, for suitable initial states x0 ∈ X
this the function x(t) = T (t)x0 the derivative is equal to

ẋ(t) =
d

dt
T (t)x0 = AT (t)x0 = Ax(t), and x(0) = T (0)x0 = Ix0 = x0,

which means that x(t) is the solution of the differential equation (3.1).

Definition 3.2.1. Let T (t) be a strongly continuous semigroup on a Banach space X. We
define the infinitesimal generator A : D(A) ⊂ X → X in such a way that

Ax =

[
d

dt
T (t)x

]
t=0

= lim
t→0+

T (t)x− x
t

and the domain D(A) is defined as

D(A) =

{
x ∈ X

∣∣∣∣ The limit lim
t→0+

T (t)x− x
t

exists
}
.

The limits in the expressions for Ax andD(A) are considered in the norm of the spaceX.
Thus Definition 3.2.1 means that an element x ∈ X satisfies x ∈ D(A) if and only if there
exists y ∈ X such that

lim
t→0+

∥∥∥∥1

t
(T (t)x− x)− y

∥∥∥∥
X

= 0.

Moreover, if such an y exists, then y = Ax.
As can be seen from the definition, the relationship between A and T (t) resembles the

relationship between a matrix A and eAt, but in general it has a much more complicated
nature. In particular, we may no longer be able to compute T (t) even if we know our
operator A well.

The domain D(A) ⊂ X of A is the set of elements x for which Ax is defined or “makes
sense”. In our situation it in particular consits of elements x ∈ X for which the function
t 7→ T (t)x is differentiable at t = 0. Similarly as with continuity, we will see that the
semigroup property T (t + s) = T (t)T (s) then implies that the function t 7→ T (t)x will be
(continuously) differentiable at all points t ≥ 0 (see Theorem 3.2.4 below).

We will now show that an infinitesimal generator A is a linear operator. To this end, let
α, β ∈ C and x, y ∈ D(A). To show that αx + βy ∈ D(A) we must verify that the limit in
Definition 3.2.1 exists. For t > 0 we have

1

t

(
T (t)(αx+ βy)− (αx+ βy)

)
= α

1

t
(T (t)x− x) + β

1

t
(T (t)y − y)→ αAx+ βAy ∈ X
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as t→ 0+ because 1
t
(T (t)x− x)→ Ax and 1

t
(T (t)y − y)→ Ay. Since the limit exists in X,

we have αx + βy ∈ D(A), and by definition the limit is equal to A(αx + βy), which further
shows that

A(αx+ βy) = αAx+ βAy.

Thus A is a linear operator. Although there may not be an expression for the semigroup
generated by a given operator A : D(A) ⊂ X → X, there is still a one-to-one correspon-
dence between the semigroup and its generator. Indeed, it is shown in [11, Thm. 5.2.3]
that an operator A : D(A) ⊂ X → X may generate at most one semigroup. More precisely,
if A1 and A2 generate semigroups T1(t) and T2(t), respectively, and if A1 = A2, then also
T1(t) = T2(t) for all t ≥ 0.

Example 3.2.2. Consider the diagonal semigroup T (t) on X = `2(C) in Example 3.1.3. We
have T (t) = diag(eλ1t, eλ2t, . . .) ∈ L(X) where (λk)k∈N ⊂ C are such that Reλk ≤ ω for some
constant ω ∈ R.

In this example we will show that the generator A of the diagonal semigroup T (t) is an
operator

A = diag(λ1, λ2, . . .), D(A) =
{
x = (x1, x2, . . .) ∈ X

∣∣∣ ∞∑
k=1

|λk|2|xk|2 <∞
}
.

It should be noted that if there exists R > 0 such that |λk| ≤ R for all k ∈ N (that is, all λk
are contained in some disk centered at 0 and with radius R in the complex plane), then the
operator A will be bounded since

‖Ax‖2`2 = ‖(λ1x1, λ2x2, . . .)‖2`2 =
∞∑
k=1

|λk|2|xk|2 ≤ R2

∞∑
k=1

|xk|2 = R2‖x‖2`2 .

However, if no such R > 0 exists, then the operator A is unbounded and D(A) 6= X.
Since T (t) is a strongly continuous semigroup, it has an infinitesimal generator that we

can denote with A1 : D(A1) ⊂ X → X. In order to show that this generator is actually our
operator A, we need to show that D(A1) = D(A) and A1x = Ax for all x ∈ D(A).

We begin by showing that D(A1) ⊂ D(A) and A1x = Ax for all x ∈ D(A1). To this end,
let x ∈ D(A1) be arbitrary. This means that

A1x = lim
t→0+

T (t)x− x
t

.

Denote by ek ∈ X a vector whose kth element is 1 and whose other elements are 0 (these
vectors actually form a basis of the space X = `2(C)). Since the inner product 〈·, ·〉 is a
continuous function, for every k ∈ N we can compute

〈A1x, ek〉`2 =

〈
lim
t→0+

T (t)x− x
t

, ek

〉
`2

= lim
t→0+

〈T (t)x− x, ek〉`2
t

= lim
t→0+

eλktxk − xk
t

= λkxk

since 〈x, ek〉 =
∑∞

l=1 δlkxl = xk for all x ∈ X (here δkl is the Kronecker delta for which
δkk = 1 and δkl = 0 for k 6= l). Thus A1x = (λ1x1, λ2x2, . . .) = Ax. Because we know that
y = A1x ∈ X, we must have

∞ >

∞∑
k=1

|yk|2 =
∞∑
k=1

|λkxk|2 =
∞∑
k=1

|λk|2|xk|2
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and thus x ∈ D(A) by definition. Since x ∈ D(A1) was arbitrary, we have thatD(A1) ⊂ D(A)
and A1x = Ax for all x ∈ D(A1).

It remains to show D(A) ⊂ D(A1). This is a bit trickier thing to do. Let x ∈ D(A),
i.e.,

∑∞
k=1|λk|2|xk|2 < ∞. Our aim is to show that the limit limt→0+(T (t)x− x)/t exists. We

already know that the limit should be equal to Ax = (λ1x1, λ2x2, . . .). For all 0 < t ≤ 1 we
have ∥∥∥∥T (t)x− x

t
− Ax

∥∥∥∥2
`2

=
∞∑
k=1

∣∣∣∣eλktxk − xkt
− λkxk

∣∣∣∣2 =
∞∑
k=1

∣∣∣∣eλkt − 1

t
− λk

∣∣∣∣2 |xk|2.
Let ε > 0 be arbitrary. We aim to show that we can choose t0 ≤ 1 such that the above norm
is smaller than ε for all 0 < t ≤ t0. For all k ∈ N and for all 0 < t ≤ 1 we can estimate∣∣∣∣eλkt − 1

t
− λk

∣∣∣∣ ≤ ∣∣∣∣eλkt − eλk·0t

∣∣∣∣+ |λk| =
1

t

∣∣∣∣∫ t

0

λke
λksds

∣∣∣∣+ |λk| ≤ λk max
0≤t≤1

|eλkt|+ |λk|

≤ |λk|
(

max
0≤t≤1

eReλkt + 1

)
≤ |λk|

(
max
0≤t≤1

eωt + 1

)
≤ |λk| (eω + 1)

since Reλk ≤ ω and t ≤ 1 by assumption. ChooseN ∈ N so that
∑∞

k=N+1|λk|2|xk|2 <
ε2

2(eω+1)2

and choose t0 ≤ 1 such that

max
1≤k≤N

∣∣∣∣eλkt − 1

t
− λk

∣∣∣∣2 < ε2

2‖x‖2

for all 0 < t ≤ t0. Then for every 0 < t ≤ t0 we also have∥∥∥∥T (t)x− x
t

− Ax
∥∥∥∥2
`2

=
N∑
k=1

∣∣∣∣eλkt − 1

t
− λk

∣∣∣∣2 |xk|2 +
∞∑

k=N+1

∣∣∣∣eλkt − 1

t
− λk

∣∣∣∣2 |xk|2
≤ max

1≤k≤N

∣∣∣∣eλkt − 1

t
− λk

∣∣∣∣2 N∑
k=1

|xk|2 + (eω + 1)2
∞∑

k=N+1

|λk|2|xk|2

≤ ε2

2‖x‖2
‖x‖2 + (eω + 1)2

ε2

2(eω + 1)2
= ε2.

Since ε > 0 was arbitrary, we have now shown that limt→0+(T (t)x − x)/t = Ax. This
finally implies that x ∈ D(A1) and A1x = Ax. Since x ∈ D(A) was arbitrary, we have
D(A) ⊂ D(A1), and thus the proof of A = A1 is complete. �

Remark 3.2.3. Note that instead of indexing the diagonal elements with N in Examples 3.1.3
and 3.2.2 we could have also chosen to index them with k ∈ N0 = {0, 1, 2, . . .}. Moreover,
the same results hold for doubly infinite matrices, in which case we would have

T (t)x = (. . . , eλ−1tx−1, e
λ0tx0, e

λ1tx1, . . .)

for all x = (. . . , x−1, x0, x1, . . .) ∈ `2(Z;C).

The following theorem shows that a strongly continuous semigroup indeed gives us the
solution of the initial value problem (3.1).
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Theorem 3.2.4. Let T (t) be a strongly continuous semigroup with an infinitesimal gener-
ator A : D(A) ⊂ X → X. If x0 ∈ D(A), then the function t 7→ T (t)x0 is continuously
differentiable on [0,∞), T (t)x0 ∈ D(A) for all t ≥ 0, and

d

dt
T (t)x0 = AT (t)x0 = T (t)Ax0, t ≥ 0. (3.3)

Moreover, if x0 ∈ D(A), then the function t 7→ x(t) = T (t)x0 is the unique solution of (3.1).

Proof. Let x0 ∈ D(A). The definition of A and D(A) imply that the function t 7→ x(t) =
T (t)x0 is (right) differentiable at t = 0. Using the semigroup property T (t + s) = T (t)T (s)
we can then show that it is also differentiable for all t > 0. Indeed, if t > 0 and h > 0, then
denoting y = T (t)x

T (t+ h)x0 − T (t)x0
h

= T (t)
T (h)x0 − x0

h
=
T (h)y − y

h
. (3.4)

Since x0 ∈ D(A) and T (t) ∈ L(X), the expression in the middle converges as h → 0+ and
its limit is equal to T (t)Ax0 by Definition 3.2.1. Because of this, also the right and left limits
exist as h → 0+. The existence of the rightmost limit implies that y = T (t)x ∈ D(A) and
the limit is equal to Ay = AT (t)x0, and thus we conclude T (t)Ax0 = AT (t)x0.

On the other hand, if h < 0, then

T (t+ h)x0 − T (t)x0
h

= T (t+ h)
T (−h)x0 − x0

−h
(3.5)

and the limit the right-hand side as h→ 0− exists and equals T (t)Ax0 since x0 ∈ D(A) and
T (·) is strongly continuous. The limits in (3.4) and (3.5) as h → 0 show that t 7→ T (t)x0
is differentiable at t and (3.3) holds. Furthermore, the derivative is continuous, since t 7→
T (t)Ax0 is a continuous function due to strong continuity of t 7→ T (t).

If we let x(t) = T (t)x0 with x0 ∈ D(A), then x(0) = T (0)x0 = x0, and ẋ(t) = Ax(t) for
all t ≥ 0 by (3.3). Since x(·) is continuously differentiable, it is a solution of the differential
equation (3.1).

For the proof of the uniqueness of the solution, see [11, Thm. 5.3.2].

By the above theorem, the function x(t) = T (t)x0 is a solution of the differential equa-
tion (3.1) whenever x0 ∈ D(A). The requirement that the initial state x0 belongs to the
domain of the generator A guarantees that the solution x(t) of the equation is continuously
differentiable. Such solutions of (3.1) are called classical solutions of the equation. More-
over, it turns out that the function x(t) = T (t)x0 is differentiable only when x0 ∈ D(A) [9,
Lem. 1.1]. However, we can define the function x(t) = T (t)x0 even when x0 /∈ D(A). These
more general functions are called mild solutions of the equation (3.1).

Definition 3.2.5. For every x0 ∈ X the function t 7→ x(t) = T (t)x0 is called the mild
solution of (3.1).

The mild solution x(t) = T (t)x0 does not have a derivative with respect to t if x0 /∈ D(A),
but it does satisfy an “integrated version” of the differential equation (3.1),

x(t) = x(0) + A

∫ t

0

x(s)ds, t ≥ 0,
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see [11, Def. 5.3.3] for details. In the treatment of linear partial differential equations
the mild solutions in particular correspond to solutions that originating from initial states
that are not differentiable or initial states that do not satisfy the boundary conditions of the
original equation.

The property that the operator A in the differential equation (3.1) is a generator of a
strongly continuous semigroup guarantees that the differential equation is well-posed in the
sense that (i) for every suitable x0 the equation has a solution, (ii) this solution is unique and
(iii) the solution depends continuously on the initial state x0 [9, Sec. II.6]. In particular we
have the following property (which depends on the precise definition of “well-posedness”,
see [9, Sec. II.6] for details).

Theorem 3.2.6. The differential equation (3.1) is well-posed if and only if the operator
A : D(A) ⊂ X → X is a generator of a strongly continuous semigroup on X.

Proof. See [9, Cor. II.6.8].

It is also reasonable to ask if the differential equation (3.1) can really have classical
solutions, and how many classical solutions exist. In other words, we would like to know
whether or not D(A) is nonempty and to know large it is. The properties of the semigroup
actually guarantee that the ifA is a generator of a semigroup, thenD(A) is always nonempty
and quite large. In particular, D(A) is dense in X [9, Thm. II.1.4], which means that for
every x ∈ X and ε > 0 there exists y ∈ D(A) such that ‖x − y‖ < ε. This guarantees that
the equation (3.1) always has a large set of classical solutions.

3.3 When Does an Operator Generate a Semigroup?

We have now learned that every semigroup has a generator, but usually when we are study-
ing a particular equation, we are more interested in whether or not a given operator A
generates a strongly continuous semigroup on X. There are many results that answer this
imporant question. On this course we concentrate on studying this property on a separable
Hilbert space X and focus on a particular situation where the semigroup is contractive, i.e.,
‖T (t)‖ ≤ 1 for all t ≥ 0, in which case the situation is slightly simpler than in the case of
general semigroups. Even though contractive semigroups are a special class of strongly con-
tinuous semigroups, they are encountered in many important partial differential equations,
especially models describing real-life physical control systems.

Before discussing sufficient conditions for A to generate a semigroup, we list a few gen-
eral properties that all generators possess. The results use the resolvent operator R(λ,A) =
(λ−A)−1 defined for all λ ∈ ρ(A) =

{
λ ∈ C

∣∣ (λ−A)−1 exists and is a bounded operator
}
.

You can find an overview of the most important concepts of unbounded linear operators
and their spectrum in Section B.2 of the Appendix.
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Theorem 3.3.1. Let A : D(A) ⊂ X → X be a generator of a strongly continuous semigroup
T (t) on a Banach space X. Then the following hold.

(a) A : D(A) ⊂ X → X is a closed linear operator and D(A) is dense in X.

(b) There exists ω ∈ R and M ≥ 1 such that ‖T (t)‖ ≤Meωt for all t ≥ 0.

The value ω0 = inf{ω ∈ R | ∃M ≥ 1 s.t. ‖T (t)‖ ≤ Meωt for all t ≥ 0 } is called the growth
bound of the semigroup T (t).

(c) If M ≥ 1 and ω ∈ R are as in (b), then for all λ ∈ C with Reλ > ω we have λ ∈ ρ(A)
and

‖R(λ,A)‖ ≤ M

Reλ− ω
.

Part (c) of the above theorem in particular implies that the spectrum σ(A) = C \ ρ(A) of
an infinitesimal generator is always contained in a “left half-plane” {λ ∈ R | Reλ ≤ ω0 } of
the complex plane C.

As mentioned above, on this course we present selected results that characterise the
property that A is the generator of a strongly continuous semigroup T (t) that is contractive
(i.e., ‖T (t)‖ ≤ 1 for all t ≥ 0) on a separable Hilbert space X (such as L2(0, 1) or `2(C)). For
additional information on generators of semigroups I recommend studying Chapter 3 of [9]
for a very good overview of the relationship between a semigroup T (t) and its generator
A : D(A) ⊂ X → X. The main results that can be used to prove that an operator generates
a contraction semigroup are the Lumer–Phillips theorem [11, Thm. 6.1.7] and a simplified
version of the Hille–Yosida generation theorem [9, Thm. II.3.8] (the standard version of this
theorem characterises the generators of general strongly continuous semigroups on Banach
spaces).

Theorem 3.3.2 (Hille–Yosida Theorem, the contractive case). Let X be a separable Hilbert
space and let A : D(A) ⊂ X → X be a closed and densely defined operator. The operator A
generates a contraction semigroup X if and only if (0,∞) ⊂ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
, for all λ > 0.

The following result presents the Lumer–Phillips theorem. The benefit of this alternative
characterisation is that its conditions are almost always easier to verify than the ones in the
Hille–Yosida theorem, which requires knowledge of the resolvent operator R(λ,A) and its
operator norm. An operator A : D(A) ⊂ X → X with the property Re〈Ax, x〉 ≤ 0 for all
x ∈ D(A) is called dissipative. In the statementR(A) denotes the range space of the operator
A : D(A) ⊂ X → X, i.e. R(A) =

{
y ∈ X

∣∣ y = Ax for some x ∈ D(A)
}

.

Theorem 3.3.3 (Lumer–Phillips Theorem). Let X be a separable Hilbert space. A linear
operator A : D(A) ⊂ X → X is a generator of a contraction semigroup on X if and only if
R(µ− A) = X for some µ > 0 and

Re〈Ax, x〉 ≤ 0, ∀x ∈ D(A).
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Proof. The Lumer–Phillips theorem is typically stated in the particular case where µ = 1,
and the proof of this result is presented in [11, Thm. 6.1.7]. Showing that the claim with
µ > 0 is equivalent to the statement where µ = 1 is left as an exercise.

As we will see later in examples, the dissipativity of operators A : D(A) ⊂ X → X
encountered in partial differential equations can often be shown using integration by parts
(or more generally the Green’s theorem). The additional condition R(µ− A) = X for some
µ > 0 typically involves solving an ordinary or a partial differential equation (depending on
the number of spatial variables in the PDE). If we recall that the resolvent set ρ(A) of an
operator is an open set of C−, we can note that the range condition is in particular satisfied
if A : D(A) ⊂ X → X has a bounded inverse (in this case we can simply choose µ > 0 so
small that µ ∈ ρ(A)).

The condition on the range of µ − A is also guaranteed to hold if A is a self-adjoint
operator (see B.2 for the definitions), meaning that A∗ = A (i.e., D(A∗) = D(A) and A∗x =
Ax for all x ∈ D(A)). In this situation the dissipativity of A means that 〈Ax, x〉 ≤ 0 for all
x ∈ D(A), and since for self-adjoint operators this further implies (0,∞) ⊂ ρ(A), the range
condition is automatically satisfied. Finally, the conditions of the Lumer–Phillips theorem
are automatically satisfied if A : D(A) ⊂ X → X is a skew-adjoint operator, which is defined
as the property that A∗ = −A (i.e., D(A∗) = D(A) and A∗x = −Ax for all x ∈ D(A)). For
such operators we always have

2 Re〈Ax, x〉 = 〈Ax, x〉+ 〈x,Ax〉 = 〈Ax, x〉+ 〈A∗x, x〉 = 〈Ax, x〉+ 〈(−Ax), x〉 = 0.

Skew-adjoint operators also have a special property that their spectrum is always a subset
of the imaginary axis, and therefore R(µ− A) = X is satisfied for all µ > 0. The following
Corollary summarises these important special cases of the Lumer–Phillips Theorem.

Corollary 3.3.4. Assume X is a separable Hilbert space. The operator A : D(A) ⊂ X → X
generates a contraction semigroup on X if any one of the following conditions is satisfied:

(i) 0 ∈ ρ(A) and Re〈Ax, x〉 ≤ 0 for all x ∈ D(A).

(ii) A is a self-adjoint operator, i.e., A∗ = A and Re〈Ax, x〉 ≤ 0 for all x ∈ D(A).

(iii) A is a skew-adjoint operator, i.e., A∗ = −A.

