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Foreword

These lecture notes cover the material on the master’s level course MATH.MA.810
“Introduction to Functional Analysis” at Tampere University. The lecture notes were
written in January–February 2021, and the structure of the course (and part of the
material in Chapter 1) are based very loosely on an earlier set of lecture notes “Intro-
duction to Functional Analysis” by Seppo Pohjolainen, and with additional contribu-
tions by myself and Petteri Laakkonen during 2016–2020. The course also has a set
of video lectures which are available as a playlist on Youtube (direct link here).

The main topics of the course include the theory of general vector spaces equipped
with either a norm (leading to Banach spaces) or an inner product (leading to Hilbert
spaces), and the analysis of bounded linear operators on such vector spaces. In par-
ticular, in many ways the theory of “bounded linear operators generalises” the theory
of matrices — which are mappings between two Euclidean spaces Cm and Cn — to
the situation where the spaces Cm and Cn are replaced with the more general “vector
spaces”. Two particularly important types of such general vector spaces are func-
tion spaces (that is, spaces of functions) and spaces of infinite sequences (or “infinite
vectors”), and we will study these types of spaces in detail on this course.

The theory presented on this course also forms a foundation for further studies
in functional analysis on the courses MATH.MA.830 “Advanced Functional Analysis”
and MATH.APP.810 “Mathematical Control Theory”.

If you discover mistakes or typographical errors in the lecture notes, or if you have
any other suggestions for improvements, I would be happy to hear about them! You
can contact me by email, my address is firstname.lastname@tuni.fi.

Lassi Paunonen,
at Tampere, Finland
6.4.2024

Contact details:

Associate Professor in Mathematics
Tampere University
Email: firstname.lastname@tuni.fi
Website (personal): https://lassipaunonen.wordpress.com/
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2 Contents

Notation

The set of natural numbers N = {1, 2, . . . , n, . . .}
The set of integers Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . .}
The set of rational numbers Q =

{
m
n

∣∣∣ m,n ∈ Z, n ̸= 0
}

The set of real numbers R
The set of complex numbers C
The real or complex absolute value | · |
A sequence (x1, x2, . . . , xn, . . .) = (xn) = (xn)∞

n=1

In addition we denote by sup(E) the supremum or the least upper bound of
the set E ⊂ R, i.e., a value G ∈ R such that if M ∈ R is an arbitrary upper bound1

of the set E, then G ≤M .
Similarly, we denote by inf(E) the infimum or the greatest lower bound of the

set E ⊂ R, i.e., a value g ∈ R such that if m ∈ R is an arbitrary lower bound of the
set E, then g ≥M .

Supremum and infimum do not always exist, but the axiom on completeness of
real numbers implies that every non-empty subset of R that is bounded from above
has a least upper bound. Analogously, every non-empty subset of R that is bounded
from below has a greatest lower bound.

On this course we also use the following short-hand notation:

sup
k∈I

xk := sup({xk | k ∈ I }) and sup
a≤t≤b

f(t) := sup({ f(t) | a ≤ t ≤ b }).

1Recall that a M ∈ R is “upper bound” of the set if x ≤M for all x ∈ E.



1. Banach Spaces

In this chapter we introduce the normed spaces and Banach spaces. We begin by
generalizing the Euclidean vector spaces Rn and Cn to a mathematical structure called
the “vector space” with addition and scalar multiplication satisfying certain axioms.
In particular, we are interested in function spaces, i.e., vector spaces with functions as
elements. We will introduce several vector spaces that will be encountered throughout
the text. We define the dimension of a vector space and observe that most of the vector
spaces, e.g., the function spaces and the sequence spaces, considered in this text are
infinite-dimensional as opposed to the “finite-dimensional” spaces Rn and Cn.

In the second main part of the chapter we equip the vector space with a norm.
Norms are especially used in defining “the size” of an element of the vector space,
and in discussing the “distance” between two elements. We especially use the norm to
study the convergence of sequences on normed spaces, and define concept of Banach
spaces, which are normed spaces which are “complete”. Completeness of a normed
space will be defined as the property that every Cauchy sequence of the space is a
convergent sequence. Throughout the chapter we will encounter several examples of
normed spaces, some of which have the very nice property of completeness, and some
of which are not complete (but which are nevertheless important spaces).

1.1 Linear Vector spaces

Definition 1.1. The set X is a linear space or a vector space if the following
operations are defined for its elements: vector addition +: X ×X → X and scalar
multiplication · : C×X → X and these operations satisfy the following axioms:

1. x+ y = y + x ∀x, y ∈ X
2. x+ (y + z) = (x+ y) + z ∀x, y, z ∈ X
3. There exists a zero element 0 ∈ X so that x+ 0 = x for all x ∈ X
4. Every x ∈ X has an (additive) inverse element −x so that x+ (−x) = 0
5. α(βx) = (αβ)x ∀α, β ∈ C, ∀x ∈ X
6. 1x = x ∀x ∈ X
7. 0x = 0 ∀x ∈ X
8. α(x+ y) = αx+ αy ∀α ∈ C, ∀x, y ∈ X
9. (α + β)x = αx+ βx ∀α, β ∈ C, ∀x ∈ X

It should be noted that vector spaces can also be defined using real scalars α, β ∈ R.
Then we call the vector space a real vector space. If not stated otherwise, we always

3



4 Chapter 1. Banach Spaces

assume that the scalars are complex numbers. We can call a vector space a complex
vector space if we want to underline that the scalars are complex numbers.

Example 1.2. It is straightforward to verify that Rn and Cn are vector spaces if
vector addition and scalar multiplication are defined in the usual way. ⋄

The vector space can consist of elements that are very different from those vectors
that we know from the elementary linear algebra. Particularly interesting vector spaces
are those consisting of functions or sequences which will be considered throughout this
text as standard examples of infinite-dimensional spaces (dimension is to be defined
later).