There are still several partial differential equations for which the conditions of the
Lumer–Phillips theorem can be difficult to verify directly, or for which these assumptions
are not satisfied. In such a case one possibility for showing that A generates a semigroup is
to employ perturbation theory. The purpose of the results of these types is to present con-
ditions for operators of the form A = A0 + B to generate a strongly continuous semigroup
T (t) on X when it is known the operator A0 : D(A0) ⊂ X → X generates a semigroup T0(t).
Often it is also desirable to determine some properties of T (t) based on corresponding prop-
erties of T0(t) and the perturbation of B : D(B) ⊂ X → X. The following result shows that
if B is a bounded operator, then also the operator A0 +B is always guaranteed to generate
a semigroup T (t) on X. Literature also offers a variety of results on perturbations with an
unbounded operator B, and a good overview of this topic is presented in [8, Ch. III].
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Theorem 3.3.5. Assume A0 : D(A0) ⊂ X → X generates a semigroup T0(t) on a separable
Hilbert space X, and let M0 ≥ 1 and ω0 ∈ R be such that ‖T0(t)‖ ≤ M0e

ω0t for all t ≥ 0. If
B ∈ L(X), then the operator A = A0+B with domain D(A) = D(A0) generates a semigroup
T (t) on X, and

‖T (t)‖ ≤M0e
(ω0+M0‖B‖)t, for all t ≥ 0.

If the semigroup T0(t) is contractive and Re〈Bx, x〉 ≤ 0 for all x ∈ X, then the semigroup
T (t) is contractive as well.

Proof. The first part of the result is presented in the majority of the books on semigroup
theory, e.g., [11, Thm. 10.3.1] or [8, Thm. III.1.3]. In the case where T0(t) is contractive
and also the operator B is dissipative, the Lumer–Phillips theorem implies that for every
x ∈ D(A) = D(A0)

Re〈Ax, x〉 = Re〈(A0 +B)x, x〉 = Re〈A0x, x〉︸ ︷︷ ︸
≤0

+ Re〈Bx, x〉︸ ︷︷ ︸
≤0

≤ 0.

Thus the operator A is dissipative. By the Lumer–Phillips theorem the operator A = A0 +B
generates a contraction semigroup provided that R(µ − A) = X for some µ > 0. If we let
µ > 0 be arbitrary, then µ ∈ ρ(A0) due to the contractivity of T0(t) and Theorem 3.3.2, and
we can write

µ− A = µ− A0 −B = (I −BR(µ,A0))(µ− A0).

Thus the operator µ − A is surjective provided that I − BR(µ,A0) has a bounded inverse.
However, Theorem 3.3.2 implies that for any µ > ‖B‖ we have an estimate ‖BR(µ,A0)‖ ≤
‖B‖‖R(µ,A0)‖ ≤ ‖B‖/µ < 1. Thus for µ > ‖B‖ the operator I − BR(µ,A0) has a bounded
inverse1, and consequently R(µ− A) = X.

Example 3.3.6 (The Heat Equation). Consider the uncontrolled distribution of heat in a
uniform metal rod of a unit length modeled by a heat equation (see Section 1.4.1)

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t), ξ ∈ (0, 1) (3.6a)

v(0, t) = 0, v(1, t) = 0, (3.6b)

v(ξ, 0) = v0(ξ), (3.6c)

where α > 0 is the thermal conductivity of the material. As discussed in Section 1.4.1, the
heat equation (3.6) can be written as an abstract differential equation of the form (3.1) on
the space X = L2(0, 1) by choosing x(t) = v(·, t) ∈ X for all t ≥ 0 and defining the operator
A : D(A) ⊂ X → X such that

(Af)(ξ) = α
d2f

dξ2
(ξ),

1Recall that I − T with T ∈ L(X) has a bounded inverse whenever ‖T‖ < 1.
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(or Af = αf ′′ more compactly) with domain

D(A) =
{
f ∈ X

∣∣ f, f ′ are absolutely continuous and f(0) = f(1) = 0
}
.

Note that the domain D(A) of A contains the boundary conditions of the original partial
differential equation. The “absolute continuity” of f and f ′ for the elements f ∈ D(A)
guarantee that the second derivative function f ′′ belongs to the space L2(0, 1), and therefore
we indeed have Af ∈ X for all f ∈ D(A). Our aim is to apply the Lumer–Phillips theorem
to show that A generates a contraction semigroup on X = L2(0, 1). We begin by showing
that A is a dissipative operator. Let f ∈ D(A) be arbitrary. Integrating by parts and using
the boundary conditions f(0) = f(1) = 0 we can compute

Re〈Af, f〉L2 = Re

∫ 1

0

αf ′′(ξ)f(ξ)dξ = αRe
(
f ′(1)f(1)− f ′(0)f(0)

)
− αRe

∫ 1

0

f ′(ξ)f ′(ξ)dξ

= −α
∫ 1

0

|f ′(ξ)|2dξ ≤ 0.

Since f ∈ D(A) was arbitrary, we conclude that A is dissipative. By Corollary 3.3.4 the
operator A generates a contraction semigroup if 0 ∈ ρ(A). To this end, let g ∈ X be
arbitrary. Our aim is to find f ∈ D(A) such that Af = g, and to show that ‖f‖X ≤ M‖g‖X
for some constant M > 0 independent of g. Taking into account the boundary conditions
for functions in D(A), the equation Af = g is equivalent to the boundary value problem

αf ′′(ξ) = g(ξ) for ξ ∈ (0, 1)

f(0) = f(1) = 0.

Integrating the ODE twice shows that

αf ′(ξ) = c0 +

∫ ξ

0

g(r)dr ⇒ f(ξ) = c1 + c0ξ +
1

α

∫ ξ

0

∫ s

0

g(r)drds

for some constants c0, c1 ∈ C. The condition f(0) = 0 implies c1 = 0, and f(1) = 0 requires

c0 = − 1

α

∫ 1

0

∫ s

0

g(r)drds.

The solution f is clearly unique, and thus the operator A is in particular injective. The
structure of f implies that f and f ′ are absolutely continuous. To compute the norm ‖f‖L2

we first note that (using the Cauchy–Schwarz Inequality 〈f1, f2〉 ≤ ‖f1‖‖f2‖)

|c0| =
∣∣∣∣ 1α
∫ 1

0

∫ s

0

g(r)drds

∣∣∣∣ ≤ 1

α

∫ 1

0

∫ s

0

|g(r)|drds ≤ 1

α

∫ 1

0

∫ s

0

|g(r)|drds

≤ 1

α

∫ 1

0

∫ 1

0

|g(r)|drds ≤ 1

α

(∫ 1

0

1dr

)1/2(∫ 1

0

|g(r)|2dr
)1/2

=
1

α
‖g‖L2 .

Similarly the L2-norm of the last term of f(·) can be estimated by∫ 1

0

∣∣∣∣∫ ξ

0

1

α

∫ s

0

g(r)drds

∣∣∣∣2 dξ ≤ 1

α2

∫ 1

0

(∫ ξ

0

∫ s

0

|g(r)|drds
)2

dξ

≤ 1

α2

∫ 1

0

(∫ 1

0

∫ 1

0

|g(r)|drds
)2

dξ =
1

α2

(∫ 1

0

|g(r)|dr
)2

≤ 1

α2

(∫ 1

0

1dr

)(∫ 1

0

|g(r)|2dr
)

=
1

α2
‖g‖2L2 .
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Since f = f1 + f2 with f1(ξ) = c0ξ and f2(ξ) = 1
α

∫ ξ
0

∫ s
0
g(r)drds, and since ‖f1‖2L2 =

|c0|2
∫ 1

0
ξ2dξ = |c0|2/3, the triangle inequality ‖f1 + f2‖ ≤ ‖f1‖+ ‖f2‖ implies

‖f‖L2 ≤ 1√
3α
‖g‖L2 +

1

α
‖g‖L2 =

1 +
√

3√
3α
‖g‖L2 .

Since g ∈ X was arbitrary and the constant (1 +
√

3)/(
√

3α) is independent of the choice of
g ∈ X, we conclude that the operator A has a bounded inverse, i.e., 0 ∈ ρ(A).

Figure 3.1 shows a numerical approximation of the solution of the heat equation with
parameter α = 1/10 for 0 ≤ t ≤ 3. The initial condition is chosen as v0(ξ) = 10ξ3(1− ξ) for
ξ ∈ [0, 1], and this initial condition in particular satisfies x0 ∈ D(A).

0

1

ξ

0

3

t

Figure 3.1: Numerical approximation of the solution with α = 1/10.

�

In Example 3.3.6 the operator A is in fact self-adjoint.

Lemma 3.3.7. The operator A = α d2

dξ2
with α > 0 on X = L2(0, 1) with domain D(A) ={

f ∈ X
∣∣ f, f ′ abs. cont. and f(0) = f(1) = 0

}
is self-adjoint, i.e., A∗ = A.

Proof. The domain D(A) satisfies C∞c ([0, 1]) ⊂ D(A) ⊂ X, where C∞c ([0, 1]) is the space of
smooth functions with compact support. Since C∞c ([0, 1]) is dense in X, also D(A) is dense
in X, and thus A has a well-defined adjoint A∗ : D(A∗) ⊂ X → X (Definition B.2.2).

Let f, g ∈ D(A). We then have f(0) = f(1) = 0 and g(0) = g(1) = 0, and

〈Af, g〉L2 = α

∫ 1

0

f ′′(ξ)g(ξ)dξ = α
(
f ′(1)g(1)− f ′(0)g(0)

)
− α

∫ 1

0

f ′(ξ)g′(ξ)dξ

= −α
∫ 1

0

f ′(ξ)g′(ξ)dξ = −α
(
f(1)g′(1)− f(0)g′(0)

)
+ α

∫ 1

0

f(ξ)g′′(ξ)dξ

=

∫ 1

0

f(ξ)αg′′(ξ)dξ = 〈f, Ag〉L2 .
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By the definition of the adjoint A∗ the above identity implies g ∈ D(A∗) and A∗g = Ag.
Since g ∈ D(A) was arbitrary, we have D(A) ⊂ D(A∗) and A∗g = Ag for all g ∈ D(A).
It remains to show that D(A∗) ⊂ D(A). To this end, let g ∈ D(A∗) be arbitrary. Then
for any f ∈ D(A) we have 〈Af, g〉 = 〈f, h〉 where h = A∗g ∈ L2(0, 1). If we choose
f = φn := 2 sin(nπ·) ∈ D(A), then Af = Aφn = −n2π2φn and

ĝ(n) := 〈g, φn〉 = 2

∫ 1

0

g(ξ) sin(nπξ)dξ, ĥ(n) := 〈h, φn〉 = 2

∫ 1

0

h(ξ) sin(nπξ)dξ

are the coefficients of the Fourier sine series of g and h, respectively. The identity 〈Af, g〉 =
〈f, h〉 implies −n2π2ĝ(n) = ĥ(n). Since h ∈ L2(0, 1), the theory of Fourier series implies
(ĥ(n))n∈N ∈ `2(C). Thus also (n2ĝ(n))n∈N ∈ `2(C). Long story short, the Fourier theory
implies that g and g′ are absolutely continuous and g′′ ∈ L2(0, 1). To show that g(0) =
g(1) = 0, it suffices to note that since g was shown to be continuously differentiable, its
Fourier sine series

g(ξ) =
∞∑
n=1

ĝ(n)φn(ξ)

converges uniformly on [0, 1] (and in particular pointwise), and thus φn(0) = φn(1) = 0 for
all n ∈ N implies g(0) = g(1) = 0 as well.

In the proof of Lemma 3.3.7 we verified the property D(A∗) ⊂ D(A) explicitly. However,
there is also a general result on self-adjoint operators which states that “if a densely defined
operator A : D(A) ⊂ X → X satisfies 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A) and λ0 ∈
ρ(A) for some λ0 ∈ R, then A is self-adjoint” (this result is presented for example on the
course MATH.MA.830 Advanced Functional Analysis). Since we already proved 0 ∈ ρ(A)
in Example 3.3.6, we could have alternatively employed this general result with λ0 = 0 in
proving Lemma 3.3.7.

Example 3.3.8 (The Wave Equation). In this example we consider another partial differ-
ential equation of system that is very often encountered in control applications. The one-
dimensional damped wave equation on the interval (0, 1) has the form

∂2w

∂t2
(ξ, t) = c2

∂2w

∂ξ2
(ξ, t)− d(ξ)

∂w

∂t
(ξ, t), ξ ∈ (0, 1), t > 0 (3.7a)

w(0, t) = w(1, t) = 0, t > 0 (3.7b)
w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), ξ ∈ (0, 1) (3.7c)

where c > 0 is the wave speed and d(·) ≥ 0 is the damping coefficient, which is assumed
to be uniformly continuous on [0, 1]. In the above model the solution w(ξ, t) models the
deflection of a string at a point ξ ∈ (0, 1). The boundary conditions describe a situation
where the string is held fixed at both ends ξ = 0 and ξ = 1.

There are different ways of representing the wave equation as an abstract linear system.
On this course we consider so-called energy space formulation. For simplicity we assume
the wave speed is normalised to one, i.e., c2 = 1, and choose the state variable as

x(t) =

∂w∂ξ (·, t)
∂w

∂t
(·, t)


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on the space X = L2(0, 1) × L2(0, 1) with norm ‖(x1, x2)T‖2X = ‖x1‖2L2 + ‖x2‖2L2. The
terminology for this choice of the state comes from the property that at each time t ≥ 0 the
total energy E(t) (potential + kinetic energy) is given by the norm of x(t) on X as

E(t) =
1

2
‖x(t)‖2X =

1

2

∫ 1

0

∣∣∣∣∂w∂ξ (ξ, t)

∣∣∣∣2 +

∣∣∣∣∂w∂t (ξ, t)

∣∣∣∣2 dξ.
In order to determine the corresponding operator A, we compute the time-derivative of x(t)
(for brevity we denote the partial derivatives of w(ξ, t) with respect to t and ξ with wt(ξ, t)
and wξ(ξ, t) etc), and using (3.7a) we get

ẋ(t) =
d

dt

[
wξ(·, t)
wt(·, t)

]
=

[
wtξ(·, t)
wtt(·, t)

]
=

[
wξt(·, t)

wξξ(·, t)− d(·)wt(·, t)

]
=

[
0 ∂ξ
∂ξ −D0

]
x(t),

where D0 : L2(0, 1) → L2(0, 1) is a multiplication operator defined so that (D0f)(ξ) =
d(ξ)f(ξ) for all f ∈ L2(0, 1). Thus the operator A is given by

A

[
f
g

]
=

[
0 ∂ξ
∂ξ −D0

] [
f
g

]
=

[
g′(·)

f ′(·)− d(·)g(·)

]
.

Since the deflection w(ξ, t) is not part of state x(t), it is not possible2 to describe the bound-
ary conditions (3.7b) in terms of x(t). Because of this, we will instead use more general
conditions where the deflection w(·, t) remains constant with respect to time at the end-
points ξ = 0 and ξ = 1, i.e. ∂w

∂t
(0, t) = 0 and ∂w

∂t
(1, t) = 0. Together with the requirement

that the first order derivatives of the both components of x(t) should be in L2(0, 1), the
domain of A becomes

D(A) =
{

(f, g)T ∈ X
∣∣ f(·), g(·) are absolutely continuous and g(0) = g(1) = 0

}
.

Finally, the initial condition of the the abstract system is given by x0 = (w′0, w1)
T (where

w′0(ξ) = dw0

dξ
(ξ)).

Our aim is to use the perturbation results in Theorem 3.3.5 to show that A generates a
contraction semigroup on X. The operator A is of the form

A = A0 +D, where A0 =

[
0 ∂ξ
∂ξ 0

]
, D =

[
0 0
0 −D0

]
with D(A0) = D(A). We assumed that the function d(·) in the operator D is continuous on
the closed interval [0, 1] and thus for any x = (f, g)T ∈ X we have

‖Dx‖2X =

∥∥∥∥[ 0
−d(·)g(·)

]∥∥∥∥2
X

= ‖d(·)g(·)‖2L2 =

∫ 1

0

|d(ξ)|2|g(ξ)|2dξ

≤
(

max
0≤ξ≤1

|d(ξ)|2
)∫ 1

0

|g(ξ)|2dξ =

(
max
0≤ξ≤1

|d(ξ)|
)2

‖g‖2L2 ≤
(

max
0≤ξ≤1

|d(ξ)|
)2

‖x‖2X .

2The fact that w(ξ, t) is not part of x(t) is a significant disadvantage of the energy space formulation of
the wave equation. Especially this property makes this representation unsuitable for applications where the
objective is to control the deflection. However, we choose to work with the energy space formulation due to
the fact that the more standard choice x(t) = (w(·, t), wt(·, t))T requires a much more complicated choice for
a state space X. More information on this topic can be found e.g., in [8, Sec. VI.3], [7], or [1].
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Thus D ∈ L(X). We begin by using the Lumer–Phillips theorem to show that A0 generates
a contraction semigroup on X. For any x = (f, g)T ∈ D(A0) = D(A) we have (using
integration by parts and the boundary conditions g(0) = g(1) = 0)

〈A0x, x〉X =

〈[
g′

f ′

]
,

[
f
g

]〉
X

= 〈g′, f〉L2 + 〈f ′, g〉L2 =

∫ 1

0

g′(ξ)f(ξ)dξ +

∫ 1

0

f ′(ξ)g(ξ)dξ

=
(
g(1)f(1)− g(0)f(0)

)
−
∫ 1

0

g(ξ)f ′(ξ)dξ +

∫ 1

0

f ′(ξ)g(ξ)dξ

= −
∫ 1

0

f ′(ξ)g(ξ)dξ +

∫ 1

0

f ′(ξ)g(ξ)dξ = i2 Im

(∫ 1

0

f ′(ξ)g(ξ)dξ

)
∈ iR.

Thus Re〈A0x, x〉X = 0 and by definition A0 is dissipative. It remains to show that R(I −
A0) = X. To this end, let x1 = (f1, g1)

T ∈ X be arbitrary. Finding x = (f, g)T ∈ D(A0) such
that (I − A0)x = x1 is equivalent to solving differential equation([

1 0
0 1

]
−
[

0 ∂ξ
∂ξ 0

])[
f(ξ)
g(ξ)

]
=

[
f1(ξ)
g1(ξ)

]

⇔
[
0 1
1 0

] [
f ′(ξ)
g′(ξ)

]
=

[
f(ξ)
g(ξ)

]
−
[
f1(ξ)
g1(ξ)

]

⇔
[
f ′(ξ)
g′(ξ)

]
=

[
0 1
1 0

] [
f(ξ)
g(ξ)

]
−
[
g1(ξ)
f1(ξ)

]
with boundary conditions g(0) = g(1) = 0. If we denote Q = [ 0 1

1 0 ], then the last form of the
differential equation has a solution that can be expressed in terms of the matrix exponential
function ξ 7→ eQξ and the variation of parameters formula. More precisely, the general form
of the solution is [

f(ξ)
g(ξ)

]
= eQξ

[
c0
c1

]
−
∫ ξ

0

eQ(ξ−r)
[
g1(r)
f1(r)

]
dr.

For any c0, c1 ∈ C the functions f and g are absolutely continuous. It remains to fix the
constants c0 and c1 in such a way that the boundary conditions g(0) = g(1) = 0 are satisfied.
We first note that the matrix exponential eQξ has the formula (can be computed symbolically
for example with Matlab)

eQξ =

[
cosh(ξ) sinh(ξ)
sinh(ξ) cosh(ξ)

]
.

The boundary conditions g(0) = 0 and g(1) = 0 require that

0 = g(0) =

=0︷ ︸︸ ︷
sinh(0) c0 +

=1︷ ︸︸ ︷
cosh(0) c1 ⇒ c1 = 0

and consequently

0 = g(1) =

6=0︷ ︸︸ ︷
sinh(1) c0 −

∫ 1

0

(sinh(1− r)g1(r) + cosh(1− r)f1(r)) dr

⇒ c0 =
1

sinh(1)

∫ 1

0

(sinh(1− r)g1(r) + cosh(1− r)f1(r)) dr.
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With these choices of c0 and c1, the we have that g(0) = g(1) = 0, and thus x = (f, g)T ∈
D(A). Since x1 ∈ X was arbitrary, we have shown that R(I − A0) = X. Thus A0 generates
a contraction semigroup on X by the Lumer–Phillips theorem.