Example 1.3 (The space C(I) of continuous functions). Let I ⊆ R be an arbitrary
fixed interval (open or (half-)closed / bounded or unbounded). We denote by C(I)
the set of all functions f : I → C which are continuous on I. The set C(I) becomes a
vector space if the addition of two elements and the scalar multiplication are defined
so that

(f + g)(t) = f(t) + g(t) ∀t ∈ I
(αf)(t) = αf(t) ∀t ∈ I

for all f, g ∈ C(I) and α ∈ C.
The interval I is fixed and changing it will result in a different space. In fact,

even including or excluding one of the endpoints of the interval changes the space
C(I) drastically: For example, the function f : (0, 1] → C defined by f(t) = 1/t is in
C((0, 1]), but not in C([0, 1]) (more precisely, it is not possible to extend the function
f to [0, 1] in such a way that the result would be continuous on [0, 1]). ⋄

Example 1.4 (The space C(Ω) of continuous functions). More generally, if Ω ⊂ Rn

for some n ∈ N, the set C(Ω) of continuous functions f : Ω → C becomes a vector
space if we define the addition and scalar multiplication so that

(f + g)(z) = f(z) + g(z) ∀z ∈ Ω
(αf)(z) = αf(z) ∀z ∈ Ω

for all f, g ∈ C(Ω) and α ∈ C. ⋄

Example 1.5 (The sequence space ℓ(C)). The set

ℓ(C) =
{
x
∣∣∣ x = (x1, x2, . . . , xn, . . .), xi ∈ C, i ∈ N

}
of complex sequences is a vector space when addition and scalar multiplication are
defined as

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn, . . .)
αx = (αx1, αx2, . . . , αxn, . . .)

where x = (x1, x2, . . . , xn, . . .) and y = (y1, y2, . . . , yn, . . .) and α ∈ C. We can note
that the addition and scalar multiplication in ℓ(C) are defined in exactly the same way
as in Cn. In fact, the sequence (x1, x2, . . . , ) ∈ ℓ(C) can be considered to be a vector
with an infinite number of elements xk.

Often on this course we will also use more compact notations for the sequence
x = (x1, x2, . . .), namely, x = (xk)∞

k=1, x = (xk)k∈N, or (xk)k. ⋄
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Remark 1.6. To be precise, the linear vector space is the triplet (X,+, ·). However,
it is common practice not to explicitly state the addition “+” and the scalar multi-
plication “·” if they are clear from the context. In particular, when talking about the
vector spaces of Examples 1.2–1.5 on this course we always assume that the addition
and scalar multiplication are defined as above.

Definition 1.7. A non-empty subset S of a vector space X is a subspace of X if

αx+ βy ∈ S ∀x, y ∈ S ∀α, β ∈ C. (1.1)

Note that since S is a subset of X, the vector addition and scalar multiplication
operators of X are also defined for the elements in S. Both of these operations also
appear in the condition (1.1).

Example 1.8 (The trivial subspace {0}). If X is a vector space, then S = {0} ⊂ X
is a subspace of X. Indeed, S is not empty, since 0 ∈ S. To prove (1.1), let x, y ∈ S
and α, β ∈ C be arbitrary. Since S = {0}, we necessarily have x = y = 0. The vector
space axiom 7 implies that 0 · 0 = 0 (meaning, “0 ∈ C times 0 ∈ X is 0 ∈ X”), and
axioms 5, 7, and 3 further imply
αx+ βy = α0 + β0 = α(0 · 0) + β(0 · 0) = (α0)0 + (β0)0 = 0 · 0 + 0 · 0 = 0 + 0 = 0.

Since αx + βy = 0 ∈ S and α, β ∈ C and x, y ∈ X were arbitrary, (1.1) holds and
S = {0} is indeed a subspace of X.

The subspace S = {0} is referred to as the “trivial subspace” of a vector space X,
and by assuming that a subspace S of X is “non-trivial” we mean that S is assumed
to contain at least one element which is not the zero element. The same terminology
of “trivial” and “non-trivial” is used when discussing vector spaces (since X = {0} is
indeed a vector space). Any real or complex non-trivial vector space always contains
an infinite number of elements, whereas the trivial space {0} only contains a single
element! ⋄

It is straightforward to prove that all of the vector space axioms are also satisfied
on any subspace S of a vector space X (when the addition and scalar multiplication are
defined in the same way as in X), and therefore every subspace S is in fact a vector
space as well. This opens up the possibility that we can (sometimes very easily)
prove that a given set X with given operations is a vector space by identifying it as a
subspace of a larger vector space X̃ with the same operations. This is demonstrated
in the examples below. It is also trivial to show that if S1 is a subspace of X and S2
is a subspace of S1, then S2 is a subspace of X.

The next examples introduce selected important subspaces of the spaces C(I) and
ℓ(C). Recall that as in linear algebra, proving that S is a subspace involves two things:
Verifying that S is not empty (e.g., it contains at least the zero element 0 ∈ X) and
that the property (1.1) holds.

Example 1.9 (Subspaces of C(I)). In this example, I ⊂ R is a non-empty interval
and the addition and scalar multiplication are defined as in Example 1.3.

(i) Let P (I) be the set of polynomials defined on the interval I ⊂ R, i.e.,

P (I) =
{
p : I → C

∣∣∣ p(t) =
n∑

k=0
akt

k for some n ∈ N ∪ {0} and {ak}n
k=0 ⊂ C

}
.
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Since all polynomials are continuous functions, we have P (I) ⊂ C(I). The
function p : I → C satisfying p(t) ≡ 0 is a polynomial, and thus P (I) is not
empty. It is also easy to verify that a linear combination of two polynomials is
again a polynomial, and thus (1.1) holds. Thus P (I) is a subspace of C(I), and in
particular P (I) is vector space when the vector addition and scalar multiplication
are defined on the same way as on the space C(I).

(ii) The set

Cn(I) =
{
f : I → C

∣∣∣ f (k) exists and is continuous in I for all k = 0, 1, . . . , n
}

of all n-times continuously differentiable functions on I is a subspace of C(I).
In addition, we can define the space C∞(I) of functions whose derivatives of all
orders are continuous functions,

C∞(I) =
{
f : I → C

∣∣∣ f (k) exists and is continuous in I for all k ∈ N
}
.

The functions f ∈ C∞(I) are said to be “smooth” due to their excellent differen-
tiability properties. Both of these spaces are non-empty, since the zero function
on I is is smooth. Moreover, the condition (1.1) can be verified easily based on
fundamental differential calculus of functions of a single variable.
Sometimes it is convenient to use the notation C0(I) = C(I). It follows from
the definitions that Cn(I) is a subspace of Cm(I) whenever n > m. In addition,
since a polynomial has derivatives of all orders we have that P (I) is a subspace
of Cn(I) for any n ∈ N and of C∞(I).

(iii) Consider the set

C∞
c (R) =

{
f ∈ C∞(R)

∣∣∣ ∃M > 0 : f(t) = 0 whenever |t| > M
}

of all smooth functions on R with compact support. This term refers to the
property that the “support of f”, defined as

supp f = { t ∈ R | f(t) ̸= 0 } ⊂ R

is a compact subset of R. Here the horizontal line denotes the closure of the set
in R, and thus supp f is always a closed subset of R. By definition, each function
f ∈ C∞

c can have nonzero values f(t) ̸= 0 only inside a bounded interval I =
[a, b] ⊂ R. We can now show that C∞

c is a subspace of C∞(R) (and consequently
also a subspace of Cn(I) for all n ∈ N ∪ {0}). Since the zero function on R
definitely has a compact support (in fact supp 0 is the empty set), we have
0 ∈ C∞

c (R), and thus C∞
c (R) is not empty. Let f, g ∈ C∞

c (R) and α, β ∈ C be
arbitrary. By definition there exist Mf ,Mg > 0 such that f(t) = 0 whenever
|t| > Mf and g(t) = 0 whenever |t| > Mg. Since αf + βg has continuous
derivatives of all orders, and αf(t) +βg(t) = 0 whenever |t| > max{Mf ,Mg}, we
have αf + βg ∈ C∞

c (R). Thus C∞
c (R) is a subspace of C∞(R), and of C(R).

(iv) Since polynomials have continuous derivatives of all orders, we also have that
P (I) is a subspace of C∞(I) for any interval I ⊂ R. Similarly, P (R) is a subspace
of C∞(R), but not a subspace of C∞

c (R), since P (R) ̸⊂ C∞
c (R).
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⋄

Example 1.10 (Subspaces of ℓ(C)). In this example, the addition and scalar multi-
plication are defined as in Example 1.5.

(i) Let ℓfin(C) be the set of all complex sequences that have only a finite number of
non-zero terms, i.e.,

ℓfin(C) =
{

(xk)∞
k=1 ∈ ℓ(C)

∣∣∣ ∃N ∈ N : k ≥ N =⇒ xk = 0
}
.

The set ℓfin(C) is non-empty, because it contains the zero sequence (0, 0, . . .). To
verify that (1.1) holds, let x = (xk)k ∈ ℓfin(C), y = (yk)k ∈ ℓfin(C), and α, β ∈ C
be arbitrary. By definition of ℓfin(C), there exists Nx, Ny ∈ N such that xk = 0
if k ≥ Nx and yk = 0 if k ≥ Ny. We have

αx+ βy = (αxk + βyk)∞
k=1,

and αxk + βyk = 0 if k ≥ max{Nx, Ny}. This means that αx+ βy ∈ ℓfin(C) by
definition and (1.1) holds. Thus ℓfin(C) is a subspace of ℓ(C).

(ii) A complex sequence (xk)∞
k=1 = (x1, x2, . . .) is said to be bounded if there exists

M > 0 such that |xk| ≤ M for all k ∈ N. This property is equivalent to the
condition that supk∈N |xk| <∞. The space of all “bounded sequences”

ℓ∞(C) =
{

(xk)∞
k=1 ∈ ℓ(C)

∣∣∣ (xk)∞
k=1 is bounded

}
is a subspace of ℓ(C) (proved as an exercise).

(iii) For p ≥ 1, the set ℓp(C) of “p-summable sequences” defined as

ℓp(C) =
{

(xk)∞
k=1 ∈ ℓ(C)

∣∣∣ ∞∑
k=1
|xk|p <∞

}
is a subspace of ℓ(C) (proved as an exercise).

⋄

As mentioned above, the fact that ℓfin(C), ℓ∞(C) and ℓp(C) for p ≥ 1 are subspaces
of ℓ(C) implies that all of these spaces are vector spaces (with the same definitions of
vector addition and scalar multiplication as in ℓ(C)).

Proposition 1.11. For all 1 ≤ p ≤ q <∞ we have

ℓfin(C) ⊂ ℓp(C) ⊂ ℓq(C) ⊂ ℓ∞(C).

In particular, ℓp(C) is a subspace of ℓq(C) and of ℓ∞(C).

Proof. The claim regarding the subspace property follows immediately once we show
that the inclusions ℓp(C) ⊂ ℓq(C) ⊂ ℓ∞(C) hold, because we saw in Example 1.10 that
ℓp(C) is non-empty and closed under the vector addition and scalar multiplication
(i.e., (1.1) holds).

To show that ℓq(C) ⊂ ℓ∞(C), let x = (xk)∞
k=1 ∈ ℓq(C) be arbitrary. Since |xk|q ≥ 0

for all k ∈ N, the series ∑∞
k=1 |xk|q can converge only if |xk|q → 0 as k →∞. We know
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from elementary calculus that any convergent sequence of scalars is bounded, meaning
that there exists a constant M > 0 such that |xk|q ≤ M (and thus also |xk| ≤ q

√
M)

for all k ∈ N. This implies x ∈ ℓ∞(C), and since x ∈ ℓq(C) was arbitrary, we have
that ℓq(C) ⊂ ℓ∞(C).

To show ℓp(C) ⊂ ℓq(C), let p ≤ q and let (xk)∞
k=1 ∈ ℓp(C) be arbitrary. As shown

above, we have supk∈N |xk| <∞. Using this property we can estimate

∞∑
k=1
|xk|q =

∞∑
k=1
|xk|q−p|xk|p ≤

∞∑
k=1

(
sup
n∈N
|xn|

)q−p
|xk|p =

(
sup
n∈N
|xn|

)q−p

︸ ︷︷ ︸
<∞

·
∞∑

k=1
|xk|p <∞.

since q − p ≥ 0 and x ∈ ℓp(C) by assumption. Thus x ∈ ℓq(C). Since x ∈ ℓp(C) was
arbitrary, we have proved that ℓp(C) ⊂ ℓq(C).

Finally, if x = (xk)∞
k=1 ∈ ℓfin(C), there exists K ∈ N such that xk = 0 for all

k ≥ K. This also implies ∑∞
k=1 |xk|p = ∑K

k=1 |xk|p <∞, and thus x ∈ ℓp(C).