Finally, consider the full operator A = A0 + D. As we saw above, the operator D
is bounded and thus by the first part of Theorem 3.3.5 also the operator A generates a
semigroup on X. However, this semigroup is also a contraction semigroup by the second
part of the same result, since for any x = (f, g)T ∈ X we have (using d(ξ) ≥ 0)

Re〈Dx, x〉X = Re〈−dg, g〉L2 = Re

∫ 1

0

−d(ξ)g(ξ)g(ξ)dξ = −
∫ 1

0

d(ξ)|g(ξ)|2dξ ≤ 0,

and thus D is dissipative. �

Example 3.3.9 (The Schrödinger Equation). In this final additional example we consider a
one-dimensional time-dependent and non-relativistic Schrödinger equation on an interval
[0, 1]. This equation describes the time-evolution of a “wave-function” ψ(ξ, t) of a particle
in a potential well. If the potential V (·) does not depend on time, the equation is given by

i}
∂ψ

∂t
(ξ, t) = − }2

2m

∂2ψ

∂ξ2
(ξ, t) + V (ξ)ψ(ξ, t), 0 < ξ < 1, t > 0,

ψ(0, t) = ψ(1, t) = 0, t > 0

ψ(ξ, 0) = ψ0(ξ),

where } is the reduced Planck’s constant, m is the mass of the particle and i =
√
−1 is the

imaginary unit. In this example we assume that the potential V (·) is a piecewise continuous
function on (0, 1) and supξ∈(0,1)|V (ξ)| < ∞. This assumption is not always satisfied in
quantum mechanics, where it is common to consider “singular potentials” whose values
approach infinity near some points ξ (most importantly this is true for Coulomb’s Law, the
electrical attraction between particles with the opposite electrical charge).

In the exercises we will show that the Schrödinger equation can be formulated as an
infinite-dimensional differential equation on the space X = L2(0, 1) with the operator

(Aψ)(ξ) = i
}

2m

d2ψ

dξ2
(ξ)− i

}
V (ξ)ψ(ξ)

with domain D(A) =
{
f ∈ X

∣∣ f, f ′ abs. cont. and f(0) = f(1) = 0
}

. In proving the
fact that A is a generator of a semigroup we can again use the the perturbation results in
Theorem 3.3.5 as well as Lemma 3.3.7. �

3.4 Nonhomogeneous Differential Equations

Semigroups can also be used to study nonhomogeneous differential equations

ẋ(t) = Ax(t) + f(t), x(0) = x0 ∈ X (3.8)

where A generates a strongly continuous semigroup T (t) on X and f : [0,∞) → X. In
particular, the solution of (3.8) has exactly the same “variation of parameters form” as the
solution of a finite-dimensional matrix differential equation of the form (3.8). However, we
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again need to be more careful in defining what we mean by a “solution” of (3.8). Here we
again call x(·) the classical solution of (3.8) on [0, τ ] for some τ > 0 if x(·) ∈ C1([0, τ ];X),
x(t) ∈ D(A) for all t ≥ 0 and (3.8) is satisfied for all t ∈ [0, τ ]. Moreover, the function is
a classical solution of (3.8) if it is its classical solution on [0, τ ] for all τ > 0. The integral
in (3.9) is understood as a so-called Bochner integral of the function s 7→ T (t− s)f(s) ∈ X,
which is defined similarly as the Lebesgue integral, but for functions with values in a Banach
space [1, Sec. 1.1].

Theorem 3.4.1. Assume A generates a strongly continuous semigroup T (t) on X. If f ∈
C1([0, τ ];X) and x0 ∈ D(A), then (3.8) has a unique classical solution given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds, t ≥ 0. (3.9)

Proof. See [11, Thm. 10.1.3].

Similarly as in the case for homogeneous abstract differential equations, it is often useful
to be able to consider weaker forms of solutions of the differential equation (3.8). The mild
solution of the equation is again defined using the form of the classical solution.

Definition 3.4.2. Assume A generates a strongly continuous semigroup T (t) on X. If
f ∈ L1

loc(0,∞;X) and x0 ∈ X, then the function defined in (3.9) is called the mild solution
of (3.8).

It is shown in [11, Lem. 10.1.6] that the mild solution x(·) : [0,∞)→ X is a continuous
function.



4. Infinite-Dimensional Linear Control
Systems

In this chapter we define the basic properties of an infinite-dimensional control system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (4.1a)
y(t) = Cx(t) +Du(t). (4.1b)

on a Banach or a Hilbert space X. To guarantee that the differential equation (4.1a) has a
well-defined solution for a suitable class of inputs, we make a standing assumption that the
operator A generates a strongly continuous semigroup T (t) on X.

4.1 Inputs and Outputs

We assume the input space U is a finite-dimensional linear vector space, that is, U = Cm for
some m ∈ N. The control input u(·) is again a function u(·) : [0,∞) → U . The output space
is assumed to be Y = Cp for some p ∈ N, and y(·) : [0,∞)→ Y , which means that we take p
independent measurements from the state of the system.

Definition 4.1.1. If A generates a strongly continuous semigroup T (t) on a Banach space
X, and if B ∈ L(U,X), C ∈ L(X, Y ), and D ∈ L(U, Y ) for some Hilbert spaces U and Y ,
then we call (4.1) an infinite-dimensional linear system.

In particular, if the system has a single (scalar-valued) input and a single measured
output, then U = Y = C, and se have B ∈ L(C, X), C ∈ L(X,C), and D ∈ C1×1 = C.

The use of the term “an infinite-dimensional linear system” varies in the literature. On
this course we mainly use the above definition to collect our standing assumptions on the
operators A, B, C, and D. We assume the operators B, and C are bounded, but sometimes
these operators need to be allowed to be unbounded instead. This is the case especially
when we would like to consider the control of partial differential equations where the
control input and the measurement act through the boundary of the spatial domain. How-
ever, the theory for systems with unbounded input and output operators requires certain
advanced techniques, and because of this, we concentrate on bounded operators B and
C. For more information on more general classes of infinite-dimensional linear systems,
see [11, Ch. 11] and [16, 17].

Theorem 4.1.2. The infinite-dimensional control system (4.1) has a well-defined mild state
x(t) and output y(t) for every initial state x0 ∈ X and every input u(·) ∈ L1

loc(0,∞;U).

48
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Proof. If u(·) ∈ L1
loc(0,∞;U) the boundedness of B implies that Bu(·) ∈ L1

loc(0,∞;U), and
thus by Definition 3.4.2 the mild solution of the differential equation (4.1a) is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds, t ≥ 0.

Using the formula (4.1b) shows that the output y(t) is given by

y(t) = Cx(t) +Du(t) = CT (t)x0 +

∫ t

0

CT (t− s)Bu(s)ds+Du(t), t ≥ 0.

Note that if D 6= 0 and u ∈ L1
loc(0,∞;U), then the output y(t) of (4.1) may in general

be a discontinuous function and its value might only be defined for almost all t ≥ 0. On
the other hand, if D = 0, then for any u ∈ L1

loc(0,∞;U) the output y(·) is a continuous
function of t ∈ [0,∞), since x(·) is a continuous function by [11, Lem. 10.1.6] and since
C ∈ L(X, Y ).

Example 4.1.3. We can now consider adding inputs and outputs to the heat equation con-
sidered in Example 3.3.6. If we consider a situation where we have one scalar-valued input
u(t) ∈ R and one scalar-valued output y(t) ∈ R (this situation is called single-input single-
output, or SISO), our partial differential equation is of the form

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1) (4.2a)

v(0, t) = 0, v(1, t) = 0, v(ξ, 0) = v0(ξ), (4.2b)

y(t) =

∫ 1

0

v(ξ, t)c(ξ)dξ (4.2c)

where the function b(·) ∈ L2(0, 1;R) describes the way the control input affects the heat
distribution of the partial differential equation and c(·) ∈ L2(0, 1;R) describes how the
measurement is taken from the state of the system. In particular, if c(·) ≥ 0, the integral
in the formula for the output is a weighted average of the heat over a part of the domain
[0, 1]. Heat equations, and more generally convection-diffusion-reaction equations, do not
typically have the feedthrough term “Du(t)” in (4.1b), which means that D = 0 ∈ C in our
example.

If we choose x(t) = v(·, t), X = L2(0, 1) and Af = αf ′′ with domain D(A) = { f ∈ X |
f, f ′ abs. cont. f ′′ ∈ X, f(0) = f(1) = 0 }, then the heat equation can be written in the
form (4.1) if the operators B ∈ L(C, X) and C ∈ L(X,C) are chosen in such a way that

Bu = b(·)u, u ∈ C

Cf =

∫ 1

0

f(ξ)c(ξ)dξ = 〈f, c〉L2 , f ∈ X.

These operators indeed satisfy B ∈ L(C, X) and C ∈ L(X,C), since C = 〈·, c〉 is a bounded
linear functional on X, and for any u ∈ C we have

‖Bu‖X = ‖b(·)u‖L2 = ‖b(·)‖L2|u|.
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The case of multiple inputs and outputs in the heat equation can be handled similarly, and
it will be studied in detail in the exercises.

Figure 4.1 plots the state and the output of the control system with α = 1/10, with input
and output profile functions b(·) = χ[1/2,1](·) and c(·) = χ[0,3/4](·), and with the control input
u(t) ≡ 1. Figure 4.2 plots the solution and the output of the same system with the input
u(t) = sin(t).
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Figure 4.1: Numerical approximation of the solution and the output of the controlled heat
equation with u(t) ≡ 1.
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Figure 4.2: Numerical approximation of the solution and the output of the controlled heat
equation with u(t) ≡ sin(t).

�

Example 4.1.4. In this example we consider the damped wave equation in Example 3.3.8
with control input and measured output (wave speed normalised to one). We consider a
situation where the wave equation has a single scalar-valued control input u(t) ∈ R and a
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single measurement y(t) ∈ R so that

∂2w

∂t2
(ξ, t) =

∂2w

∂ξ2
(ξ, t)− d(ξ)

∂w

∂t
(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1), (4.3a)

w(0, t) = w(1, t) = 0, t > 0 (4.3b)
w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), ξ ∈ (0, 1) (4.3c)

y(t) =

∫ 1

0

∂w

∂ξ
(ξ, t)c1(ξ)dξ +

∫ 1

0

∂w

∂t
(ξ, t)c2(ξ)dξ. (4.3d)

The input term describes a force input to the wave system. The spatial distribution of this
force is described by the “input profile” b(·), and the strength of this force is controlled
with the scalar input u(t) as a function of time. The output y(t) measures the sum of the
weighted averages of the strain wξ(·, t) and the velocity wt(·, t) with the weight functions
c1(·) and c2(·), respectively. In the special case where c2(ξ) ≡ 0 only strain is measured,
and correspondingly if c1(ξ) ≡ 0, then y(t) measures only the velocity1. In addition to the
assumptions in Example 3.3.8, we assume that the input profile function b(·) and the weight
functions c1(·) and c2(·) of the measured output satisfy b, c1, c2 ∈ L2(0, 1).

We will now write (4.3) in the form (4.1). We recall that the state of the wave system
without inputs and outputs was chosen as x(t) = (wξ(·, t), wt(·, t))T on X = L2(0, 1) ×
L2(0, 1), and the operator A was given by

A =

[
0 ∂ξ
∂ξ −D0

]
with D(A) =

{
(f, g)T ∈ X

∣∣ f(·), g(·) are absolutely continuous and g(0) = g(1) = 0
}

.
Similarly as in Example 3.3.8 we can write (formally)

ẋ(t) =

[
wξt(·, t)

wξξ(·, t)− d(·)wt(·, t) + b(·)u(t)

]
=

[
0 ∂ξ
∂ξ −D0

]
x(t) +

[
0
B0

]
u(t),

where B0 ∈ L(C, L2(0, 1)) is defined so that B0u = b(·)u ∈ L2(0, 1) for u ∈ C.
In addition, the measurement y(t) can be written in the form

y(t) =

∫ 1

0

wξ(ξ, t)c1(ξ)dξ +

∫ 1

0

wt(ξ, t)c2(ξ)dξ

= 〈wξ(·, t), c1〉L2 + 〈wt(·, t), c2〉L2

= C1wξ(·, t) + C2wt(·, t)

=
[
C1, C2

] [wξ(·, t)
wt(·, t)

]
where the C1 = 〈·, c1〉L2 ∈ L(L2(0, 1),C) and C2 = 〈·, c2〉L2 ∈ L(L2(0, 1),C) are linear
functionals, and the “block operator”

[
C1, C2

]
is defined so that

[
C1, C2

]
[ x1x2 ] = C1x1+C2x2.

Thus the operators A, B, and C in (4.1) are given by

A =

[
0 ∂ξ
∂ξ −D0

]
, B =

[
0
B0

]
, C =

[
C1, C2

]
,

1We could similarly define the output y(t) as the weighted average of the deflection w(·, t), but as we will
see, this does not fit our semigroup formulation since w(·, t) is not part of the state x(t) of the system.
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and D = 0 ∈ C. The operators B and C indeed satisfy B ∈ L(C, X) and C ∈ L(X,C) since
for any u ∈ C and x = (x1, x2) ∈ L2(0, 1)× L2(0, 1) we have

‖Bu‖2X = 02 + ‖B0u‖2L2 = ‖b‖2L2|u|2,

‖Cx‖ = ‖C1x1 + C2x2‖ ≤ ‖C1‖‖x1‖+ ‖C2‖‖x2‖
≤
√
‖C1‖2 + ‖C2‖2

√
‖x1‖2 + ‖x2‖2

=
√
‖C1‖2 + ‖C2‖2‖x‖,

where we have used the Cauchy–Schwarz inequality.
�

4.1.1 A Few Words About Numerical Approximations∗

The use of numerical approximations is essential for simulating and visualising the be-
haviour of the state and the output of a controlled partial differential equation, or in fact
any infinite-dimensional linear control system of the form (4.1). For the purposes of control,
for example in order to illustrate how a designed control influences the behaviour of the
partial differential equation, it is useful to begin by approximating the infinite-dimensional
system (4.1) with finite-dimensional system

ẋN(t) = ANxN(t) +BNu(t), xN(0) = xN0 ∈ XN (4.4a)
yN(t) = CNxN(t) +Du(t). (4.4b)

The goal in the approximation is to choose the matrices AN ∈ CN×N , BN ∈ CN×m, CN ∈
Cp×N in such a way that with the same input u(t) and corresponding initial states the state
xN(t) and yN(t) approximate the state x(t) and the output y(t) of the infinite-dimensional
system (4.1), respectively. In the case of partial differential equations this involves approx-
imating approximating the spatial derivatives and leaving the time t as it is, and for this
reason the process is called semidiscretisation.

On this course we do not have a chance to go into details about numerical approxima-
tions, but the following list presents an overview of the most important numerical approx-
imation schemes in our context. What all of these numerical methods have in common is
that approximation of smoother solutions (e.g., solutions with higher number of continu-
ous derivatives) is in general easier than approximation of rough solutions, and because of
this the approximations typically mainly work well in the case of classical solutions of the
abstract differential equation (4.1a) (see Section 3.4), whereas the approximation of mild
solutions may be difficult. This feature is further emphasised by numerical approximations
use the knowledge of the boundary conditions of the PDE, and thus the approximated solu-
tions are assumed to satisfy the boundary conditions of the equation, which is not true for
all mild solutions of (4.1a). On the other hand, the heat equation (and more generally all
parabolic partial differential equations) has a property that its solutions become smoother
and smoother as the time t increases (in fact every mild solution of the heat equation turns
into a classical solution after any positive time interval, including the property that the
boundary conditions conditions are satisfied for any t > 0!). This property makes the nu-
merical approximation of heat equations easier than — most notably — wave equations
and other hyperbolic partial differential equations which lack such a smoothing property.
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• Finite Differences: The domain of the PDE is divided into a grid consisting of small
intervals or rectangular domains, and the solution f(x, y, t) is approximated at the
corners of these rectangles (the “nodes” of the grid). Especially in the case of the
heat equation on [0, 1] (Examples 3.3.6 and 4.1.3) the temperature profile v(ξ, t) is
approximated with a vector vN(t) of its values

vN(t) =
[
v(h, t), v(2h, t), v(3h, t), . . . , v(1− 2h, t), v(1− h)

]T ∈ RN

(note that v(0, t) = v(1, t) = 0 due to the boundary conditions, so these values
do not need to be approximated), where h = 1/(N + 1). The derivative ∂2v

∂ξ2
(kh, t)

is correspondingly approximated with the second order difference quotient (“erotu-
sosamäärä” in Finnish),

∂2v

∂ξ2
(kh, t) ≈ v((k − 1)h, t)− 2v(kh, t) + v((k + 1)h, t)

h2
, 2 ≤ k ≤ N − 1,

and the cases k = 1 and k = N can be defined similarly using the boundary conditions.
The difference quotient can be obtained as a matrix multiplication of the vector vN(t),
and this leads to an approximate system of the form (4.4). The Finite Differences
approximation is very simple to implement for partial differential equations with only
one spatial variable (like the heat and wave equations on this course), or PDEs rectan-
gular spatial domains. The Finite Differences works well for parabolic equations like
the heat equation, but is not very reliable in approximating the wave equation and
other hyperbolic PDEs.

• Finite Element Method: In this method the partial differential equation is “projected”
(in an appropriate sense) to a finite-dimensional subspace XN of X spanned by a
collection of “hat functions”. The spatial domain of the PDE is divided into triangles
on which these hat functions are defined. The Finite Element Method works very
well for domains of various shapes, and it has better numerical properties than the
Finite Differences. Still, the standard Finite Difference can become unrealible in the
approximation of wave equations.

Matlab includes the “PDE Toolbox” (initiated with the command pdetool) for approx-
imation of PDEs using the Finite Element Method. The original developers of the PDE
Toolbox went on to develop a full commercial numerical analysis software “COMSOL
Multiphysics ” (official website). At the present day, there are also several free and
open-source packages for numerical approximations using the Finite Element Method,
and one of the most prominent ones is the FEniCS Project (official website), which
has Python and C++ interfaces.

• Modal approximation In the case where the eigenvalues {λk}k∈N of the operator A are
known and the corresponding eigenvectors {φk}k∈N for a Schauder basis of the space
X, it is possible to project the system (4.1) to a finite-dimensional subspace spanned
by N first such eigenvectors. This projection is especially easy to implement if the
eigenfunctions form an orthonormal basis. For example the differential operator d2

dξ2

with different types of boundary conditions has this property, as does the “undamped
operator” A0 in the wave equation in Examples 3.3.8 and 4.1.4. If {φk(·)}k∈N is an or-
thonormal basis ofX, then for every t ≥ 0 the solution x(t) of (4.1) can be represented

http://www.comsol.com/
http://www.fenicsproject.org/
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as an infinite series

x(t) =
∞∑
k=1

αk(t)φn(·),

where αk(t) = 〈x(t), φk〉X due to the orthonormality of {φk}k∈N. The projection onto
the subspace span{φ1, . . . , φN} then corresponds to approximation of the solution x(t)
with a truncated series

x(t) ≈
N∑
k=1

αk(t)φn(·),

and this leads to an approximate system (4.4) with the state xN(t) consisting of the
coefficients αk(t), i.e., xN(t) =

[
α1(t), . . . , αN(t)

]T ∈ CN .

• Spectral–Galerkin Method Similarly as in the Finite Element Method and the Modal
approximation, the system is projected onto a finite-dimensional subspace of X. In
the Spectral–Galerkin Method this subspace is chosen to consist of linear combinations
of a fixed finite number of polynomials, typically Legendre Polynomials or Chebyshev
Polynomials. Both of these families of polynomials can be used to express arbitrary
functions as a series with suitable coefficients, very similarly as periodic functions have
representations as Fourier series. However, the Legendre and Chebyshev polynomials
have very favourable properties compared to the Fourier basis functions (sines and
cosines), and especially the fast convergence of the Legendre and Chebyshev series
means that typically even low-dimensional spectral approximations can reach very
numerical accuracy in approximating the solutions of the PDE.