The inclusions between the spaces ℓp(C) for different values of 1 ≤ p < ∞ are
related to the rates at which the elements xk converge to zero as k →∞. In particular,
if q > p ≥ 1 the space ℓq(C) is larger than ℓp(C), and in particular ℓq(C) contains
sequences whose elements xk are allowed to converge to zero at a slower rate as k →∞.
For example, the elements of x =

(
1√
k

)∞

k=1
converge to zero at a slower rate than the

elements of y =
(

1
k

)∞

k=1
. Indeed, we have x /∈ ℓ2(C), but y ∈ ℓ2(C) since

∞∑
k=1

∣∣∣∣∣ 1√
k

∣∣∣∣∣
2

=
∞∑

k=1

1
k

=∞ and
∞∑

k=1

∣∣∣∣1k
∣∣∣∣2 =

∞∑
k=1

1
k2 <∞.

On the other hand, x ∈ ℓ3(C) since

∞∑
k=1

∣∣∣∣∣ 1√
k

∣∣∣∣∣
3

=
∞∑

k=1

1
k

3
2
<∞.

Exercise 1.12. Show that the complex sequence x =
(

1
k

)∞

k=1
is in ℓp(C) whenever

1 < p ≤ ∞, but x /∈ ℓ1(C). In addition, give an example of a sequence that is in
ℓ∞(C), but not in ℓp(C) for any 1 ≤ p <∞. ⋄

1.1.1 Dimension of a Vector Space
In this section, we define the concept of dimension of a vector space, and define
what an infinite-dimensional space means. We begin by generalizing the concept
of linear independence of Euclidean space Rn to a general vector space. The dimension
of a vector space is then defined as the number of elements in the largest possible
linearly independent set in the space, and this number of elements can be infinite. The
function and sequence spaces introduced in the previous section are typical examples
of infinite-dimensional spaces. Later on this course we will see that some of the familiar
properties of the Euclidean spaces Rn and Cn depend crucially on the fact that these
vector spaces are finite-dimensional. For example, every closed and bounded subset of
Rn is compact, but this is not true for subsets of a general vector space.
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Definition 1.13. Let X be a vector space. A finite set of elements {x1, x2, . . . , xn} ⊂
X is said to be linearly independent if for arbitrary scalars {αk}n

k=1 ⊂ C the
equation

α1x1 + α2x2 + · · ·+ αnxn = 0
holds only if α1 = α2 = · · · = αn = 0. If {x1, . . . , xn} is not linearly independent, it
is linearly dependent.

An infinite set of elements {xk}∞
k=1 ⊂ X is said to be linearly independent if

every finite subset of {xk}∞
k=1 is linearly independent.

As in linear algebra, a vector x ∈ X is a said to be a (finite) linear combination of
{x1, x2, . . . , xn} if there exist scalars {αk}n

k=1 ⊂ C such that

x =
n∑

k=1
αkxk = α1x1 + α2x2 + · · ·+ αnxn.

We will also encounter infinite linear combinations on this course, but such objects
cannot be be studied without the concept of convergence, which in turn requires ad-
ditional structure from the vector space.

Definition 1.14. The dimension of the vector space X is dim(X) = n ∈ N if
X contains a linearly independent set with n elements, and if every set with n + 1
elements of X is linearly dependent. If such a number n ∈ N does not exist, then X
is infinite-dimensional, and we denote dim(X) =∞.

Example 1.15. For n ∈ N, we have dim(Rn) = n and dim(Cn) = n. ⋄

The following lemma shows that if we want to show that a space is infinite-
dimensional, it suffices to show that the space contains an infinite-dimensional sub-
space.

Lemma 1.16. Let S be a subspace of the vector space X. Then dim(S) ≤ dim(X).
If dim(S) =∞ this inequality is interpreted as “S is infinite-dimensional, then X is
infinite-dimensional as well”.

Proof. Assume first that X is finite-dimensional, i.e. dim(X) = n ∈ N. Then by
definition every set of n + 1 elements of X is linearly dependent. But if we take
an arbitrary set of elements {xk}n+1

k=1 ⊂ S, then the fact that {xk}n+1
k=1 ⊂ X implies

that {xk}n+1
k=1 is linearly dependent. Thus every set of n + 1 elements of S is linearly

dependent, and by definition we must have dim(S) ≤ n. Thus dim(S) ≤ dim(X) if
dim(X) <∞.

On the other hand, if dim(S) = ∞, the subspace S contains linearly independent
sets with arbitrary numbers of elements. Since S ⊂ X, the same is true for the space
X. Thus by definition we have that dim(X) =∞ as well.

Example 1.17. Let I ⊂ R be an interval with positive length.

(a) The space P (I) of polynomials is infinite-dimensional. We can prove this by
showing that P (I) contains arbitrarily large linearly independent sets. To this
end, let n ∈ N be arbitrary and consider the set {fk}n

k=1 ⊂ P (I) of monomials,
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so that fk(t) = tk−1 for k ∈ {1, . . . , n}. If {αk}n
k=1 ⊂ C are arbitrary scalars,

then

α1f1(t) + α2f2(t) + . . .+ αnfn(t) = αnt
n−1 + · · ·+ α2t+ α1

is a polynomial of order n− 1. Thus the condition that

α1f1 + α2f2 + · · ·+ αnfn = 0

requires that the polynomial αnt
n−1 + · · ·+α2t+α1 is identically zero everywhere

on I. However, due to the fundamental theorem of algebra, this polynomial can
have at most n− 1 roots on I, unless it is the zero polynomial. Thus necessarily
α1 = α2 = · · · = αn = 0, and the set {fk}n

k=1 ⊂ N is linearly independent. Since
n ∈ N was arbitrary, the we have by definition that dim(P (I)) =∞.

(b) Part (a) and Lemma 1.16 imply that we also have

dim(C(I)) =∞
dim(Cm(I)) =∞ for all m ∈ N
dim(C∞(I)) =∞,

since P (I) is a subspace of all of these spaces.