The Chebfun project (official website) offers a free (open-source) and very easy-to-
use Matlab-package consisting for several aspects of numerical approximation and
computations with functions. As the name suggests, the package is based on ap-
proximation of functions with Chebyshev polynomials, but using the Chebfun pack-
age does not require knowledge of the background theory. Even though the func-
tionality does not directly include the Spectral–Galerkin method, I personally re-
ally enjoy the Chebfun package, and I encourage everyone to try it out! The page
https://www.chebfun.org/examples/ lists a good number of examples you can com-
pute with Chebfun, ranging from easy to quite elaborate.

As mentioned above, all of the numerical approximations work best in the case where
the parameters of the PDE system are sufficiently smooth functions (at least continuous,
and ideally continuously differentiable). Especially the modal approximation and the spec-
tral method have trouble representing solutions x(t) as well as input and output profile
functions b(·) and c(·) which are either discontinuous or which do not satisfy the boundary
conditions of the original partial differential equation. In these situations both of these
approximation methods exhibit the well-known Gibbs phenomenon, which is illustrated in
Figure 4.3. In this example the modal approximation related to a heat equation with Dirich-
let boundary conditions is used to approximate three functions, a discontinuous function, a
continuous function which does not satisfy the boundary condition at ξ = 1, and a smooth
function satisfying both boundary conditions. Each case uses N = 40 eigenfunctions of the
operator A.

http://www.chebfun.org/
https://www.chebfun.org/examples/
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Figure 4.3: Numerical approximations (blue) for three initial states (green) with N = 40.

4.2 Stability of Infinite-Dimensional Systems

In this section we consider some fundamental properties and results on the stability of
infinite-dimensional linear systems. In particular, we concentrate on “internal” stability
types, i.e., types that are only related to the properties of the semigroup T (t) generated
by A. The following three definitions are the main concepts that we study.

Definition 4.2.1. The semigroup T (t) is called uniformly bounded if there exists M ≥ 1
such that ‖T (t)‖ ≤M for all t ≥ 0.

Definition 4.2.2. The system (4.1) is called strongly stable (or asymptotically stable), if in
the case of the constant zero input u(t) ≡ 0 the state of the system (4.1) satisfies x(t)→ 0
as t→∞ for all x0 ∈ X.

Definition 4.2.3. The system (4.1) is called exponentially stable, if there exist ω > 0 and
M ≥ 1 such that in the case of the constant zero input u(t) ≡ 0 the state of the system (4.1)
satisfies

‖x(t)‖ ≤Me−ωt‖x0‖, ∀t ≥ 0, x0 ∈ X.

Since in Definition 4.2.3 the state x(t) of the system with input u(t) ≡ 0 is given by
x(t) = T (t)x0, the condition for exponential stability is equivalent to the property that the
semigroup satisfies ‖T (t)‖ ≤ Me−ωt. Because of this, it is also common to say that the
semigroup is exponentially stable, if such M ≥ 1 and ω > 0 exist. Similarly, the semigroup
T (t) is called strongly stable if T (t)x→ 0 as t→∞ for all x ∈ X.

Of all the stability types of semigroups and systems (there are others as well!) exponen-
tial stability is the most commonly used and the one that is understood most profoundly.
On the other hand, the properties and characterizations for strongly stable semigroups are
under active research, see for instance [4, 5, 3, 15, 6].

The following theorem presents some necessary conditions for the different stability
types. It should be noted that (unlike in the case of finite-dimensional systems in Chap-
ter 2), none of these conditions are sufficient for T (t) to be exponentially stable.
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Theorem 4.2.4. Assume A generates a semigroup T (t) on a Banach space X.

(a) If T (t) is uniformly bounded, then Reλ ≤ 0 for all λ ∈ σp(A).

(b) If T (t) is strongly stable, then it is uniformly bounded.

(c) If T (t) is strongly stable, then Reλ < 0 for all λ ∈ σp(A).

(e) If T (t) is exponentially stable in such a way that ‖T (t)‖ ≤Me−ωt for some M ≥ 1 and
ω > 0, then Reλ ≤ −ω < 0 for all λ ∈ σp(A).

Proof. We will first show that if λ ∈ σp(A) and φ ∈ X is such that Aφ = λφ and φ 6= 0, then
it also follows that

T (t)φ = eλtφ, ∀t ≥ 0.

For this purpose, let t > 0 be arbitrary and consider the function s 7→ f(s) = eλsT (t − s)φ
on [0, t]. We then have

d

ds
f(s) = λeλsT (t− s)φ− eλsT (t− s)Aφ = λeλsT (t− s)φ− eλsT (t− s)λφ = 0.

Thus f(·) is a constant function on [0, t], and in particular T (t)φ = f(0) = f(t) = eλtφ. Now

‖T (t)φ‖ = ‖eλtφ‖ = |eλt|‖φ‖ = eReλt‖φ‖, t ≥ 0.

Since ‖φ‖ 6= 0, we immediately have that (i) ‖T (t)φ‖ stays bounded for all t ≥ 0 only
if Reλ ≤ 0, (ii) ‖T (t)φ‖ → 0 only if Reλ < 0, and finally (iii) ‖T (t)φ‖ ≤ Me−ωt‖φ‖
only if Reλ ≤ −ω. Thus we get that if T (t) is uniformly bounded, Reλ ≤ 0 (part (a)),
if it is strongly stable, then Reλ < 0 (part (c)), and if it is exponentially stable, then
Reλ ≤ −ω < 0 (part (d)).

Part (b) follows from the uniform boundedness principle (also known as the Banach–
Steinhauss theorem), which implies that if supt≥0‖T (t)x‖ < ∞ for all x ∈ X, then we also
have supt≥0‖T (t)‖ < ∞. Here the property supt≥0‖T (t)x‖ < ∞ for all x ∈ X follows from
the continuity of t→ T (t)x and the fact that ‖T (t)x‖ → 0 as t→∞.

The following important Gearhart–Greiner–Prüss theorem characterises exponential sta-
bility of semigroups on Hilbert spaces using the resolvent operator R(λ,A) = (λ − A)−1,
which is defined for all λ ∈ ρ(A) =

{
λ ∈ C

∣∣ (λ − A)−1 exists and is bounded
}
. In the

statement iR denotes the imaginary axis, i.e., iR = { is | s ∈ R }. The “only if” part of this
theorem remains valid also if X is a Banach space, but the “if” part is not in general true.

Theorem 4.2.5. AssumeA generates a uniformly bounded semigroup T (t) on a Hilbert space.
The semigroup T (t) is exponentially stable if and only if iR ⊂ ρ(A) and

sup
s∈R
‖R(is, A)‖ <∞.

Proof. See, e.g., [9, Thm. V.3.8], [11, Thm. 8.1.4].

In order to investigate the stability of the heat equation, we present the following useful
result in the special case where A is a self-adjoint operator. Note that in the result we don’t
actually assume the self-adjointness of A explicitly, but it is implied by the assumptions.
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Theorem 4.2.6. Assume A : D(A) ⊂ X → X is a densely defined operator on a Hilbert
space X. If 〈Ax, x〉 ≤ 0 for all x ∈ D(A) and 0 ∈ ρ(A), then A generates an exponentially
stable semigroup T (t) on X. In particular, there exists ω > 0 such that

‖T (t)‖ ≤ e−ωt, for all t ≥ 0.

Proof. Later on the course MATH.MA.830 Advanced Functional Analysis we will learn that
“if a densely defined operator A : D(A) ⊂ X → X satisfies 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈
D(A) and λ0 ∈ ρ(A) for some λ0 ∈ R, then A is self-adjoint”. However, our assumption that
〈Ax, x〉 ∈ R for all x ∈ D(A) in fact implies 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A)2. Together
with 0 ∈ ρ(A) this implies that A is self-adjoint.

We can prove the claim using the Lumer–Phillips Theorem (Theorem 3.3.3 and Corol-
lary 3.3.4). Since A is self-adjoint, we have 〈Ax, x〉 = Re〈Ax, x〉 ≤ 0 for all x ∈ D(A)
due to our assumptions. Since we assumed that 0 ∈ ρ(A), we can choose ω > 0 such that
[−ω, 0] ⊂ ρ(A). The special properties of self-adjoint operators then imply that we also have

〈Ax, x〉 ≤ −ω‖x‖2, ∀x ∈ D(A).

Since ‖x‖2 = 〈x, x〉, we can rearrange the above inequality to see that 〈(A + ω)x, x〉 ≤ 0
for all x ∈ D(A). Since also the operator A + ω is self-adjoint and 0 ∈ ρ(A + ω), we have
from Corollary 3.3.4(ii) that A+ω generates a contraction semigroup Tω(t) on X. However,
by [11, Exer. 5.3(b)], the semigroup Tω(t) generated by A + ω satisfies Tω(t) = eωtT (t) for
all t ≥ 0. Thus the contractivity of Tω(t) implies that

‖Tω(t)‖ ≤ 1 ⇔ ‖eωtT (t)‖ ≤ 1 ⇔ ‖T (t)‖ ≤ e−ωt

for all t ≥ 0.

In many situations it is very useful to be able to analyse the stability of a perturbed
semigroup generated by an operator of the form A0 + B, where A0 generates a stable
semigroup T0(t) and B ∈ L(X)3. Luckily, the estimate in Theorem 3.3.5 provides a simple
condition for verifying the stability of the perturbed semigroup when T0(t) is exponentially
stable. The result in particular shows that if T0(t) is exponentially stable, also T (t) generated
by A0 +B is exponentially stable whenever ‖B‖ is sufficiently small.

Theorem 4.2.7. Assume A0 : D(A0) ⊂ X → X generates an exponentially stable semigroup
T0(t) on a separable Hilbert space X and M0 ≥ 1 and ω0 > 0 are such that ‖T0(t)‖ ≤M0e

−ω0t

for all t ≥ 0. If B ∈ L(X) is such that ‖B‖ < ω0/M0, then A = A0 + B generates an
exponentially stable semigroup on X.

Proof. Let B ∈ L(X) be such that ‖B‖ < ω0/M0. We have from Theorem 3.3.5 that A0 + B
generates a semigroup T (t) on X, and this semigroup satisfies

‖T (t)‖ ≤M0e
(−ω0+M0‖B‖)t, for all t ≥ 0,

The semigroup T (t) is exponentially stable since −ω0 +M0‖B‖ < −ω0 + ω0 = 0.
2You can verify this by using the assumption 〈Ax, x〉 ∈ R on elements x = y + z and x = y + iz with

y, z ∈ D(A).
3Not to be confused with the input operator of (4.1)!
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This property is called robustness of exponential stability of semigroups with respect to
perturbations B with small norms. This is a fundamental and important property of ex-
ponential stability, and especially the strong stability in Definition 4.2.2 does not have this
property, but instead the stability can in general be destroyed by a perturbation with an
arbitrarily small norm ‖B‖. I have done research on robustness of so-called polynomial
stability of semigroups, which is a strictly weaker concept than exponential stability, and
on the other hand a stronger concept than strong stability. In this situation the stability of
the semigroup is preserved under perturbations, but the size of the perturbations has to be
measured with modified norms which are related to the unperturbed operator. More pre-
cisely, if T0(t) is polynomially stable, then there exist n,m ∈ N such that also the semigroup
T (t) generated by A0 +B will be polynomially stable provided that B ∈ L(X) is a so-called
“finite rank operator”, R(B) ⊂ D(An) and R(B∗) ⊂ D((A∗)m), and the norms ‖AnB‖ and
‖(A∗)mB∗‖ are sufficiently small [13, 14].

Example 4.2.8. We can now investigate the stability of the heat equation in Examples 3.3.6
and 4.1.3, i.e.

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t), ξ ∈ (0, 1)

v(0, t) = 0, v(1, t) = 0,

v(ξ, 0) = v0(ξ).

We saw in Example 3.3.6 that the operator Af = αf ′′ with domain D(A) = { f ∈ X |
f, f ′ abs. cont. f ′′ ∈ X, f(0) = f(1) = 0 } generates a contraction semigroup T (t) on
X = L2(0, 1), and we in particular proved that 0 ∈ ρ(A). Moreover, Lemma 3.3.7 shows
that the operator A is self-adjoint. Thus the assumptions of Theorem 4.2.6 are satisfied
and the semigroup T (t) is exponentially stable, and in particular there exists ω > 0 such
that ‖T (t)‖ ≤ e−ωt for all t ≥ 0. Since the solutions of the heat equation are given by
x(t) = T (t)x0 where x(t) = v(·, t) and x0 = v0(ξ), the stability of T (t) implies that

∫ 1

0

|v(ξ, t)|2dξ = ‖x(t)‖2 ≤ ‖T (t)‖2‖x0‖2 ≤ e−2ωt‖x0‖2 = e−2ωt
∫ 1

0

|v0(ξ)|2dξ

for all t ≥ 0. Thus in the case of the heat equation, the exponential stability means that
the L2(0, 1)-norms of the temperature profiles v(·, t) converge to zero at exponential rates
as t→∞. Moreover, this rate of decay e−ωt is uniform in the sense that the exponent “−ωt”
is the same for all initial conditions v0(·) (the right-hand side of the above estimate is only
multiplied by the L2(0, 1)-norm of the initial temperature profile). �

In the previous example we saw that the stability of the heat equation follows quite easily
from Theorem 4.2.6 for semigroups generated by dissipative and self-adjoint operators. In
the case of the damped wave equation we need to do a bit more work!
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Example 4.2.9. In this example investigate the exponential stability of the damped wave
equation in Examples 3.3.8 and 4.1.4,

∂2w

∂t2
(ξ, t) =

∂2w

∂ξ2
(ξ, t)− d(ξ)

∂w

∂t
(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1),

w(0, t) = w(1, t) = 0, t > 0

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), ξ ∈ (0, 1)

y(t) =

∫ 1

0

∂w

∂ξ
(ξ, t)c1(ξ)dξ +

∫ 1

0

∂w

∂t
(ξ, t)c2(ξ)dξ

where we assume the damping function d(·) is continuous on the closed interval [0, 1],
d(ξ) ≥ 0 for all ξ ∈ [0, 1], and d(ξ) 6≡ 0 (i.e., d(ξ) 6= 0 for some ξ ∈ [0, 1]). Under these
assumptions the semigroup generated by

A =

[
0 ∂ξ
∂ξ −D0

]
with D(A) =

{
(f, g)T ∈ X

∣∣ f(·), g(·) are absolutely continuous and g(0) = g(1) = 0
}

is exponentially stable. Here D0 : L2(0, 1) → L2(0, 1) is again defined so that (D0f)(ξ) =
d(ξ)f(ξ) for all f ∈ L2(0, 1). However, proving this requires a bit heavier machinery, and
in this example we will only consider the case where the damping is constant, i.e. d(ξ) =
d0 > 0 for all ξ ∈ [0, 1]. Moreover, as an additional complication the semigroup generated
by A is actually not exponentially stable in the sense of the Definition 4.2.3, since A has
an eigenvalue at λ = 0 even with the damping. However, this eigenvalue is caused by the
change of boundary conditions from w(0, t) = w(1, t) = 0 to wt(0, t) = wt(1, t) = 0, and
with certain justifications this eigenvalue can be ignored if we only consider the original
boundary conditions. We will not go into details about the precise justifications (which are
outside the scope of this course).

We will show exponential stability of the wave equation using Theorem 4.2.5, i.e., by
showing that the resolvent R(is, A) exists and is uniformly bounded for all s ∈ R. As
mentioned above, the eigenvalue λ = 0 of A would need to be handled separately, but in
this example we will only show that the resolvent exists for all s 6= 0 and it is uniformly
bounded for |s| ≥ 1. To this end, let s ∈ R and x1 = (f1, g1)

T ∈ X be arbitrary. Our aim
is to find (f, g)T = R(is, A)x1, which is equivalent to finding x = (f, g)T ∈ D(A) such that
(is− A)x = x1, which in turn is equivalent to solving the differential equation([

is 0
0 is

]
−
[

0 ∂ξ
∂ξ −d0

])[
f(ξ)
g(ξ)

]
=

[
f1(ξ)
g1(ξ)

]

⇔
[
0 1
1 0

] [
f ′(ξ)
g′(ξ)

]
=

[
is 0
0 is+ d0

] [
f(ξ)
g(ξ)

]
−
[
f1(ξ)
g1(ξ)

]

⇔
[
f ′(ξ)
g′(ξ)

]
=

[
0 is+ d0
is 0

] [
f(ξ)
g(ξ)

]
−
[
g1(ξ)
f1(ξ)

]
with boundary conditions g(0) = g(1) = 0. If we denote Qs =

[
0 is+d0
is 0

]
, then (similarly as

in Example 3.3.8) the differential equation has a solution[
f(ξ)
g(ξ)

]
= eQsξ

[
c0
c1

]
−
∫ ξ

0

eQs(ξ−r)
[
g1(r)
f1(r)

]
dr,
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where c0, c1 ∈ C are again to be determined by the boundary conditions g(0) = g(1) = 0.
Whenever such constants exist, the functions f and g are also absolutely continuous, and
therefore x ∈ D(A) as required. If s 6= 0 and if we denote µ =

√
is(is+ d0), then

eQsξ =

[
cosh(µξ) µ

is
sinh(µξ)

is
µ

sinh(µξ) cosh(µξ)

]
.

Note that µ 6= 0, since |µ|2 = |
√
is|2|
√
is+ d0|2 = |s||is + d0| 6= 0. Since sinh(0) = 1 and

cosh(0) = 1, the boundary condition g(0) = 0 implies c1 = 0, and

0 = g(1) =
is

µ

6=0︷ ︸︸ ︷
sinh(µ) c0 −

∫ 1

0

(
is

µ
sinh(µ(1− r))g1(r) + cosh(µ(1− r))f1(r)

)
dr

⇒ c0 =
µ

is sinh(µ)

∫ 1

0

(sinh(µ(1− r))g1(r) + cosh(µ(1− r))f1(r)) dr.

Since c0 can be chosen in such a way that g(1) = 0, we conclude that (f, g)T = R(is, A)x1
where f and g are as above. In the rest of the proof we show that there exists a constant
M > 0 such that ‖x‖ ≤ M‖x1‖ whenever |s| ≥ 1. This will conclude that is ∈ ρ(A) and
‖R(is, A)‖ ≤M for all |s| ≥ 1.

WARNING! The rest of the proof gets ridiculously technical, even more than the preceding
parts, and it is intended only for fearless readers! The proof is presented here for complete-
ness, but it is really worth emphasising that you do not need to learn the details of the
following computations on this course!

In order to prove a bound of the form ‖x‖ ≤M‖x1‖, we first need to modify the formulas
of f and g. Substituting the expression for c0 and c1 = 0 to the above formulas we get

f(ξ) = c0 cosh(µξ)−
∫ ξ

0

(
cosh(µ(ξ − r))g1(r) +

µ

is
sinh(µ(ξ − r))f1(r)

)
dr

=
µ cosh(µξ)

is sinh(µ)

∫ 1

0

(sinh(µ(1− r))g1(r) + cosh(µ(1− r))f1(r)) dr

−
∫ ξ

0

(
cosh(µ(ξ − r))g1(r) +

µ

is
sinh(µ(ξ − r))f1(r)

)
dr

g(ξ) = c0
is

µ
sinh(µξ)−

∫ ξ

0

(
is

µ
sinh(µ(ξ − r))g1(r) + cosh(µ(ξ − r))f1(r)

)
dr

=
sinh(µξ)

sinh(µ)

∫ 1

0

(sinh(µ(1− r))g1(r) + cosh(µ(1− r))f1(r)) dr

−
∫ ξ

0

(
is

µ
sinh(µ(ξ − r))g1(r) + cosh(µ(ξ − r))f1(r)

)
dr.

To simplify the computations, we can first note that we can consider two separate spe-
cial cases, first assuming that g1 = 0 and that f1 ∈ L2(0, 1) is arbitrary, and subsequently
assuming that f1 = 0 and that g1 ∈ L2(0, 1) is arbitrary. Indeed, this corresponds to writing

x = R(is, A)

[
f1
g1

]
= R(is, A)

[
f1
0

]
+R(is, A)

[
0
g1

]
=: x1 + x2
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If we can derive estimates of the form ‖x1‖ ≤ M1‖
[
f1
0

]
‖ and ‖x2‖ ≤ M2‖

[
0
g1

]
‖, these

estimates also lead to the estimate of the form ‖x‖ ≤M‖x1‖. If we first assume that g1 = 0
and f1 ∈ L2(0, 1) is arbitrary, we have

f(ξ) =
µ

is sinh(µ)

∫ 1

0

cosh(µξ) cosh(µ(1− r))f1(r)dr −
µ

is

∫ ξ

0

sinh(µ(ξ − r))f1(r)dr

=
µ

is

∫ 1

0

cosh(µξ) cosh(µ(1− r))
sinh(µ)

f1(r)dr −
µ

is

∫ ξ

0

sinh(µ) sinh(µ(ξ − r))
sinh(µ)

f1(r)dr

We can now use the identities for hyperbolic functions

cosh(x± y) = cosh(x) cosh(y)± sinh(x) sinh(y)

sinh(x± y) = sinh(x) cosh(y)± cosh(x) sinh(y)

to modify the expressions in the integrals (parts of the computations can also be done
symbolically with Maple or Matlab!). More precisely,

f(ξ) =
µ

is

∫ 1

0

cosh(µξ) cosh(µ(1− r))
sinh(µ)

f1(r)dr −
µ

is

∫ ξ

0

sinh(µ) sinh(µ(ξ − r))
sinh(µ)

f1(r)dr

=
µ

is

∫ 1

ξ

cosh(µξ) cosh(µ(1− r))
sinh(µ)

f1(r)dr

+
µ

is

∫ ξ

0

(cosh(µξ) cosh(µ(1− r))− sinh(µ) sinh(µ(ξ − r))
sinh(µ)

f1(r)dr

=
µ

2is

∫ 1

ξ

cosh(µ(1 + ξ − r)) + cosh(µ(1− r − ξ))
sinh(µ)

f1(r)dr

+
µ

2is

∫ ξ

0

cosh(µ(1− ξ − r)) + cosh(µ(1 + r − ξ))
sinh(µ)

f1(r)dr

=
µ

2is

∫ 1

0

cosh(µ(1− ξ − r))
sinh(µ)

f1(r)dr +
µ

2is

∫ ξ

0

cosh(µ(1 + r − ξ))
sinh(µ)

f1(r)dr

+
µ

2is

∫ 1

ξ

cosh(µ(1 + ξ − r))
sinh(µ)

f1(r)dr.

We observe that in each of the integrals in the last expression the value of the multiplier
including 1, ξ, and r is has absolute value at most one for all ξ ∈ [0, 1], i.e., |1 − ξ − r| ≤
if r ∈ [0, 1], |1 + r − ξ| ≤ 1 if r ∈ [0, ξ], and |1 + ξ − r| ≤ if r ∈ [ξ, 1]. Because of this, in
each of the integrals the absolute value of the fraction containing the hyperbolic functions
is uniformly bounded by some constant M ′ > 0 which does not depend on the value of s
with |s| ≥ 1 (which affects µ). Because of this we can estimate |f(ξ)| for ξ ∈ [0, 1] with

|f(ξ)| ≤ |µ|
2|s|

[∫ 1

0

∣∣∣∣cosh(µ(1− ξ − r))
sinh(µ)

∣∣∣∣ |f1(r)|dr +

∫ ξ

0

∣∣∣∣cosh(µ(1 + r − ξ))
sinh(µ)

∣∣∣∣ |f1(r)|dr
+

∫ 1

ξ

∣∣∣∣cosh(µ(1 + ξ − r))
sinh(µ)

∣∣∣∣ |f1(r)|dr]
≤ |µ|

2|s|

[
M ′
∫ 1

0

|f1(r)|dr +M ′
∫ ξ

0

|f1(r)|dr +M ′
∫ 1

ξ

|f1(r)|dr
]

≤ 3M ′|µ|
2|s|

∫ 1

0

|f1(r)|dr ≤
3M ′|µ|

2|s|

(∫ 1

0

1dr

) 1
2
(∫ 1

0

|f1(r)|2dr
) 1

2

≤ 3M ′|µ|
2|s|

‖f1‖L2 .
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The component g(ξ) of x1 = R(is, A)
[
f1
0

]
can be analysed similarly using the identities for

hyperbolic functions, so that

g(ξ) =
sinh(µξ)

sinh(µ)

∫ 1

0

cosh(µ(1− r))f1(r)dr −
∫ ξ

0

cosh(µ(ξ − r))f1(r)dr

=

∫ 1

0

sinh(µξ) cosh(µ(1− r))
sinh(µ)

f1(r)dr −
∫ ξ

0

sinh(µ) cosh(µ(ξ − r))
sinh(µ)

f1(r)dr

=

∫ ξ

0

sinh(µξ) cosh(µ(1− r))− sinh(µ) cosh(µ(ξ − r))
sinh(µ)

f1(r)dr

+

∫ 1

ξ

sinh(µξ) cosh(µ(1− r))
sinh(µ)

f1(r)dr

=
1

2

∫ ξ

0

sinh(µ(r + ξ − 1))− sinh(µ(1− ξ + r))

sinh(µ)
f1(r)dr

+
1

2

∫ 1

ξ

sinh(µ(1− r + ξ))− sinh(µ(1− r − ξ))
sinh(µ)

f1(r)dr

= −1

2

∫ 1

0

sinh(µ(1− r − ξ))
sinh(µ)

f1(r)dr −
1

2

∫ ξ

0

sinh(µ(1− ξ + r))

sinh(µ)
f1(r)dr

+
1

2

∫ 1

ξ

sinh(µ(1− r + ξ))

sinh(µ)
f1(r)dr.

Again, the absolute values of the fractions containing the hyperbolic functions are bounded
from above by some constant M ′′ > 0 independent of ξ ∈ [0, 1] and s. Using this we can
estimate (similarly as above for |f(ξ)|)

|g(ξ)| ≤ 1

2

∫ 1

0

∣∣∣∣sinh(µ(1− r − ξ))
sinh(µ)

∣∣∣∣ |f1(r)|dr +
1

2

∫ ξ

0

∣∣∣∣sinh(µ(1− ξ + r))

sinh(µ)

∣∣∣∣ |f1(r)|dr
+

1

2

∫ 1

ξ

∣∣∣∣sinh(µ(1− r + ξ))

sinh(µ)

∣∣∣∣ |f1(r)|dr
≤ 3M ′′

2

∫ 1

0

|f1(r)|dr ≤
3M ′′

2
‖f1‖L2 .

We can now use the above estimates for |f(ξ)| and |g(ξ)| for ξ ∈ [0, 1] to derive an estimate
for the norm of x = (f, g)T by (recalling that |µ|2 = |s||is+ d0| ≤ |s|(|s|+ d0) and |s| ≥ 1)∥∥∥∥[fg

]∥∥∥∥2
X

=

∫ 1

0

|f(r)|2dr +

∫ 1

0

|g(r)|2dr ≤ 9(M ′)2|µ|2

4|s|2
‖f1‖2L2

∫ 1

0

1dr +
9(M ′′)2

4
‖f1‖2L2

∫ 1

0

1dr

=
9

4

(
(M ′)2|s||is+ d0|

s2
+ (M ′′)2

)
≤ 9

4

(
(M ′)2(1 + d0) + (M ′′)2

)
‖f1‖2L2 .

Thus ∥∥∥∥R(is, A)

[
f1
0

]∥∥∥∥
X

=

∥∥∥∥[fg
]∥∥∥∥

X

≤ 3

2

√
(M ′)2(1 + d0) + (M ′′)2‖f1‖L2

Since the constant in the estimate is independent of |s| ≥ 1, we have achieved our goal.
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The remaining case where f1(ξ) ≡ 0 and g1 ∈ L2(0, 1) is arbitrary can be proved anal-
ogously, and these computations are omitted. Together the estimates in these situations
conclude that the resolvent norms ‖R(is, A)‖ are uniformly bounded with respect to s ∈ R
when |s| ≥ 1. Figure 4.4 shows a numerical approximation of the solution w(ξ, t) of the
damped wave equation with constant damping d(ξ) ≡ d0 > 0. �
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Figure 4.4: Numerical approximation of the state of the damped wave equation.

4.3 Controllability and Observability of
Infinite-Dimensional Systems∗

Also the questions of controllability and its dual notion observability become challenging
(and interesting!) questions in the case of infinite-dimensional linear systems. Especially
the definitions used in the case of finite-dimensional linear systems in Section 2.1 (con-
trollability being defined as the property that the system can be steered from any state to
any other state in finite time) are very often unreasonably strong properties in the case of
PDE systems such as the heat and wave equations. This motivates introducing weaker ver-
sions of the same concepts in addition to the ones used for finite-dimensional systems. In
this section we present an overview of the most important controllability and observability
concepts for infinite-dimensional control systems.
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Definition 4.3.1. Let X be a Banach space and u(·) : [0,∞) → U = Cm. For t > 0 the
controllability map Φt ∈ L(L2(0, t;U), X) associated to the system (4.1) is defined as

Φtu =

∫ t

0

T (t− s)Bu(s)ds, u ∈ L2(0, t;U).

(a) The system (4.1) is exactly controllable (in time τ > 0) if the controllability map
satisfies R(Φτ ) = X.

(b) The system (4.1) is approximately controllable in time τ > 0 if R(Φτ ) is dense in X.

(c) The system (4.1) is approximately controllable if
⋃
τ>0R(Φτ ) is dense in X.

Here R(Φτ ) = {x ∈ X | x = Φtu for some u ∈ L2(0, τ ;U) } is the range space of
the operator Φτ ∈ L(L2(0, τ ;U), X). In the condition for approximate controllability, the
property that R(Φτ ) is dense in X means that for every x ∈ X and for every ε > 0 there
exists y ∈ R(Φτ ) such that ‖x− y‖X < ε.

The concept of exact controllability corresponds to the controllability for finite-dimen-
sional linear systems. Indeed, if R(Φτ ) = X for some τ > 0, then for any x0 ∈ X and
x1 ∈ X there exists u ∈ L2(0, τ ;U) such that Φτu = x1 − T (τ)x0. This means that with this
input the state x(·) of the system (4.1) at time τ satisfies

x(τ) = T (τ)x0 +

∫ τ

0

T (τ − s)Bu(s)ds = T (τ)x0 + Φτu = x1.

This means that for any initial state x0 ∈ X and every target state x1 ∈ X we can find
an input u(·) that steers the state of the system from x0 to x1 in time τ . However, exact
controllability is not a common property in infinite-dimensional control theory. In fact, it
is shown in [7, Thm. 4.1.5] that if X is infinite-dimensional and the values of the control
function u(t) are finite-dimensional vectors, i.e., u : [0,∞) → Cm for some m ∈ N , then
the system (4.1) is not exactly controllable. However, it should be mentioned that exact
controllability for infinite-dimensional systems does appear naturally in connection with
control from acting on the boundaries of partial differential equations.

Approximate controllability, on the other hand, means that we can steer from any initial
state (either in some specific time τ > 0 or without such restrictions) to arbitrarily close
to any given target state. These properties of inifinite-dimensional systems are much more
common than exact controllability.

The observability of a system means that the output of the system completely determines
the initial state of the system (4.1).
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Definition 4.3.2. Let X be a Banach space. For t > 0 the observability map Ψt ∈
L(X,L2(0, t;Y )) associated to the system (4.1) is so that

Ψtx0 = CT (·)x0 ∈ L2(0, t;Y ), x0 ∈ X.

(a) The system (4.1) is exactly observable (in time τ > 0) if there exists c > 0 such that
‖Ψτx0‖ ≥ c‖x0‖ for all x0 ∈ X.

(b) The system (4.1) is approximately observable in time τ > 0 if Ψτx0 = 0 implies
x0 = 0.

(c) The system (4.1) is approximately observable if Ψτx0 = 0 for all τ > 0 implies x0 = 0.

Definition 4.3.2 indeed implies that the output of the system uniquely determines the
initial state x0 ∈ X of the system. Indeed, if for some control input u ∈ L1

loc(0,∞;U) and
two initial states x10 ∈ X and x20 ∈ X the system (4.1) produces the outputs y1(·) and y2(·)
such that y1(t) = y2(t) for all t ≥ 0, then

0 = y1(t)− y2(t) = CT (t)x10 +

∫ t

0

T (t− s)Bu(s)ds−
(
CT (t)x20 +

∫ t

0

T (t− s)Bu(s)ds

)
= CT (t)(x10 − x20)

for all t ≥ 0, and approximate controllability of the system implies that necessarily x10 = x20.
The following theorem shows that controllability and observability for a system on a

Hilbert spaceX are dual concepts in the sense that the controllability of a system (A,B,C,D)
is equivalent to the observability of the dual system (A∗, C∗, B∗, D∗). As is shown in [7, Sec.
2.2], on a Hilbert space X the operator A∗ generates a strongly continuous semigroup
(T (t)∗)t≥0. We only prove the duality result for approximate controllability. For the cor-
responding results for exact controllability and approximate controllability in time τ > 0
see [7, Lem. 4.1.13].

Theorem 4.3.3. Assume A generates a semigroup T (t) on a Hilbert space X and B ∈
L(U,X). The system (A,B,C,D) is approximately controllable if and only if (A∗, C∗, B∗, D∗)
is approximately observable.

Proof. The property that a set Y ⊂ X is dense in a Hilbert space X is equivalent to the
property that if 〈x, y〉 = 0 for some x ∈ X and for every y ∈ Y , then necessarily x = 0.

The approximate controllability of (A,B,C,D), i.e., the property that
⋃
τ>0R(Φτ ) is

dense in X, is therefore equivalent to the property that

If 〈Φτu, x〉X = 0 for all τ > 0 and u ∈ L2(0, τ ;U), then x = 0.

We want to show that this is equivalent to the approximate observability of (A∗, C∗, B∗, D∗),
which means that for every x ∈ X

B∗T (t)∗x = 0 ∀t ≥ 0 only if x = 0.
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For all τ > 0, u ∈ L2(0, τ ;U) and x ∈ X we have

〈Φτu, x〉X =

〈∫ τ

0

T (τ − s)Bu(s)ds, x

〉
X

=

∫ τ

0

〈T (τ − s)Bu(s), x〉Xds

=

∫ τ

0

〈u(s), B∗T (τ − s)∗x〉Uds =

∫ τ

0

〈v(τ − s), B∗T (τ − s)∗x〉Uds = 〈v,B∗T (·)∗x〉L2

where we have denoted v ∈ L2(0, τ ;U) such that v(·) = u(τ − ·). Since the function t →
B∗T (t)∗x is continuous and since L2(0, τ ;U) is a Hilbert space, we have that the property

〈v,B∗T (·)∗x〉L2 = 0 for all τ > 0 and v ∈ L2(0, τ ;U)

is equivalent to B∗T (t)∗x = 0 for all t ≥ 0. Indeed, the necessity of this condition can be
seen conveniently seen by choosing v = B∗T (·)∗x ∈ L(0, τ ;U), in which case we have

0 = 〈v,B∗T (·)∗x〉L2 = 〈B∗T (·)∗x,B∗T (·)∗x〉L2 =

∫ τ

0

‖B∗T (s)∗x‖2ds,

which implies B∗T (t)∗x = 0 for all t ≥ 0 since the integrand is continuous. Combining the
above properties shows that the claim of the theorem holds.



5. Proportional–Integral Control for
Infinite-Dimensional Systems

5.1 PI Control for Linear Systems on Hilbert Spaces

In this chapter we return to Proportional–Integral Control which we already studied in
Section 2.4. This time our aim is to design a feedback controller that solves the “output
tracking problem” for an infinite-dimensional linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (5.1a)
y(t) = Cx(t). (5.1b)

We assume A generates a strongly continuous semigroup T (t) on the Hilbert space X,
B ∈ L(Cm, X), and C ∈ L(X,Cp). However, we will see that due to the way we studied
this control problem in Chapter 2, the controller construction and the proofs of the main
results can be completed in a very similar way as before if we use the strongly continuous
semigroup T (t) in place of the matrix exponential function eAt.

The output tracking problem for the predefined constant reference output yref ∈ Cp is
again defined in the following way.

Definition 5.1.1. Let yref ∈ Y = Cp be a constant output reference vector. In the output
tracking problem the aim is to choose the input u(t) of the system in such a way that

‖y(t)− yref‖ → 0 as t→∞.

Even though we now consider infinite-dimensional linear systems, the form of the PI Con-
troller is exactly the same as in Section 2.4, i.e.,

u(t) = KP e(t) +KI

∫ t

0

e(s)ds, (5.2)

where e(t) = y(t)− yref is the tracking error and KP , KI ∈ Cm×p. Defining xc(t) =
∫ t
0
e(s)ds

we can again observe that d
dt
xc(t) = e(t) and thus the PI-controller can be written as finite-

dimensional linear system

ẋc(t) = 0 · xc(t) + e(t), xc(0) ∈ Cp (5.3a)
u(t) = KIxc(t) +KP e(t) (5.3b)

on the space Xc = Cp. The initial state corresponding to (5.2) is xc(0) = 0 ∈ Cp. Like in the
finite-dimensional case, the controlled system (5.1) and the controller (5.3) form a feedback
interconnection in Figure 5.1.

67
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PC
u(t) y(t)e(t)yref

−

Figure 5.1: The system P = (A,B,C) in a feedback interconnection with the Controller C.

The behaviour of the states x(t) and xc(t) of the system (5.1) and the controller in the
feedback configuration can again be studied simultaneously by writing them together as a
single closed-loop system. To derive the form of this closed-loop system, we can consider the
time-derivatives ẋ(t) and ẋc(t) (this time only formally), and use (5.1) and (5.3) and the
relationship e(t) = y(t)− yref = Cx(t)− yref to write

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +BKIxc(t) +BKP (Cx(t)− yref )

= (A+BKPC)x(t) +BKIxc(t)−BKPyref

ẋc(t) = e(t) = Cx(t)− yref .

The closed-loop system with the combined state xe(t) = (x(t), xc(t))
T on the Hilbert space

X ×Xc thus has the form

ẋe(t) =

[
ẋ(t)
ẋc(t)

]
=

[
(A+BKPC)x(t) +BKIxc(t)−BKPyref

Cx(t)− yref

]
=

[
A+BKPC BKI

C 0

] [
x(t)
xc(t)

]
+

[
−BKp

−I

]
yref

and

e(t) = Cx(t)− yref =
[
C, 0

] [ x(t)
xc(t)

]
+ (−I)yref .

Thus the closed-loop system is of the form

ẋe(t) = Aexe(t) +Beyref , xe(0) =
[
x(0)
xc(0)

]
∈ Xe (5.4a)

e(t) = Cexe(t) +Deyref (5.4b)

on the Hilbert space Xe = X ×Xc with the operators

Ae =

[
A+BKPC BKI

C 0

]
: D(Ae) ⊂ Xe → Xe, Be =

[
−BKP

−I

]
: Cm → Xe

Ce =
[
C 0

]
: Xe → Cp, and De = −I ∈ Cp×p. The following result shows that the closed-

loop system is indeed an infinite-dimensional linear system in the sense that Ae generates a
strongly continuous semigroup on Xe and Be and Ce are bounded. In particular, the closed-
loop system has well-defined classical and mild solutions (depending on the type of the
initial state of the controlled system (5.1)).
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Theorem 5.1.2. The operator Ae with domain D(Ae) = D(A) × Xc generates a strongly
continuous semigroup Te(t) on Xe, Be ∈ L(Cm, Xe), and Ce ∈ L(Xe,Cp).

For every x(0) ∈ X and xc(0) ∈ Xc the closed-loop has a well-defined mild state xc(t) and
e(·) ∈ C(0, τ ;Cp) for all τ > 0. If x(0) ∈ D(A) and xc(0) ∈ Xc then xe(t) is a classical state
of the closed-loop system so that for all τ > 0 we have x(·) ∈ C1(0, τ ;X), x(t) ∈ D(A) for all
t ∈ [0, τ ], and xc(·) ∈ C1(0, τ ;Xc).

Proof. The operator Ae : D(A)×Xc ⊂ Xe → Xe can be decomposed as

Ae =

[
A 0
0 0

]
+

[
BKPC BKI

C 0

]
.