⋄

Example 1.18. Since P (R) ̸⊂ C∞
c (R), we need a separate argument to show that

dim(C∞
c (R)) =∞. It is again sufficient to show that C∞

c (R) contains arbitrarily large
linearly independent sets. To this end, define ek ∈ C∞

c (R) for k ∈ N by

ek(t) =
 e

−1
(t−k)(k+1−t) t ∈ (k, k + 1)

0 otherwise

Note that ek(t) are indeed smooth functions, and each ek(t) is nonzero only on the
interval (k, k + 1). Let n ∈ N be arbitrary and let {αk}n

k=1 ⊂ C be such that

α1e1(t) + α2e2(t) + · · ·+ αnen(t) = 0 for all t ∈ R.

If k ∈ {1, . . . , n} and t ∈ (k, k + 1), the above assumption and the fact that ej(t) = 0
for all j ∈ {1, . . . , n} such that j ̸= k implies that αkek(t) = 0. But since ek(t) ̸= 0
by definition, we must have αk = 0. Since k ∈ {1, . . . , n} was arbitrary, we deduce
that α1 = . . . = αn = 0, and thus the set {ek}n

k=1 ⊂ C∞
c (R) is linearly independent.

Finally, since n ∈ N was arbitrary, C∞
c (R) is an infinite-dimensional vector space by

definition.
Lemma 1.16 again implies that any vector space which contains C∞

c (R) as a sub-
space is infinite-dimensional. ⋄

1.2 Banach Spaces
In this section we equip a vector space X with additional structure, namely, a norm.
A norm especially allows us to discuss “sizes” of elements x ∈ X as well as “distances”
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between two elements x ∈ X and y ∈ X. This also lets us define the concept of con-
vergence of sequences and series. Finally, we will define the important and desirable
property of completeness of a normed vector space. Complete normed spaces are
called Banach spaces. We will also study several examples of normed spaces, some
of which are complete (i.e., which are Banach spaces), and some of which we find not
to be complete.

Definition 1.19. Let X be a vector space. A norm on X is a function ∥ · ∥ : X →
[0,∞) so that

(1) ∥x∥ ≥ 0 for all x ∈ X. Moreover, ∥x∥ = 0 if and only if x = 0.

(2) ∥αx∥ = |α|∥x∥ for all α ∈ C and x ∈ X.

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

The pair (X, ∥·∥) is called a normed (linear) space.

The axioms (1)–(3) which the norm ∥·∥ is required to satisfy are precisely the most
fundamental properties of the norm on Euclidean spaces Rn and Cn. Indeed, these
spaces are important examples of normed spaces, as shown in the next example.

Example 1.20. The spaces Rn and Cn are normed spaces if the norm is defined to
be the Euclidean norm, i.e.,

∥x∥2 =
√
|x1|2 + · · ·+ |xn|2.

However, the spaces Rn and Cn can alternatively be equipped with other norms, for
example ∥x∥∞ = max

1≤k≤n
|xk| and ∥x∥1 = |x1|+ · · ·+ |xn| are both norms for Rn and Cn.

(You can verify that ∥·∥∞ and ∥·∥1 satisfy the axioms above!). ⋄

As discussed in the previous example, it is possible to define several different norms
on the same vector space X. In fact, a norm on a normed space is never unique,
because on any normed space (X, ∥·∥) it is possible to define another norm ∥·∥β simply
by “scaling” the original norm ∥·∥ by some constant β > 0, so that ∥x∥β := β∥x∥ for
all x ∈ X. In this case, (X, ∥·∥) and (X, ∥·∥β) will be two different normed spaces.
Apart from such “simple” modifications of the norm, in our examples we will later see
that the choice of the norm on a given vector space X can have a great effect on the
properties of the resulting normed space (X, ∥·∥).

Example 1.21. The space ℓ(C) is too large to be a normed space. However, we
can define norms on subspaces of ℓ(C) studied in Example 1.10. Indeed, the space
ℓ∞(C) = { (xk)k ∈ ℓ(C) | supk∈N|xk| < ∞} can be equipped with the norm ∥·∥∞
defined by

∥x∥∞ = sup
k∈N
|xk|, ∀x = (xk)k ∈ ℓ∞(C).

Moreover, for 1 ≤ p < ∞ the space ℓp(C) = { (xk)k ∈ ℓ(C) | ∑∞
k=1|xk|p < ∞} can be

equipped with the norm ∥·∥p defined by

∥x∥p =
( ∞∑

k=1
|xk|p

) 1
p

, ∀x = (xk)k ∈ ℓp(C).
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Note that neither ∥x∥∞ nor ∥x∥p are well-defined for all sequences x in ℓ(C). Since
ℓfin(C) is a subspace of ℓ∞(C) and ℓp(C) for all 1 ≤ p <∞, these norms are can also
be used to define a normed space (ℓfin(C), ∥·∥∞) or (ℓfin(C), ∥·∥p).

In the following, we will verify that ∥·∥∞ is indeed a norm by proving that it
satisfies the axioms (1)–(3) in Definition 1.19. The property that (ℓp(C), ∥·∥p) is a
normed space is proved separately in Theorem 1.22.

(1) Since every sequence x = (xk)∞
k=1 ∈ ℓ∞(C) is by definition bounded, the supre-

mum supk∈N|xk| exists and is finite for every x = (xk)∞
k=1 ∈ ℓ2(C). Thus ∥x∥∞ is

well-defined for all x ∈ ℓ∞(C). Since |xk| ≥ 0 we also have ∥x∥∞ = supk∈N |xk| ≥
0 for all x ∈ ℓ∞(C). Finally, for every x ∈ ℓ∞(C) we have

∥x∥∞ = 0 ⇔ sup
k∈N
|xk| = 0 ⇔ |xk| = 0 ∀k ∈ N

⇔ xk = 0 ∀k ∈ N ⇔ x = 0.

(2) Let x = (xk)∞
k=1 ∈ ℓ∞(C) and α ∈ C be arbitrary. Since αx = (αx1, αx2, . . .) we

have
∥x∥∞ = sup

k∈N
|αxk| = sup

k∈N
|α||xk| = |α| sup

k∈N
|xk| = |α|∥x∥.

(3) Let x = (xk)∞
k=1 ∈ ℓ∞(C) and y = (yk)∞

k=1 ∈ ℓ∞(C) be arbitrary. Using the
triangle inequality for complex numbers and the property supk∈N(ak + bk) ≤
(supk∈N ak) + (supk∈N bk) for ak, bk ≥ 0 we can estimate

∥x+y∥∞ = sup
k∈N
|xk +yk| ≤ sup

k∈N
(|xk|+|yk|) ≤

(
sup
k∈N
|xk|

)
+
(
sup
k∈N
|yk|

)
= ∥x∥∞+∥y∥∞.

⋄

Theorem 1.22. If p ≥ 1, then (ℓp(C), ∥·∥p) is a normed space. In particular, the
norms ∥·∥p for p ≥ 1 have the following properties:

(a) (Minkowski’s Inequality) If p ≥ 1, then

∥x+ y∥p ≤ ∥x∥p + ∥y∥p, ∀x, y ∈ ℓp(C).

(b) (Hölder’s Inequality) If p, q > 1 are such that 1
p

+ 1
q

= 1, then for all
x = (xk)∞

k=1 ∈ ℓp(C) and y = (yk)∞
k=1 ∈ ℓq(C) we have

∞∑
k=1
|xkyk| ≤ ∥x∥p∥y∥q.

Proof. Let p ≥ 1. If x ∈ ℓp(C), we clearly have that ∥x∥p is well-defined and ∥x∥p ≥ 0.
Moreover, ∥0∥p = ∑∞

k=1 0p = 0. Conversely, if ∥x∥p = ∑∞
k=1|xk|p = 0 for some x ∈

ℓp(C), then clearly |xk| = 0 for all k ∈ N, which implies x = 0. Thus ∥·∥p satisfies
axiom (1). To prove axiom (2), let x ∈ ℓp(C) and α ∈ C be arbitrary. We have

∥αx∥p =
( ∞∑

k=1
|αxk|p

) 1
p

=
( ∞∑

k=1
|α|p|xk|p

) 1
p

= |α|
( ∞∑

k=1
|xk|p

) 1
p

= |α|∥x∥p.
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Thus axiom (2) holds. Finally, axiom (3) follows directly from the Minkowski’s In-
equality which is verified in the remaining part of the proof.

We begin by proving the Hölder’s inequality. Let p, q > 1 be such that 1
p

+ 1
q

= 1
and let x ∈ ℓp(C) and y ∈ ℓq(C). We can assume ∥x∥p > 0 and ∥y∥q > 0, since the
proof is trivial if x = 0 or y = 0. The proof utilises the Young’s inequality, which
states that for any scalars a, b ≥ 0 we have ab ≤ ap

p
+ bq

q
. We can use this inequality

to estimate
1

∥x∥p∥y∥q

∞∑
k=1
|xkyk| =

∞∑
k=1

|xk|
∥x∥p

· |yk|
∥y∥q

Young
≤

∞∑
k=1

(
|xk|p

p∥x∥p
p

+ |yk|q

q∥y∥q
q

)

= 1
p∥x∥p

p

∞∑
k=1
|xk|p︸ ︷︷ ︸

=∥x∥p
p

+ 1
q∥y∥q

q

∞∑
k=1
|yk|q︸ ︷︷ ︸

=∥y∥q
q

= 1
p

+ 1
q

= 1.

Multiplying both sides of this inequality with ∥x∥p∥y∥q shows that the Hölder’s In-
equality holds.

The Hölder’s Inequality can be used to prove the Minkowski’s Inequality in the
case where p > 1. To this end, let x, y ∈ ℓp(C). We can assume that x+ y ̸= 0, since
otherwise the estimate is trivial. A simple estimate shows that

∥x+ y∥p
p =

∞∑
k=1
|xk + yk|p =

∞∑
k=1
|xk + yk||xk + yk|p−1 ≤

∞∑
k=1

(|xk|+ |yk|)|xk + yk|p−1

=
∞∑

k=1
|xk||xk + yk|p−1 +

∞∑
k=1
|yk||xk + yk|p−1.

Our aim is to apply the Hölder’s Inequality to the two sums on the right-hand side.
To this end, we note that if we choose q = p

p−1 > 1, then 1
p

+ 1
q

= 1+p−1
p

= 1. With
this choice of q we have

∞∑
k=1
||xk + yk|p−1|q =

∞∑
k=1
|xk + yk|q(p−1) =

∞∑
k=1
|xk + yk|p <∞,

and thus (|xk + yk|p−1) ∈ ℓq(C). We can thus use the Hölder’s Inequality to estimate

∥x+ y∥p
p =

∞∑
k=1
|xk||xk + yk|p−1 +

∞∑
k=1
|yk||xk + yk|p−1

= ∥x∥p

( ∞∑
k=1
|xk + yk|q(p−1)

)1/q

+ ∥y∥p

( ∞∑
k=1
|xk + yk|q(p−1)

)1/q

= (∥x∥p + ∥y∥p)
( ∞∑

k=1
|xk + yk|p

) p−1
p

= (∥x∥p + ∥y∥p)∥x+ y∥p−1
p .

Since we assumed x+y ̸= 0 (in which case the claim is trivial), we have ∥x+y∥p−1
p ̸= 0.

We can thus divide both sides of the previous estimate with ∥x + y∥p−1
p to arrive at

the Minkowski’s Inequality.

Example 1.23. The space C([a, b]) becomes a normed space if we choose the norm
to be, for example,

∥f∥∞ = sup
t∈[a,b]

|f(t)| or ∥f∥p =
(∫ b

a
|f(t)|p dt

) 1
p

, p ≥ 1. (1.2)
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Since the functions f in C([a, b]) are uniformly continuous, the expression for the norm
∥f∥p is well-defined as a Riemann integral. Checking that ∥ · ∥∞ and ∥ · ∥1 satisfy the
axioms of the norm is straightforward and is left as an exercise. Similarly, in the case
where p > 1, verifying the two first axioms is straightforward. The fact that ∥·∥p also
satisfies the triangle inequality is an important result, known as the Minkowski’s
Inequality (for integrals), and it is presented in Theorem 1.24 below. ⋄

Theorem 1.24 (Minkowski’s Inequality). Let Ω ⊂ Rn be a compact set (closed
and bounded). For p ≥ 1 we have

∥f + g∥p ≤ ∥f∥p + ∥g∥p, ∀f, g ∈ C(Ω)

where ∥·∥p is as in (1.2). Moreover, ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞ for all f, g ∈ C(Ω).

Proof. The proofs for the cases p = 1 and “p = ∞” are left as exercises. The proof
for the case p > 1 is presented in detail on the course “MATH.MA.840 Measure
and Integration”. We will not study this proof in detail, because (this version of)
Minkowski’s Inequality is most of all a result in real analysis. However, if you are
interested, the full proof is presented in Appendix A.1.