As an exercise you will show that the operator [ A 0
0 0 ] : D(A) × XC ⊂ Xe → Xe generates

a strongly continuous semigroup Te0(t) on Xe. Moreover, since B ∈ L(Cm, X) and C ∈
L(X,Cp), and KP , KI ∈ Cm×p, we have that for all (x, xc) ∈ X∥∥∥∥[BKPC BKI

C 0

] [
x
xc

]∥∥∥∥2 =

∥∥∥∥[BKPCx+BKIxc
Cx

]∥∥∥∥2 = ‖BKPCx+BKIxc‖2 + ‖Cx‖2

≤ (‖BKPC‖‖x‖+ ‖BKI‖‖xc‖)2 + ‖C‖2‖x‖2

≤
(
‖BKPC‖2 + ‖BKI‖2

)
(‖x‖2 + ‖xc‖2) + ‖C‖2‖x‖2

≤
(
‖BKPC‖2 + ‖BKI‖2 + ‖C‖2

)
(‖x‖2 + ‖xc‖2)

where we have used the Cauchy–Schwarz inequality ac + bd ≤
√
a2 + b2

√
c2 + d2. Since

‖(x, xc)T‖2 = ‖x‖2 + ‖xc‖2, this implies that the second term in the operator Ae is bounded.
We thus have from Theorem 3.3.5 that also Ae generates a strongly continuous semigroup
Te(t) on Xe.

The boundedness of the operators Be and Ce follows from letting xe = (x, xc)
T ∈ Xe and

y ∈ Cp and estimating

‖Cexe‖ = ‖Cx‖ ≤ ‖C‖‖x‖ ≤ ‖C‖‖xe‖

‖Bey‖ =

∥∥∥∥[−BKPy
−y

]∥∥∥∥ =
√
‖BKPy‖2 + ‖y‖2

≤
√
‖BKP‖‖y‖2 + ‖y‖2 =

√
‖BKP‖+ 1 · ‖y‖.

Since the input yref ∈ Cp of the closed-loop system is a constant function, Theorem 4.1.2
implies that the closed-loop has a well-defined state and output. Since the mild state xe(·)
is a continuous function and Ce ∈ L(X,Cp), also e(t) = Cexe(t) − yref is continuous with
respect to t. If x(0) ∈ D(A), then xe(0) = (x(0), xc(0))T ∈ D(Ae), and we have from
Theorem 3.4.1 xe(t) is a classical solution of the abstract differential equation (5.4a). By
definition this means that for every τ > 0 we have xe(·) ∈ C1(0, τ ;Xe) and xe(t) ∈ D(A)×Xc

for all t ∈ [0, τ ], and this immediately implies the claim.

We can again introduce a general condition on the matrices KP and KI to guarantee
that the PI controller solves the tracking problem for every reference yref ∈ Cp (note again
that KP and KI — and thus also the controller — do not depend on yref ). The result is
exactly of the same form as Theorem 2.4.2, but only the locations of the eigenvalues of Ae
has been replaced with requirement that closed-loop system (5.4) is exponentially stable.
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Theorem 5.1.3. Assume X is a Hilbert space. If KP , KI ∈ Cm×p are such that the semigroup
generated by the operator

Ae =

[
A+BKPC BKI

C 0

]
: D(A)×Xc ⊂ Xe → Xe

is exponentially stable, then for any yref ∈ Cp the PI controller (5.2) solves the output tracking
problem. In particular, there exist constants M,ω > 0 such that for any yref ∈ Cp and for all
initial states x(0) ∈ X and xc(0) ∈ Cp we have

‖y(t)− yref‖Cp ≤Me−ωt
(
‖x(0)‖+ ‖xc(0)‖+ ‖yref‖

)
, ∀t ≥ 0.

Proof. Let KP , KI ∈ Cm×p be such that Te(t) is exponentially stable and let yref ∈ Cp be
arbitrary. To derive an expression for the tracking error e(t) = y(t) − yref in terms of
(Ae, Be, Ce, De), we begin with the variation of parameters formula

xe(t) = Te(t)xe(0) +

∫ t

0

Te(t− s)Beyrefds.

Since Te(t) is exponentially stable, we have 0 ∈ ρ(Ae). We have A−1e Beyref ∈ D(Ae), and the
differentiation rules for the semigroup Te(t) in Theorem 3.2.4 imply that (the minus sign is
the result of applying the chain rule)

d

ds
Te(t− s)A−1e Beyref = −Te(t− s)AeA−1e Beyref = −Te(t− s)Beyref

Because of this the integral in the variation of parameters formula can be modified as∫ t

0

Te(t− s)Beyrefds =

∫ t

0

(
− d

ds
Te(t− s)A−1e Beyref

)
ds

=
[
−Te(t− s)A−1e Beyref

]t
s=0

= −Te(t− t)A−1e Beyref + Te(t− 0)A−1e Beyref

= Te(t)A
−1
e Beyref − A−1e Beyref .

Using this identity in the above formula for xe(t), we get

xe(t) = Te(t)(xe(0) + A−1e Beyref )− A−1e Beyref

⇒ e(t) = Cexe(t) +Deyref

= CeTe(t)(xe(0) + A−1e Beyref ) + (−CeA−1e Be +De)yref .

We will now show that the second term in e(t) is identically zero. To show this, denote
[ zzc ] = A−1e Beyref ∈ D(Ae) = D(A)×Xc. Then we have Ae[ zzc ] = Beyref , and using the block
structures of the operators Ae and Bc shows that

Ae

[
z
zc

]
= Beyref ⇔

[
A+BKPC BKI

C 0

] [
z
zc

]
=

[
−BKP

−I

]
yref

⇔

{
(A+BKPC)z +BKIzc = −BKPyref

Cz = −yref .
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We thus have that

(−CeA−1e Be +De)yref = −Ce
[
z
zc

]
+Deyref = −

[
C 0

] [ z
zc

]
− yref

= −Cz − yref = yref − yref = 0.

Since (−CeA−1e Be + De)yref = 0, the tracking error is e(t) = CeTe(t)(xe(0) + A−1e Beyref ).
Since by assumption the matrices KP and KI are such that Te(t) is exponentially stable,
there exist M0, ω > 0 such that ‖Te(t)‖ ≤M0e

−ωt for all t ≥ 0. We can thus estimate

‖e(t)‖ = ‖CeTe(t)(xe(0) + A−1e Beyref )‖
≤ ‖Ce‖‖Te(t)‖(‖xe(0)‖+ ‖A−1e ‖‖Be‖‖yref‖)
≤M0‖Ce‖max{1, ‖A−1e ‖‖Be‖}e−ωt(‖xe(0)‖+ ‖yref‖).

The claim of the theorem holds with the choice M = M0‖Ce‖max{1, ‖A−1e ‖‖Be‖}, since
‖xe(0)‖2 = ‖x(0)‖2 + ‖xc(0)‖2 ≤ ‖x(0)‖2 + 2‖x(0)‖‖xc(0)‖+ ‖xc(0)‖2 = (‖x(0)‖+ ‖xc(0)‖)2.

The following theorem provides a systematic method for choosing the matrices KP and
KI of the PI controller, i.e., for “tuning” the controller. The choice of KI is based on the
transfer function of the system (A + BKPC,B,C) (see Section 1.2.6 for details!), which is
defined as

PKP
(λ) = CR(λ,A+BKPC)B, for λ ∈ ρ(A+BKPC).

For the purposes of the PI controller, only the value PKP
(0) = CR(0, A + BKPC)B of

this transfer function at the point λ = 0 is required, but transfer functions of infinite-
dimensional systems and controlled PDEs are used for several other purposes as well. Note
that even in the case of infinite-dimensional systems, PKP

(0) is still simply a constant p×m-
matrix, and if its columns are linearly independent, then its pseudoinverse is given by
PKP

(0)† = PKP
(0)∗(PKP

(0)PKP
(0)∗)−1. As we will show in Section 5.2, the matrix PKP

(0)
can also be measured from the output of the system (5.1) with suitable constant inputs!

The linear independence of the rows of PKP
(0) again requires (A,B,C) to have at least

as many inputs as outputs, i.e., m ≥ p. If the semigroup generated by A is exponentially
stable, it is always possible to choose KP = 0.

Theorem 5.1.4. Assume X is a Hilbert space. Choose the matrices KP , KI ∈ Cm×p in the
following way.

(1) ChooseKP ∈ Cm×p in such a way that the semigroup generated by A+BKPC : D(A) ⊂
X → X is exponentially stable.

(2) Choose KI = −εPKP
(0)† where ε > 0 and PKP

(0) := CR(0, A+BKPC)B.

If PKP
(0) has linearly independent rows, then there exists ε∗ > 0 such that for every ε ∈ (0, ε∗]

the PI controller with parameters KP and KI solves the tracking problem for every yref ∈ Cp.

Proof. By Theorem 5.1.3 it is sufficient to show that there exists ε∗ > 0 such that for every
ε ∈ (0, ε∗] the semigroup generated by Ae is exponentially stable. We will do this by defining
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a similarity transform S ∈ L(Xe) such that S−1 ∈ L(Xe), and defining Ãe = SAeS
−1 with

domain D(Ãe) = {xe ∈ Xe | S−1xe ∈ D(Ae) }. In the exercises we showed that T̃e(t)
defined as T̃e(t) = STe(t)S

−1 is a strongly continuous semigroup on Xe, and it turns out
that its generator is precisely the operator Ãe. If we can show that the semigroup T̃e(t) is
exponentially stable such that ‖T̃e(t)‖ ≤ M̃e−ωt for some M̃, ω > 0 and for all t ≥ 0, then
also Te(t) is exponentially stable since

‖Te(t)‖ = ‖S−1T̃e(t)S‖ ≤ ‖S‖‖S−1‖‖T̃e(t)‖ ≤ ‖S‖‖S−1‖M̃e−ωt

for all t ≥ 0.
With the choice KI = −εPKP

(0)† the operator has the form

Ae =

[
A+BKPC −εBPKP

(0)†

C 0

]
.

We define the similarity transform S ∈ L(Xe) by

S =

[
I εH
0 I

]
, S−1 =

[
I −εH
0 I

]
,

where H = R(0, A + BKPC)BPKP
(0)† ∈ L(Cp, X). We first note that since R(H) ⊂ D(A),

for every x ∈ X and xc ∈ Cp we have

S−1
[
x
xc

]
∈ D(Ae) ⇔

[
x− εHxc

xc

]
∈ D(A)× Cp ⇔

{
x ∈ D(A)

xc ∈ Cp,

and thus D(Ãe) = D(A)×Cp. Moreover, we note that due to the definition of H ∈ L(Cp, X)
the operator (A+BKPC)H and the matrix CH have the forms

(A+BKPC)H = (A+BKPC)R(0, A+BKPC)BPKP
(0)† = −BPKP

(0)†

CH = CR(0, A+BKPC)BPKP
(0)† = PKP

(0)PKP
(0)† = I,

since PKP
(0)† is a right inverse of PKP

(0) due to our assumptions. We can now compute the
formula of the operator Ãe. If we let (x, xc)

T ∈ D(Ãe) = D(A) × Cp, then using the above
formulas we get

Ãe

[
x
xc

]
= SAeS

−1
[
x
xc

]
=

[
I εH
0 I

] [
A+BKPC −εBPKP

(0)†

C 0

] [
I −εH
0 I

] [
x
xc

]
=

[
I εH
0 I

] [
A+BKPC −εBPKP

(0)†

C 0

] [
x− εHxc

xc

]
=

[
I εH
0 I

] [
(A+BKPC)x− ε(A+BKPC)Hxc − εBPKP

(0)†xc
Cx− εCHxc

]
=

[
I εH
0 I

] [
(A+BKPC)x+ εBPKP

(0)†xc − εBPKP
(0)†xc

Cx− εxc

]
=

[
I εH
0 I

] [
(A+BKPC)x
Cx− εxc

]
=

[
(A+BKPC)x+ εHCx− ε2Hxc

Cx− εxc

]
=

[
A+BKPC + εHC −ε2H

C −εI

] [
x
xc

]
.
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We will use the perturbation results in Theorem 4.2.7 to analyse the stability of the semi-
group generated by Ãe. For this we will use an alternative version of Gearhart–Prüss–
Greiner theorem which states that Ãe generates an exponentially stable semigroup on the
Hilbert space Xe if and only if

sup
Reλ≥0

‖R(λ, Ãe)‖ <∞,

(i.e., the assumption of uniform boundedness is not required if we take the supremum over
λ ∈ C with Reλ ≥ 0 instead of the imaginary axis). Moreover, we denote AK := A+BKPC
for brevity and write

Ãe =

[
AK 0
C −εI

]
+

[
εHC −ε2H

0 0

]
=: Ae0 + Ae1.

Our aim in this proof is to write the resolvent R(λ, Ãe) in the form

R(λ, Ãe) = R(λ,Ae0 + Ae1) = (λ− Ae0 − Ae1)−1 (5.5a)

=
[
(I − Ae1R(λ,Ae0))(λ− Ae0)

]−1
= R(λ,Ae0)(I − Ae1R(λ,Ae0))

−1 (5.5b)

and to estimate ‖R(λ, Ãe)‖ with the norms of the operators on the right-hand side of the
above equation. In order to do be able to do this, we first need to show that the operator
I−Ae1R(λ,Ae0) is boundedly invertible. A direct computation can be used to verify the that
for every λ ∈ C with Reλ ≥ 0 the resolvent operator R(λ,Ae0) exists and is given by

R(λ,Ae0) =

[
R(λ,AK) 0

1
λ+ε

CR(λ,AK) 1
λ+ε

I

]
.

Moreover, a direct computation shows that

Ae1R(λ,Ae0) =

[
εHC −ε2H

0 0

] [
R(λ,AK) 0

1
λ+ε

CR(λ,AK) 1
λ+ε

I

]
=

[(
ε− ε2

λ+ε

)
HCR(λ,AK) − ε2

λ+ε
H

0 0

]
.

Since A + BKPC generates an exponentially stable semigroup, there exists MK > 0 such
that ‖R(λ,AK)‖ ≤ MK whenever Reλ ≥ 0. For all λ ∈ C with Reλ ≥ 0 we have 1

|λ+ε| ≤
1

Reλ+ε
≤ 1

ε
, and thus for all (x, xc)

T ∈ Xe we can estimate∥∥∥∥Ae1R(λ,Ae0)

[
x
xc

]∥∥∥∥2 =

∥∥∥∥(ε− ε2

λ+ ε

)
HCR(λ,AK)x− ε2

λ+ ε
Hxc

∥∥∥∥2
≤
((

ε+
ε2

|λ+ ε|

)
‖H‖‖C‖‖R(λ,AK)‖‖x‖+

ε2

|λ+ ε|
‖H‖‖xc‖

)2

≤
((

ε+
ε2

ε

)
‖H‖‖C‖MK‖x‖+

ε2

ε
‖H‖‖xc‖

)2

= ε2‖H‖2 (2MK‖C‖‖x‖+ ‖xc‖)2

≤ ε2‖H‖2(4M2
K‖C‖2 + 1)(‖x‖2 + ‖xc‖2),
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where we have again used the Cauchy–Schwarz inequality ac+bd ≤
√
a2 + b2

√
c2 + d2. This

implies ‖Ae1R(λ,Ae0)‖ ≤ ε‖H‖
√

4M2
K‖C‖2 + 1 for all λ ∈ C+ with Reλ ≥ 0. Thus if we

define

ε∗ :=
1

2‖H‖
√

4M2
K‖C‖2 + 1

,

then for every ε ∈ (0, ε∗] we in particular have ‖Ae1R(λ,Ae0)‖ ≤ 1/2 < 1 whenever
Reλ ≥ 0. We recall that this implies that for every λ ∈ C with Reλ ≥ 0 the operator
I −Ae1R(λ,Ae0) has a bounded inverse given by the Neumann series (I −Ae1R(λ,Ae0))

−1 =∑∞
n=0(Ae1R(λ,Ae0))

n, and using this expression we can estimate the norm of the inverse by

‖(I − Ae1R(λ,Ae0))
−1‖ =

∥∥∥∥∥
∞∑
n=0

(Ae1R(λ,Ae0))
n

∥∥∥∥∥ ≤
∞∑
n=0

‖(Ae1R(λ,Ae0))
n‖

≤
∞∑
n=0

‖Ae1R(λ,Ae0)‖n ≤
∞∑
n=0

1

2n
=

1

1− 1/2
= 2.

Since the I −Ae1R(λ,Ae0) is boundedly invertible, we can write R(λ, Ãe) in the form (5.5).
In order to be able to estimate ‖R(λ, Ãe)‖, we still need to find an estimate for the norm

‖R(λ,Ae0)‖. Estimating as above, we can see that for all λ ∈ C with Reλ ≥ 0 and for all
(x, xc)

T ∈ Xe we have∥∥∥∥R(λ,Ae0)

[
x
xc

]∥∥∥∥2 =

∥∥∥∥[ R(λ,AK)x
1

λ+ε
CR(λ,AK)x+ 1

λ+ε
xc

]∥∥∥∥2
= ‖R(λ,AK)x‖2 +

∥∥∥∥ 1

λ+ ε
CR(λ,AK)x+

1

λ+ ε
xc

∥∥∥∥2
≤ ‖R(λ,AK)‖2‖x‖2 +

1

|λ+ ε|2
(‖C‖‖R(λ,AK)‖‖x‖+ ‖xc‖)2

≤M2
K‖x‖2 +

1

ε2
(‖C‖MK‖x‖+ ‖xc‖)2

≤M2
K‖x‖2 +

1

ε2
(
M2

K‖C‖2 + 1
) (
‖x‖2 + ‖xc‖2

)
≤ 1

ε2
(
ε2M2

K +M2
K‖C‖2 + 1

) ∥∥∥∥[ xxc
]∥∥∥∥2 ,

Thus ‖R(λ,Ae0)‖ ≤ ε−1
√
M2

K(ε2 + ‖C‖2) + 1 whenever Reλ ≥ 0.
Finally, combining the above norm bounds, we can use the formula (5.5) to estimate

sup
Reλ≥0

‖R(λ, Ãe)‖ = sup
Reλ≥0

‖R(λ,Ae0)(I − Ae1R(λ,Ae0))
−1‖

≤ sup
Reλ≥0

‖R(λ,Ae0)‖‖(I − Ae1R(λ,Ae0))
−1‖

≤ sup
Reλ≥0

2 · 1

ε

√
M2

K(ε2 + ‖C‖2) + 1 <∞.

The alternative version of Gearhart–Prüss–Greiner theorem now implies that the semigroup
generated by Ãe is exponentially stable whenever 0 < ε ≤ ε∗, and thus by similarity also
the semigroup Te(t) is then exponentially stable. By Theorem 5.1.3 the PI controller with
ε ∈ (0, ε∗] solves the tracking problem for any reference yref ∈ Cp.
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Remark 5.1.5. It is worth noting that if the system has a single input u(t) and a single
output y(t), then PKP

(0) is a scalar. Moreover, if you consider a system with real parameters,
like a heat or wave equation with real-valued physical constants, then it is typically easy to
deduce that PKP

(0) has to be a real number as well. In such a case the use of Theorem 5.1.4
does not actually need the value of PKP

(0), but only its sign (since the magnitude |PKP
(0)|

can be combined with the value ε > 0). So in this situation you can use the PI-controller just
by deducing or guessing whether PKP

(0) is positive or negative, and by adjusting the value
of ε > 0. If you cannot deduce the sign, then you can simply try both signs for KI (only
one of them will work!), as long as you are sufficiently careful when controlling sensitive
or fragile systems.

Despite the comments in Remark 5.1.5 this chapter we will still compute the values of
also for systems with 1 input and 1 output, since accurate knowledge of PKP

(0) becomes
more important for systems with multiple inputs and outputs, and the process is analogous
for both types of systems. Indeed, if a system has two inputs u(t) = (u1(t), u2(t))

T and
two outputs y(t) = (y1(t), y2(t))

T , then we can decompose B = [B1, B2] ∈ L(C2, X) and
C =

[
C1
C2

]
∈ L(X,C2). Then by definition PKP

(0) has the form

PKP
(0) =

[
C1

C2

]
R(0, A+BKPC)

[
B1, B2

]
=

[
C1R(0, A+BKPC)B1 C1R(0, A+BKPC)B2

C2R(0, A+BKPC)B1 C2R(0, A+BKPC)B2

]
.

This structure shows that in computing the transfer function the inputs and ouputs in a
pairwise fashion. Indeed, each component CjR(0, A + BKPC)Bk with k, j = 1, 2 is a value
of the transfer function for the same system but with only the kth input and jth output.