Example 1.25. The Minkowski’s Inequality in Theorem 1.24 applies to functions of
several variables. If Ω ⊂ Rn is a closed and bounded subset of Rn, then C(Ω) can be
equipped with one of the norms

∥f∥∞ = sup
z∈Ω
|f(z)| or ∥f∥p =

(∫
Ω
|f(z)|p dz

) 1
p

, p ≥ 1. (1.3)

The norms are well-defined for every f ∈ C(Ω), since the functions in C(Ω) are
uniformly continuous by the Heine–Cantor Theorem (since Ω is a compact subset of
Rn) and consequently z 7→ f(z) is bounded and z 7→ |f(z)|p is Riemann integrable.
The fact that the norm ∥·∥p satisfies the triangle inequality follows from Theorem 1.24.

If Ω is an unbounded subset of Rn (e.g, an unbounded interval in R), then ∥f∥∞
and ∥f∥p cannot be defined for all functions f ∈ C(Ω). However,

∥f∥∞ = sup
t∈R
|f(t)| and ∥f∥p =

(∫ ∞

−∞
|f(t)|p dt

) 1
p

, p ≥ 1

are well-defined for all functions f in the space C∞
c (R) (in Example 1.9). Indeed,

(C∞
c (R), ∥·∥∞) and (C∞

c (R), ∥·∥p) are normed spaces. ⋄

The norm gives us a way to define the size of an element x ∈ X on a normed space
(X, ∥·∥), we can also define the distance between two elements x ∈ X and y ∈ X to
be the norm of their difference, i.e., ∥x− y∥.

Definition 1.26. Let (X, ∥·∥) be a normed space.

• The open ball B(x0, r) centered at x0 ∈ X and with radius r > 0 is defined
as B(x0, r) = {x ∈ X | ∥x0 − x∥ < r }.

• A subset A ⊂ X is said to be bounded if there exists M > 0 such that
∥x∥ ≤M for all x ∈ A.
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The fundamental topological concepts of open and closed sets are defined on a
normed space (X, ∥·∥) in the standard way using the definition of an open ball. In
particular, a set A ⊂ X is open if “for every x ∈ A there exists ε > 0 such that
B(x, ε) ⊂ A” (i.e., if every x ∈ A is a center of an open ball which is completely
contained in A). Moreover, a set A ⊂ X is closed if its complement X \ A :=
{x ∈ X | x /∈ A } is open. Alternatively, the closedness of A ⊂ X can be defined as
the property that “A contains all its so-called accumulation points”. A more complete
overview of the topological concepts on a normed space is given in Appendix A.2.

Exercise 1.27. Show that A is a bounded set if and only if there exists M > 0 such
that ∥x− y∥ ≤M for all x, y ∈ A. ⋄

One particularly important usage of a norm on a vector space X is that we can
use the distance ∥x − y∥ between two elements x ∈ X and y ∈ X to study the
convergence of a sequence. A sequence on a vector space X is again an infinite
ordered set of elements (x1, x2, x3, . . .) of X, and we also use the alternative notations
(xk)∞

k=1 ⊂ X, (xk)k∈N ⊂ X, and (xk) ⊂ X (if the index set k ∈ N is clear from the
context).

Definition 1.28. Let (X, ∥ · ∥) be a normed space. The sequence (xk)∞
k=1 ⊂ X

converges to the element x ∈ X if

∀ε > 0 ∃nε ∈ N : ∥x− xk∥ < ε whenever k > nε.

In this case x is the limit of the sequence (xk)∞
k=1.

Note that the definition of the convergence of a sequence (xk)∞
k=1 ⊂ X to x ∈ X

is equivalent to the property that the distances ∥x− xk∥ converge to zero as k →∞,
i.e., limk→∞∥x−xk∥ = 0. If the norm in the definition of convergence is clear from the
context, it is possible to use the following alternative notations for the convergence:

xn → x, as k →∞, or lim
k→∞

xk = x.

However, it is very important to be careful when discussing convergence of sequences
on normed spaces, because the convergence of (xk)∞

k=1 ⊂ X may depend crucially on
the choice of the norm ∥·∥ on X. Indeed, the same sequence (xk)∞

k=1 on a vector space
X may converge with respect to one norm, and at the same time fail to converge with
respect to another norm.

Exercise 1.29. Every norm ∥·∥ on a vector space X also satisfies the “reverse tri-
angle inequality” which states that

|∥x∥ − ∥y∥| ≤ ∥x− y∥, ∀x, y ∈ X.

The proof is exactly the same as in the case of Euclidean spaces Rn or Cn (the triangle
inequality is applied to ∥x∥ = ∥(x − y) + y∥ and ∥y∥ = ∥(y − x) + x∥). You can
easily prove that this inequality further implies that the norm ∥·∥ : X → [0,∞) is a
continuous function. Indeed, you can show that for an arbitrary ε > 0 there exists
δ > 0 such that |∥x∥ − ∥y∥| < ε whenever ∥x− y∥ < δ. ⋄
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Lemma 1.30. The limit of a convergent sequence is unique.

Proof. Let (xk)∞
k=1 be a sequence which converges in (X, ∥·∥). Assume y ∈ X and

z ∈ X are two of its limits. The triangle inequality implies

∥y − z∥ = ∥y − xk + xk − z∥ ≤ ∥y − xk∥+ ∥xk − z∥ → 0

as k →∞. Since y − z is independent of the index k ∈ N, we must have ∥y − z∥ = 0,
and the axiom (1) of the norm implies y − z = 0, i.e., y = z.

In the following we will define the concept of a Cauchy sequence (xk)∞
k=1 with

the characteristic property that its elements xk and xm come arbitrarily close to each
other for sufficiently large indices k and m.

Definition 1.31. The sequence (xk)∞
k=1 of a normed space (X, ∥ · ∥) is a Cauchy

sequence if

∀ε > 0 ∃nε ∈ N : ∥xk − xm∥ < ε whenever k,m > nε.

We sometimes use the terminology that “the sequence (xk)∞
k=1 is Cauchy” if the

condition in Definition 1.31 is satisfied. Moreover, this convergence property is some-
times denoted as ∥xk − xm∥ → 0 as k,m→∞.