For numerical simulations we can use the Matlab routine LinSysPIClosedLoopInfDim,
which is similar to the one in Section 2.4. The main difference is that the function takes
the value of the matrix PKP

(0) as an additional parameter, instead of computing it in-
ternally. The routine constructs the matrices of the closed-loop system for a given stable
finite-dimensional system (A,B,C). This routine can indeed be used directly for a nu-
merical approximation (AN , BN , CN) of the infinite-dimensional system, and after simulat-
ing the behaviour of the closed-loop system, we can again interpret the first part of the
state of the closed-loop system xe(t) as an approximation of the state x(t) of the original
infinite-dimensional system. On this course we will not focus on the important questions re-
garding the reliability of the numerical approximations in designing controllers for infinite-
dimensional systems, but instead we should simply keep in mind that we are all the time
controlling the finite-dimensional approximation of a controlled partial differential equation,
instead of the actual PDE system itself!

function [Ae,Be,Ce,De] = LinSysPIClosedLoopInfDim(A,B,C,K_P,PK0,epsgain)
% function [A_e,B_e,C_e,D_e] = LinSysPIClosedLoop(A,B,C,K_P,PK0,epsgain)
%
% Form the closed-loop system (Ae,Be,Ce,De) consisting of the linear system
% (A,B,C) and a Proportional-Integral Controller (PI Controller) with the
% parameters K_P (proportional part gain) K_I = eps*(C*(A+B*K_P*C)^{-1}B)^{-1}
% (integral part gain) where eps>0 is a low-gain parameter. The routine
% tests the stability of the closed-loop system.
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%
% Parameters:
% A = nxn-matrix, B = nxm-matrix, C = pxn-matrix,
% K_P = mxp-matrix, eps>0
% PK0 = pxm-matrix (an approximate) value of P_{K_P}(0)

p = size(C,1); m = size(B,2);

if ~isequal(size(K_P),[m,p])
error('K_P has incorrect dimensions!')

elseif ~isequal(size(PK0),[p,m])
error('PK0 has incorrect dimensions!')

end

if find(real(eig(A+B*K_P*C))>=0)
warning('The matrix A+B*K_P*C is not Hurwitz!')

end

if rank(PK0,1e-10)<p
error('The transfer function of (A,B,C) is nearly non-surjective at s=0!')

end

K_I = -epsgain*pinv(PK0);

Ae = [A+B*K_P*C,B*K_I;C,zeros(p)];
Be = [-B*K_P;-eye(p)];
Ce = [C,zeros(p)]; De = -eye(p);

% Test the stability of the closed-loop system, and print out stability margin.
CLeigs = eig(Ae);
maxRe = max(real(CLeigs));

if maxRe>=0
error('The closed-loop system matrix Ae is not stable! Adjust parameters!')

end
fprintf(['The largest real part of eigenvalues of Ae = ' num2str(maxRe) '\n'])

Example 5.1.6. In this example we will design a PI controller for tracking of the output of
the controlled heat equation in Example 4.1.3. With one input u(t) ∈ R and a scalar-valued
y(t) ∈ R the system has the form

∂v

∂t
(ξ, t) = α

∂2v

∂ξ2
(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1) (5.6a)

v(0, t) = 0, v(1, t) = 0, v(ξ, 0) = v0(ξ), (5.6b)

y(t) =

∫ 1

0

v(ξ, t)c(ξ)dξ. (5.6c)

If we want to consider control the average heat near the point ξ1 = 0.2, we can choose c(·)
to be a function which is non-negative and only nonzero around this point, and has integral
equal to one. One possible option is based on the “characteristic function” χ[a,b](·) on the
interval [a, b] ⊂ [0, 1], for example

c(ξ) =
1

2δ1
χ[0.2−δ1,0.2+δ1](ξ), ξ ∈ [0, 1],
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where δ1 > 0 is suitably small, for example δ1 = 0.05. Numerically it would in general
be much better to choose a continuous function c(·) instead, but even the discontinuous
function χ[a,b](·) is typically acceptable in the case of the heat equation (5.6), since this PDE
has such good approximation properties. Likewise, to model the situation where heat is
added or removed from the system near the point ξ2 = 0.8, we can choose b(·) to be

b(ξ) =
1

2δ2
χ[0.8−δ2,0.8+δ2](ξ), ξ ∈ [0, 1],

where δ2 > 0 is small.
Since the heat equation is already stable by Example 4.2.8, in the PI controller it is

possible to choose KP = 0. In order to define KI = −εPKP
(0)† as in Theorem 5.1.4, we

need to compute the value of the transfer function of (A,B,C) at λ = 0, i.e.,

PKP
(0) = C(−A)−1B.

For PDE systems this can in general be very challenging, and for this reason the results
in Section 5.2 can be very useful! However, since our heat equation (5.6) has constant
conductivity of heat α > 0, and since we chose KP = 0, we can actually derive an explicit
formula for PKP

(0). Indeed, for any functions b(ξ) ∈ L2(0, 1;R) and c(ξ) ∈ L2(0, 1;R) we
have

C(−A)−1B =
1

α

(∫ 1

0

c(ξ)ξdξ

)∫ 1

0

qb(s)ds−
1

α

∫ 1

0

c(ξ)

∫ ξ

0

qb(s)dsdξ, qb(s) =

∫ s

0

b(r)dr.

Deriving this expression is left as an exercise. The formula for C(−A)−1B can be written in
a more compact form

C(−A)−1B =
1

α

∫ 1

0

c(ξ)

∫ 1

0

g(ξ, s)

∫ s

0

b(r)drdsdξ, where g(ξ, s) =

{
ξ − 1, s ≤ ξ

ξ, s > ξ.

Whichever of the above forms is used, the most important thing the formula for C(−A)−1B
is that its value can be computed for concrete functions, either symbolically or numerically.
For example, in the case of our functions b(·) and c(·) above with δ1 = δ2 = 0.05 we get

PKP
(0) = C(−A)−1B =

0.04

α
.

Because of this we can choose the parameters of the PI controller as

KP = 0 ∈ R, KI = −εPKP
(0)† = − ε

C(−A)−1B
= −ε α

0.04
,

and by Theorem 5.1.4 the controller solves the tracking problem whenever ε > 0 is suffi-
ciently small. Figure 5.2 shows the simulated output of the harmonic oscillator with differ-
ent values of parameters ε and KP . Figure 5.3 illustrates how the controller performs when
the reference level yref is changed during the simulation. The code LinSysHeatDir_PI of
the simulation can be cound in Moodle.

�
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Figure 5.2: Output of the controlled heat equation with the PI-controller.
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Figure 5.3: The controlled heat equation with the PI-controller, change of reference level.

5.2 Measuring PKP (0) From The System

In this section we show that the matrix PKP
(0) appearing in the parameters of the PI con-

troller in Theorem 5.1.4 can be measured from the output of the system (5.1) with well-
chosen constant inputs. This possiblity is based on the following important result on the
output of the control system (5.1).

Lemma 5.2.1. Assume KP ∈ Cm×p is such that the semigroup generated by A + BKPC is
exponentially stable. Then for any constant u0 ∈ Cm and for any initial state x0 ∈ X the
output y(t) of the system with the input u(t) = KPy(t) + u0 satisfies

lim
t→∞

y(t) = PKP
(0)u0. (5.7)

Proof. By assumption the operator A+BKPC generates an exponentially stable semigroup
TK(t). Let u0 ∈ Cp be arbitrary. With the input u(t) = KPy(t) + u0 the differential equa-
tion (5.1a) becomes

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +B(KPCx(t) + u0) = (A+BKPC)x(t) +Bu0.

This differential equation with the initial condition x(0) = x0 has the mild solution given by
the variation of parameters formula,

x(t) = TK(t)x0 +

∫ t

0

TK(t− s)Bu0ds.
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Similarly as in the proof of Theorem 5.1.3 we can compute the integral in the above expres-
sion as∫ t

0

TK(t− s)Bu0ds =

∫ t

0

TK(t− s)(A+BKPC)(A+BKPC)−1Bu0ds

=

∫ t

0

(
− d

ds
TK(t− s)(A+BKPC)−1Bu0

)
ds =

[
−TK(t− s)(A+BKPC)−1Bu0

]t
s=0

= −(A+BKPC)−1Bu0 + TK(t)(A+BKPC)−1Bu0.

Substituting this into the formula for x(t) we can see that the output y(t) = Cx(t) is given
by

y(t) = Cx(t) = CTK(t)x0 + CTK(t)(A+BKPC)−1Bu0 − C(A+BKPC)−1Bu0

= CTK(t)(x0 + (A+BKPC)−1Bu0) + CR(0, A+BKPC)−1Bu0

= CTK(t)z0 + PKP
(0)u0,

where we have denoted z0 = x0 + (A + BKPC)−1Bu0 ∈ X. Since the semigroup TK(t) is
exponentially stable, there exist M,ω > 0 such that ‖TK(t)‖ ≤Me−ωt for all t ≥ 0, and thus

‖y(t)− PK(0)u0‖ = ‖CTK(t)z0‖ ≤ ‖C‖‖TK(t)‖‖z0‖ ≤M‖C‖‖z0‖e−ωt → 0

as t→∞. Since u0 ∈ Cm and x0 ∈ X were arbitrary, the proof is complete.

Lemma 5.2.1 offers us a way of finding an approximate value for the matrix PKP
(0)

based on the outputs of the system (5.1). If the system only has a single input, i.e., m =
1, then we can simply choose u0 = 1, and if we choose a time-instant t0 > 0 which is
sufficiently large, then the output y(t) of the system with the input u(t) = KPy(t) + 1
satisfies

y(t0) ≈ PKP
(0) ∈ Cp×1.

More generally, if the system has m ∈ N inputs, then choosing u0 = ek where ek ∈ Cm is
the kth Euclidean basis vector, we have that under input u(t) = KPy(t) + ek for sufficiently
large t0 > 0 we have that

y(t0) ≈ PKP
(0)ek ∈ Cp

where PKP
(0)ek is the kth column of the matrix PKP

(0). Combining these measurements
we get an approximation Pmeas

KP
∈ Cp×m of the full matrix PKP

(0). Since the proof of
Lemma 5.2.1 shows that the convergence in (5.7) is exponentially fast, the values t0 > 0 do
not typically need to be extremely large, but this of course depends entirely of the system
(of course, by definition TK(t) is exponentially stable irregardless of how small ω > 0 is!).

Using the approximation Pmeas
KP

∈ Cp×m of the matrix PKP
(0) in the PI controller is made

possible by pertubration theory: More precisely, if PKP
(0) is surjective, then we have from

Theorem 5.1.4 that the choice KI = K0
I := −εPKP

(0)† leads to a stable closed-loop system
for any ε ∈ (0, ε∗]. However, if instead choose the we define KI = Kmeas

I := −ε(Pmeas
KP

)†,
then we can write the closed-loop system operator Ae as

Ae =

[
A+BKPC BKmeas

I

C 0

]
=

[
A+BKPC BK0

I

C 0

]
+

[
0 B(Kmeas

I −K0
I )

0 0

]
.
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Now if the approximation error ‖Pmeas
KP
−PKP

(0)‖ is sufficiently small, also the norm ‖Kmeas
I −

K0
I ‖ = ε‖(Pmeas

KP
)† − PKP

(0)−1‖ is small, and the same is consequently true for the sec-
ond operator in the right-hand side of the above equation. Since the first operator on
the right-hand side generates an exponentially stable semigroup, we thus have from Theo-
rem 4.2.7 that if ‖Pmeas

KP
−PKP

(0)‖ is sufficiently small, then the semigroup generated by Ae
is also exponentially stable. Finally, by Theorem 5.1.3 the PI controller with the parameter
KI = Kmeas

I := −ε(Pmeas
KP

)† still solves the output tracking problem.

5.2.1 Computing PKP
(0) Based on Stationary Solutions

The following theorem shows that if the system is exponentially stable and if we choose
KP = 0, then it is possible to compute PKP

(0) = C(−A)−1B by computing the output for
the PDE which corresponds to a stationary solution x(t) ≡ x0 corresponding to a constant
input u(t) ≡ u0 ∈ Cm. We will apply this result in designing a PI controller for the wave
equation in Example 5.2.3.

Theorem 5.2.2. Assume A generates an exponentially stable semigroup. Then for every u0 ∈
Cm and for the input u(t) ≡ u0 the system (5.1) there exists a unique initial state x0 ∈ X for
which x(t) ≡ x0, and the corresponding output y(t) ≡ y0 ∈ Cp satisfies y0 = C(−A)−1Bu0.
This initial state satisfies x0 ∈ D(A).

Proof. Assume A generates a strongly continuous semigroup T (t) on X. Let u0 ∈ Cm be
arbitrary and let u(t) ≡ u0. To prove uniqueness of the stationary solution, assume x(t) ≡ x0
for some x0 ∈ X. Since u(·) is continuous, by Definition 3.4.2 the mild solution of (5.1a)
is given by the variation of parameters formula. Similarly as in the proof of Theorem 5.1.3
we can compute (for t > 0)

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds = T (t)x0 +

∫ t

0

T (t− s)Bu0ds

= T (t)x0 +

∫ t

0

(
− d

ds
T (t− s)A−1Bu0

)
ds = T (t)x0 +

[
−T (t− s)A−1Bu0

]t
s=0

= T (t)x0 + T (t)A−1Bu0 − A−1Bu0 = T (t)(x0 + A−1Bu0)− A−1Bu0.

Since x(t) ≡ x0 by assumption, we have that for all t > 0

x0 = T (t)(x0 + A−1Bu0)− A−1Bu0
⇔ (I − T (t))(x0 + A−1Bu0) = 0.

Since T (t) is exponentially stable, we can choose t0 > 0 such that ‖T (t0)‖ < 1. Then
the operator I − T (t0) is boundedly invertible, and for t = t0 the above equation implies
x0 +A−1Bu0 = 0, i.e., x0 = −A−1Bu0. Thus any mild solution x(t) which is independent of
t has to be of the form x(t) ≡ −A−1Bu0 ∈ D(A).

If u(t) ≡ u0, then setting x0 = −A−1Bu0 ∈ D(A) we have that x(t) ≡ x0 is clearly a
classical solution of (5.1a), since x(t) ∈ D(A) for all t ≥ 0, ẋ(t) ≡ 0 implies that x(·) ∈
C1(0,∞;X), and

Ax(t) +Bu(t) = A(−A−1Bu0) +Bu0 = 0 = ẋ(t)



5.2. Measuring PKP
(0) From The System 81

shows that x(·) satisfies (5.1a).
The output corresponding to the unique stationary solution satisfies y(t) = Cx(t) =

C(−A)−1Bu0 for all t ≥ 0, which was the claim.

Example 5.2.3. In this example we consider PI control for the damped wave equation.

∂2w

∂t2
(ξ, t) = c2

∂2w

∂ξ2
(ξ, t)− d(ξ)

∂w

∂t
(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1), (5.8a)

w(0, t) = w(1, t) = 0, t > 0 (5.8b)
w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), ξ ∈ (0, 1) (5.8c)

y(t) =

∫ 1

0

w(ξ, t)c1(ξ)dξ (5.8d)

where b(·), c1 ∈ L2(0, 1;R), and the damping function d(·) is continuous on the closed inter-
val [0, 1], d(ξ) ≥ 0 for all ξ ∈ [0, 1], and d(ξ) 6≡ 0.

Here we consider the output to be a weighted average of the wave profile w(ξ, t) instead
of the velocity or the strain. Even though we haven’t considered this situation in detail on
this course, this system can also be written in the form of (5.1) with bounded input and
output operators B and C, and an A which generates an exponentially stable semigroup.
In this setting the state of the linear system (5.1) is chosen to be x(t) = (w(·, t), wt(·, t))T .

For us, knowing that a representation of the form (5.1) with the above properties exists
is sufficient for designing the PI controller for output tracking of a reference yref ∈ Cp. In-
deed, since the system is exponentially stable, we can choose KP = 0. By Theorem 5.2.2
we can compute PKP

(0) by finding the unique stationary solution of the linear system cor-
responding to the constant input u(t) ≡ 0, and by studying the corresponding constant
output. To this end, let u0 ∈ C be arbitrary. Since x(t) = (w(·, t), wt(·, t)), the unique
constant solution of the wave system in particular satisfies

∂w

∂t
(ξ, t) = 0 and

∂2w

∂t2
(ξ, t) = 0, for all ξ ∈ [0, 1], t > 0.

Since w(ξ, 0) = w0(ξ) for all ξ ∈ [0, 1], the stationary solution has the form x(t) = (w0(·), 0)T .
In order to find the initial state w0(ξ) corresponding to the stationary solution we note that
if w(ξ, t) is constant with respect to time, the partial differential equation (5.8a)–(5.8b)
reduces to the ordinary differential equation

c2
d2w0

dξ2
(ξ) = −b(ξ)u0, ξ ∈ (0, 1),

w0(0) = w0(1) = 0.

Without the boundary conditions, the differential equation has the general solution

w0(ξ) = q0 + q1ξ −
u0
c2

∫ ξ

0

∫ s

0

b(r)drds.

The boundary condition w0(0) = 0 implies that necessarily q0 = 0, and

0 = w0(1) = q1 −
u0
c2

∫ 1

0

∫ s

0

b(r)drds ⇔ q1 =
u0
c2

∫ 1

0

∫ s

0

b(r)drds.
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Thus

w0(ξ) =
1

c2

(
ξ

∫ 1

0

∫ s

0

b(r)drds−
∫ ξ

0

∫ s

0

b(r)drds

)
u0

=
1

c2

(∫ 1

0

g(ξ, s)

∫ s

0

b(r)drds

)
u0, where g(ξ, s) =

{
ξ − 1, s ≤ ξ

ξ, s > ξ.

The constant output y(t) ≡ 0 corresponding to the stationary solution is given by

y(t) =

∫ 1

0

w(ξ, t)c1(ξ)dξ =

∫ 1

0

w0(ξ)c1(ξ)dξ =
u0
c2

∫ 1

0

c1(ξ)

∫ 1

0

g(ξ, s)

∫ s

0

b(r)drdsdξ.

We thus have from Theorem 5.2.2 that

PK0(0) =
1

c2

∫ 1

0

c1(ξ)

∫ 1

0

g(ξ, s)

∫ s

0

b(r)drdsdξ where g(ξ, s) =

{
ξ − 1, s ≤ ξ

ξ, s > ξ.

For concrete functions b(·) and c1(·) the integrals can be computed symbolically or numeri-
cally, and the resulting scalar value can be used to define the parameter KI = −εPK0(0)−1 of
the PI controller. You can also notice that this formula is almost identical to the formula of
PK0(0) for the heat equation in Example 5.1.6! This is because in both cases the “stationary
solution” of the original partial differential equation are solutions of ordinary differential
equation which have exactly the same forms.

For the functions b(ξ) = 10 max{0, 1− 10|ξ − 0.2|} and c1(ξ) = 10 max{0, 1− 10|ξ − 0.8|}
depicted in Figure 5.4. For these input and output functions the above formula yields

PKP
(0) = C(−A)−1B =

1

25c2
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

Figure 5.4: Functions b(·) (blue) and c1(·) (red).

Numerical approximations of the output of the wave equation with a PI controller are
depicted in Figure 5.5. Figure 5.6 plots the solution of the controlled wave equation for two
different values of ε > 0. �
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Figure 5.5: Output of the controlled wave equation with the PI-controller.
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Figure 5.6: The solutions of the controlled wave equation with the PI-controller with values
ε = 0.25 (left) and ε = 0.35 (right).
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A. Finite-Dimensional Differential
Equations

A.1 The Matrix Exponential Function

In this appendix we review some basic properties of the matrix exponential function etA,
where A ∈ Rn×n and t ∈ R. This function plays a crucial role in studying systems of linear
differential equations. We will see that the matrix exponential function can be computed
conveniently using the Jordan canonical form.

It should be noted that the usefulness of the matrix exponential function in studying
differential equations is mainly of theoretical nature: Numerical computation of an expo-
nential matrix is very difficult, and therefore the differential equations should rather be
solved numerically using other approaches, such as the Runge-Kutta-methods.

For a scalar a ∈ R the exponential function eta can be expressed using the series repre-
sentation

eta =
∞∑
k=0

(ta)k

k!
.

This same series representation can be used to define the exponential of a matrix. In view
of the applications to solving differential equation, we define the exponential of a matrix
directly for a matrix tA, where t ∈ R.

Definition A.1.1. Matrix exponential function. Let A ∈ Rn×n. We define etA as the
matrix

etA =
∞∑
k=0

(tA)k

k!
∈ Rn×n. (A.1)

Remark A.1.2. In order for the definition to be sensible, it is important to ensure that the
series in (A.1) is convergent. We, however, omit the proof in these lecture notes.

Exercise A.1.3. Use the definition to compute etA, when t ∈ R, and (a) when A = αI ∈
Cn×n and α ∈ C (b) when A = O ∈ Cn×n (use the convention that O0 = I). �

A.2 Linear Systems of Differential Equations

The most important application of the matrix exponential function is that the solutions of
linear systems of differential equations can be expressed using the matrix function etA. Let

86
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us consider a homogenic first order initial value problem

d
dt
x1(t) = a11x1(t) + a12x2(t) + a13x3(t) + · · ·+ a1nxn(t)

d
dt
x2(t) = a21x1(t) + a22x2(t) + a23x3(t) + · · ·+ a2nxn(t)

...
d
dt
xn(t) = an1x1(t) + an2x2(t) + an3x3(t) + · · ·+ annxn(t)

,


x1(0) = x01,

x2(0) = x02,
...

xn(0) = x0n,

with n equations and n unknown functions x1(t), . . . xn(t). The initial values x01, . . . , x
0
n ∈ R

are known. The system of equations can be written as a homogenic first order matrix
differential equation

d

dt
x(t) = Ax(t), x(0) = x0, (A.2)

for all t ≥ 0, where x(t) = (x1(t), . . . , xn(t))T ∈ R is an unknown vector-valued function.
The differentiation of x(t) with respect to t is understood component-wise, i.e.,

d

dt
x(t) =

[
d

dt
x1(t), . . . ,

d

dt
xn(t)

]T
.

The initial value of the equation (A.2) is the vector x0 = (x01, x
0
2, . . . , x

0
n)T ∈ Rn.

The following theorem states that the solution of the matrix differential equation (A.2)
can be expressed using the matrix exponential function.

Theorem A.2.1. The differential of the matrix exponential function with respect to t satisfies

d

dt
etA = AetA = etAA. (A.3)

The initial value problem (A.2) has a unique solution

x(t) = etAx0.

Proof. We omit the proof of the differentiation formula (A.3). It can be proved using the
series expression in (A.1), but this requires detailed consideration for the convergences of
all the series involved.

We will first show that the function x(t) = etAx0 is a solution of the initial value
problem (A.2). It is immediate from the definition of the matrix exponential function
that e0·A = eO = I. This implies that the function x(t) satisfies the initial condition
x(0) = e0·Ax0 = Ix0 = x0. Using the differentiation formula (A.3) we can also see that
for all t > 0 we have

d

dt
x(t) =

d

dt

(
etAx0

)
=

(
d

dt
etA
)
x0 =

(
AetA

)
x0 = A

(
etAx0

)
= Ax(t).

This concludes that x(t) is a solution of the initial value problem (A.2).
To prove the uniqueness of the solution, let us assume y(t) is a solution to the initial

value problem (A.2). Our aim is to show that y(t) = etAx0 for all t ≥ 0.
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Let us consider the derivative of the difference z(t) = y(t)−etAx0. Using the knowledge
that y(t) is a solution of (A.2) we get

d

dt
z(t) =

d

dt
y(t)− d

dt

(
etAx0

)
= Ay(t)− AetAx0 = A

(
y(t)− etAx0

)
= Az(t)

and z(0) = y(0) − e0·Ax0 = x0 − x0 = 0. This implies that z(t) is a solution of the initial
value problem

d

dt
z(t) = Az(t), z(0) = 0. (A.4)

Let t > 0 be arbitrary. Define a function u(s) = e(t−s)Az(s) for 0 ≤ s ≤ t. Using the
differentiation rules for the product of two functions and for composition of functions we
can see that

d

ds
u(s) =

d

ds

(
e(t−s)Az(s)

)
=

(
d

ds
e(t−s)A

)
z(s) + e(t−s)A

(
d

ds
z(s)

)
= (−1)e(t−s)AAz(s) + e(t−s)AAz(s) = 0.

This implies that (u1(s), . . . , un(s))T = u(s) = (0, . . . , 0)T , and therefore u(s) is a constant
function. In particular, we can see using the initial condition in (A.4) that

z(t) = e(t−t)Az(t) = u(t) = u(0) = e(t−0)Az(0) = etA0 = 0.

Because t > 0 was arbitrary, we have shown that z(t) = 0 for all t ≥ 0. This immediately
implies that y(t) = etAx0 for all t ≥ 0.

A.3 Computing the Matrix Exponential Function etA

The matrix exponential function eAt can be computed conveniently using the Jordan canon-
ical form A = SJS−1 of the matrix A. If we consider a single term in the series (A.1), we
then have

(tA)k

k!
=
tk

k!

k kpl︷ ︸︸ ︷
AA · · ·A =

tk

k!
(SJS−1)(SJS−1) · · · (SJS−1) =

tk

k!
SJS−1SJS−1 · · ·SJS−1

=
tk

k!
SJkS−1 = S


(tk/k!)Jk1 0 · · · 0

0 (tk/k!)Jk2 · · · 0
... . . . ...
0 · · · 0 (tk/k!)Jkp

S−1.
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Because of this, the matrix exponential function etA can be written in the form (omitting
the considerations for the convergence of the series)

etA =
∞∑
k=0

(tA)k

k!
=
∞∑
k=0

StkJkS−1

k!
= S diag

(
∞∑
k=0

(tJ1)
k

k!
,
∞∑
k=0

(tJ2)
k

k!
, . . . ,

∞∑
k=0

(tJp)
k

k!

)
S−1

= S


etJ1 0 · · · 0
0 etJ2 · · · 0
... . . . ...
0 · · · 0 etJp

S−1

This way, computing etA is reduced to computing the exponential matrices etJj of the indi-
vidual blocks of J . Since the blocks Jj are of particular forms, the following theorem covers
all possible situations.

Theorem A.3.1. The matrix exponential functions of the blocks Jj satisfy the following.

• If Jj = λ ∈ R1×1, then etJj = etλ.

• If

Jj =

[
α β
−β α

]
∈ R2×2, then etJj = etα

[
cos(βt) sin(βt)
− sin(βt) cos(βt)

]
.

• If Jj =
[
λ
0
1
λ

]
∈ R2×2, then etJj = etλ

[
1
0
t
1

]
.

• If

Jj =

λ 1 0
0 λ 1
0 0 λ

 ∈ R3×3, then etJj = etλ

1 t t2

2

0 1 t
0 0 1

 .
• If

Jj =


λ 1 0 · · · 0
0 λ 1 · · · 0
... . . . ...
0 · · · · · · λ 1
0 · · · · · · 0 λ

 ∈ Rq×q, then etJj = etλ


1 t t2

2!
· · · tq−1

(q−1)!

0 1 t · · · tq−2

(q−2)!
... . . . ...
0 · · · · · · 1 t
0 · · · · · · 0 1

 .



B. Some Elements of Functional Analysis

B.1 Infinite-Dimensional Vector Spaces

To make terminology more precise, we call a vector space finite-dimensional if it has a finite
basis {q1, . . . , qn} ⊂ X where n ∈ N and X = span{q1, . . . , qn}. Also an infinite-dimensional
vector space X may have a countably infinite basis {qk}k∈N ⊂ x, but this is not always the
case. Most of the spaces that we consider are relatively “nice” and have countable bases.

A vector space X over the field C of scalars is a set that is closed under the addition of
two of its elements, i.e., x + y ∈ X whenever x, y ∈ X, and closed under multiplication by
scalar, i.e., αx ∈ X whenever x ∈ X and α ∈ C. The computation rules of a vector space
are the same as for vectors in the usual finite-dimensional spaces Cn and Rn.

Example B.1.1. Some vector spaces:

(a) The space X = C(0, 1) of complex-valued functions f : [0, 1]→ C that are continuous
on the interval [0, 1] is a vector space. Indeed, if f and g are continuous on [0, 1] and
if α ∈ C, then also the functions f + g and αf are continuous on [0, 1].

(b) The function space

L2(0, 1;C) =

{
f : (0, 1)→ C

∣∣∣∣ ∫ 1

0

|f(ξ)|2dξ <∞
}
.

is a vector space since if f, g ∈ L2(0, 1;C) and α ∈ C, then also f + g ∈ L2(0, 1;C)
since ∫ 1

0

|f(ξ) + g(ξ)|2dξ ≤ 2

∫ 1

0

|f(ξ)|2 + 2

∫ 1

0

|g(ξ)|2dξ <∞

and αf ∈ L2(0, 1;C) since∫ 1

0

|αf(ξ)|2dξ = |α|2
∫ 1

0

|f(ξ)|2 <∞.

(c) The space of infinite sequences (or infinite vectors)

X =
{

(x1, x2, x3, . . .)
∣∣ xk ∈ C for all k ∈ N

}
is a vector space. The addition and scalar multiplication of two vectors are defined as
for vectors of finite lengths,

x+ y = (x1 + y1, x2 + y2, x3 + y3, . . .)

αx = (αx1, αx2, αx3, . . .).

90
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�

In addition X is a normed linear space (X, ‖·‖) if there is a function ‖·‖ : X → [0,∞)
with the properties

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ C.

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

The function ‖·‖ is then a norm on the space X.
The spaceX is an inner product space space (X, 〈·, ·〉) if there is a function 〈·, :〉X×X → C

with the properties

(1) 〈x, x〉 ≥ 0 for all x ∈ X and 〈x, x〉 = 0 if and only if x = 0.

(2) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ X.

(2) 〈αx, y〉 = α〈x, y〉 for all x, y ∈ X and α ∈ C.

(3) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X.

The function 〈·, ·〉 is an inner product on the space X. An inner product 〈·, ·〉 can always be
used to define a norm ‖·‖ such that ‖x‖ =

√
〈x, x〉. This particular norm on the space X is

called the norm induced by the inner product 〈·, ·〉.

Definition B.1.2. A normed vector space (X, ‖·‖) is called a Banach space if X is complete
with respect to the norm ‖·‖. An inner product space (X, 〈·, ·〉) is called a Hilbert space if
it is complete with respect to the norm induced by the inner product 〈·, ·〉.

We recall that a vector space being “complete” means that every Cauchy-sequence (xk)k∈N ⊂
X converges in X. That is, if (xk)k∈N ⊂ X is such that limk,l→∞‖xk − xl‖ = 0, then there
exist x ∈ X such that limk→∞‖xk − x‖ = 0.

Example B.1.3. We return to our earlier examples.

(a) The space X = C(0, 1) of complex-valued functions f : [0, 1] → C is a Banach space
with the norm ‖·‖ defined by

‖f‖ = sup
ξ∈[0,1]

|f(ξ)|.

It is also a normed linear space if we choose another norm ‖·‖L2 defined by

‖f‖2L2 =

∫ 1

0

|f(ξ)|2dξ,

but in this case the space is not complete.
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(b) The function space L2(0, 1;C) is a Banach space with the norm ‖·‖L2 defined above.
In fact, it is a Hilbert space, because the norm ‖·‖L2 is induced by the inner product
〈·, ·〉L2 defined by

〈f, g〉L2 =

∫ 1

0

f(ξ)g(ξ)dξ, f, g ∈ L2(0, 1).

Indeed, for every f ∈ L2(0, 1) we have

〈f, f〉L2 =

∫ 1

0

f(ξ)f(ξ)dξ =

∫ 1

0

|f(ξ)|2dξ,= ‖f‖2L2 .

(c) The space of infinite sequences can be made into a Hilbert space if we only include
elements x = (x1, x2, . . .) ∈ X for which the sum of the squares of the absolute values
of the elements are finite, i.e.

X =
{
x = (x1, x2, . . .)

∣∣ ∞∑
k=1

|xk|2 <∞
}
.

We can now define an inner product 〈·, ·〉 and the corresponding induced norm by

〈x, y〉 =
∞∑
k=1

xkyk, and ‖x‖2 =
∞∑
k=1

|xk|2.

This Hilbert space is commonly denoted by `2(C) (“small L-two”).

�

B.2 Closed Linear Operators

The concept of a closed operator is important to us since the infinitesimal generators of
semigroups (see Chapter 3) belong to this class. Closed operators A : D(A) ⊂ X → Y form
a strictly more general class than bounded operators in the sense that every bounded oper-
ator A ∈ L(X, Y ) is a closed operator, but the converse is not true. We do not actually need
the explicit definition of a closed operator very often on this course, but for completeness it
is defined in the following.

Definition B.2.1. An operator A : D(A) ⊂ X → Y between two Banach spaces X and Y
is closed if it has the following property:

If (xn)n ⊂ D(A) is a sequence such that xn → x and Axn → y as n→∞ for
some x ∈ X and y ∈ Y , then necessarily x ∈ D(A) and Ax = y.

For our purposes two particular properties of closed operators are of particular impor-
tance. First of all, if A : D(A) ⊂ X → Y is closed and D(A) = X, then necessarily A is a
bounded operator, i.e., A ∈ L(X, Y ). This is called the Closed Graph Theorem. Secondly, if
there exists λ ∈ C such that λ − A has a bounded inverse (λ − A)−1 ∈ L(Y,X), then A is
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closed. Indeed, in this case if (xn)n ⊂ D(A) is a sequence such that xn → x and Axn → y as
n→∞, then also λxn − Axn → λx− y ∈ X. Since (λ− A)−1 ∈ L(Y,X), we also have

‖xn − (λ− A)−1(λx− y)‖ ≤ ‖(λ− A)−1‖‖(λxn − Axn)− (λx− y)‖ n→∞−→ 0

and
‖x− (λ− A)−1(λx− y)‖ = ‖x− xn + xn − (λ− A)−1(λx− y)‖

≤ ‖x− xn‖+ ‖xn − (λ− A)−1(λx− y)‖ n→∞−→ 0.

Thus necessarily x = (λ − A)−1(λx − y), which in particular means that x ∈ D(A) and
(λ− A)x = λx− y, i.e., Ax = y.

On Hilbert spaces we can define the concept of an adjoint also for unbounded operators.

Definition B.2.2. Let A : D(A) ⊂ X → Y with Hilbert spaces X and Y and assume D(A)
is dense in X. The adjoint of A is an operator A∗ : D(A∗) ⊂ Y → X so that y ∈ D(A∗) if
and only if there exists z ∈ X satisfying

〈Ax, y〉Y = 〈x, z〉X ∀x ∈ D(A).

In this case we define A∗y = z.

Definition B.2.3. Let A : D(A) ⊂ X → X with Hilbert spaces X and Y . The operator A
is self-adjoint if A∗ = A, or skew-adjoint if A∗ = −A.

Note that both self-adjointness and skew-adjointness in particular mean that D(A∗) =
D(A), and in addition

A∗x = Ax, ∀x ∈ D(A) = D(A∗) if A is self-adjoint
A∗x = −Ax, ∀x ∈ D(A) = D(A∗) if A is skew-adjoint.

The spectrum of a linear operator is an important concept in the study of strongly con-
tinuous semigroups. The parts of the spectrum σ(A) and its complement — the resolvent
set ρ(A) = C \ σ(A) — are defined for unbounded operators A : D(A) ⊂ X → X in a sim-
ilar way as they are defined for bounded operators A ∈ L(X) (for example on the course
“Introduction to Functional Analysis”).

Definition B.2.4. Let X be a Banach space and let A : D(A) ⊂ X → X.

The resolvent set ρ(A) of A is defined as

ρ(A) = {λ ∈ C | The operator λ− A has a bounded inverse (λ− A)−1 ∈ L(X) }.

The set σ(A) = C \ ρ(A) is called the spectrum of A, and can be divided into the disjoint
parts — the point spectrum σp(A), the continuous spectrum σc(A), and the residual spectrum
σr(A) — defined as

σp(A) = {λ ∈ C | The operator λ− A is not injective, i.e., N (λ− A) 6= {0} }

σc(A) = {λ ∈ C | R(λ− A) = X but R(λ− A) 6= X }

σr(A) = {λ ∈ C | R(λ− A) 6= X }.
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In the definitions of σc(A) and σr(A) the notation R(λ− A) denotes the closure of the
subspaceR(λ−A) in X. The points λ ∈ σp(A) are called eigenvalues of A, and by definition
there exists an eigenvector x ∈ D(A) such that x 6= 0 satisfying Ax = λx. This corresponds
exactly to the case of matrices, whose spectra consist entirely of eigenvalues, i.e., σ(A) =
σp(A) for all matrices A ∈ Cn×n or A ∈ Rn×n.

It should be noted that while σ(A), σp(A) and ρ(A) always defined in the same way,
the division of the other parts of the spectrum σ(A) may be done in a different way in
different references. Especially it is imporant to be careful with the definition of the residual
spectrum σr(A)!

Definition B.2.5. Let X be a Banach space and let A : D(A) ⊂ X → X. The resolvent
operator of A is defined as R(λ,A) = (λ− A)−1 for λ ∈ ρ(A).

If the operator is bounded, i.e., A ∈ L(X), then both σ(A) and ρ(A) are non-empty
subsets of C, and in particular σ(A) is contained in a circle centered at 0 ∈ C with radius
‖A‖. If A is unbounded, either one of σ(A) or ρ(A) can in general be empty sets.

Self-adjoint and skew-adjoint operators have the following very special spectral proper-
ties.

Theorem B.2.6. Let A : D(A) ⊂ X → X with a Hilbert space X. If A is self-adjoint,
then σ(A) is not empty and σ(A) ⊂ R. If A is skew-adjoint, then σ(A) is not empty and
σ(A) ⊂ iR.



Translations of Important Terms

Abstract Cauchy problem. Abstrakti Cauchy-ongelma
Adjoint operator. Adjugaatti-operaattori
Asymptotically stable. Asymptoottisesti stabiili

Banach space. Banach-avaruus
Basis (of a subspace). (Aliavaruuden) kanta

Control. Ohjaus
Controllability matrix. Ohjattavuusmatriisi
Controller. Säätäjä

Detectable. Havaittava
Diagonal. Diagonaalinen
Diagonalizable. Diagonalisoituva
Diagonalization. Diagonalisointi
Differential equation. Differentiaaliyhtälö
Distributed parameter system. Jakautunut järjestelmä
Disturbance rejection. Häirösignaalin vaimentaminen
Domain (of an operator). (Operaattorin) määrittelyjoukko

Eigenfunction. Ominaisfunktio
Eigenvalue. Ominaisarvo
Eigenvector. Ominaisvektori
Exponentially stable. Eksponentiaalisesti stabiili

Feedback. Takaisinkytkentä
Finite-dimensional. Äärellisulotteinen
Function space. Funktioavaruus

Half-plane C±. Puolitaso C±
Heat equation. Lämpöyhtälö
Hilbert space. Hilbert-avaruus

Infinite-dimensional. Ääretönulotteinen
Inner product. Sisätulo
Input. Sisääntulo, ohjaus

Jordan canonical form. Jordanin kanoninen muoto

Linear. Lineaarinen
Linear system. Lineaarinen järjestelmä
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Matrix exponential function. Matriisieksponenttifunktio

Nonlinear. Epälineaarinen
Norm. Normi

Observable. Tarkkailtava
Observer. Tarkkailija
Operator. Operaattori
Optimal control. Optimisäätö
Output. Mittaus, ulostulo

Partial differential equation. Osittaisdifferentiaaliyhtälö
Plant. Järjestelmä

Robust. Robusti
Robust output regulation. Robusti regulointi
Robustness. Robustisuus

Semigroup. Puoliryhmä
Space. Avaruus
Stabilizable. Stabiloituva
Stable. Stabiili
State. Tila
State feedback. Tilatakaisinkytkentä
State Space. Tila-avaruus
Strongly continuous semigroup. Vahvasti jatkuva puoliryhmä
Strongly stable. Vahvasti stabiili (= asymptoottisesti stabiili)
Subspace. Aliavaruus
System. Järjestelmä

Transfer function. Siirtofunktio

Unbounded. Ei-rajoitettu
Uniformly bounded. Tasaisesti rajoitettu
Uniformly continuous. Tasaisesti jatkuva

Vector space. Vektoriavaruus

Wave equation. Aaltoyhtälö
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