Exercise 1.32. Show that (xn) is a Cauchy sequence, then for every p ∈ N we have
∥xn+p − xn∥ → 0 as n→∞. Does the reverse claim hold? ⋄

The condition that (xk) ⊂ X is a Cauchy sequence is a strictly weaker property
than the convergence of (xk) (when these two properties are defined using the same
norm). Indeed, if (xk)∞

k=1 ⊂ X converges to x ∈ X, then for all k,m ∈ N we have

∥xk − xm∥ = ∥xk − x+ x− xm∥ ≤ ∥xk − x∥+ ∥x− xm∥ → 0

as k,m → ∞. Thus every convergent sequence is a Cauchy sequence. However, the
converse is not always true! In fact, the question of whether or not all Cauchy
sequences converge (to some limits inside the space) defines a fundamental property
of a normed space (X, ∥·∥) called completeness.

Definition 1.33 (Banach Space). The normed space (X, ∥·∥) is said to be complete
if every Cauchy sequence (xk)∞

k=1 ⊂ X converges to an element x ∈ X. A complete
normed space (X, ∥·∥) is called a Banach space.

One way of viewing the question of “completeness” of a normed space (X, ∥·∥) is
that Cauchy sequences are ideal candidates for sequences which should converge due
to the property that the distances between their elements become arbitrarily small
for large indices. This way, the completeness of a vector space guarantees that also
the limits of such sequences indeed belong to the vector space X. The property of
completeness of a vector space is often very useful in proofs due to the fact that it is
typically much easier to prove that (xk)∞

k=1 is a Cauchy sequence instead of proving
directly that (xk) converges. In particular, showing that (xk) is Cauchy does not
require knowledge of the limit x ∈ X of the sequence, which would be necessary for
directly showing the convergence ∥xk−x∥ → 0 as k →∞. However, if the underlying
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space is a Banach space, it is sufficient to prove that (xk) is a Cauchy sequence, and
completeness of the normed space guarantees that (xk) converges to some limit x ∈ X.

The property of completeness of a normed space depends closely on both the vector
space X and the norm ∥·∥. In particular, normed space (X, ∥·∥) which is not a Banach
space can sometimes be changed into a complete space by either (1) keeping the vector
space X the same changing the norm ∥·∥, or (2) keeping the norm ∥·∥ same and making
the vector space X larger. The latter case is referred to as completing the normed
space, and the resulting larger space is the completion of the space (X, ∥·∥). Of
course, in both of these cases the resulting modified normed space is different from the
orginal space (X, ∥·∥).

Definition 1.34. Let ∥·∥A and ∥·∥B be two norms on a vector space X. The norms
∥·∥A and ∥·∥B are equivalent if there exist constants C, c > 0 such that

c∥x∥B ≤ ∥x∥A ≤ C∥x∥B, ∀x ∈ X.

Note that if two norms ∥·∥A and ∥·∥B on X are equivalent, then (xk)k ⊂ X is a
Cauchy sequence with respect to the norm ∥·∥A if and only if it is a Cauchy sequence
with respect to the norm ∥·∥B (prove this!). Similarly (xk)k ⊂ X converges to an
element x ∈ X with respect to the norm ∥·∥A if and only if it converges to x with
respect to the norm ∥·∥B. Because of this, if ∥·∥A and ∥·∥B are two equivalent norms
on X, then (X, ∥·∥A) is a Banach space if and only if (X, ∥·∥B) is a Banach space.

1.2.1 Examples of Normed Spaces and Banach Spaces
Our first example illustrates that the convergence of a sequence is highly dependent
on the choice of the norm: a sequence may converge with respect to one norm, but
fail to converge with respect to another norm.

Example 1.35. Consider the sequence of continuous functions (fk) ⊂ C([−1, 1]),
where

fk(t) =


0 −1 ≤ t < − 1

k

1 + kt − 1
k
≤ t < 0

1− kt 0 ≤ t < 1
k

0 1
k
≤ t ≤ 1

−1 −1/k 0 1/k 1 t

1
fk(t)

Figure 1.1: The function fk(·).
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A straight-forward calculation shows that

∥fk − 0∥1 =
∫ 1

−1
|fk(t)− 0| dt =

∫ 1

−1
fk(t) dt = 1

k
→ 0 as k →∞

and thus fk → 0 in the normed space (C([−1, 1]), ∥·∥1).
On the other hand, for all k ∈ N

∥fk − 0∥∞ = sup
−1≤t≤1

|fk(t)− 0| = fk(0) = 1,

and thus the sequence (fk)k does not converge to 0 in the space (C([−1, 1]), ∥ · ∥∞).
In fact, the sequence (fk)k does not converge at all in the space (C([−1, 1]), ∥·∥∞). To
prove this, assume there exists f ∈ C([−1, 1]) such that ∥f − fk∥∞ → 0 as k → ∞.
For every t0 ∈ [−1, 1] we then also have

|fk(t0)− f(t0)| ≤ sup
t∈[−1,1]

|fk(t)− f(t)| = ∥fk − f∥∞ → 0 as k →∞.

Thus the convergence of (fk)k in the norm ∥·∥∞ also implies that the functions converge
fk to f “pointwise”, i.e., fk(t) → f(t) as k → ∞ (in C) for all t ∈ [−1, 1]. For our
sequence (fk)k we have that fk(0) → 1 as k → ∞ and fk(t) → 0 as k → ∞ for
all t ∈ [−1, 0) ∪ (0, 1]. However, this implies that limt→0 f(t) = 0 ̸= 1 = f(0),
which contradicts the assumption that f is continuous on [−1, 1]. Thus (fk)k does not
converge in (C([−1, 1]), ∥·∥∞). ⋄

Our first example of an infinite-dimensional Banach space is the space of continuous
functions on a closed interval [a, b] ⊂ R equipped with the norm ∥·∥∞.

Theorem 1.36. The space (C([a, b]), ∥·∥∞) is a Banach space.

Proof. Let (fk)∞
k=1 ⊂ C([a, b]) be an arbitrary Cauchy sequence, i.e. ∥fk − fm∥∞ → 0

as k,m→∞. Our aim is to show that there exists a continuous function f ∈ C([a, b])
such that ∥f−fk∥∞ → 0 as k →∞. If this is true, we can deduce that (C([a, b]), ∥·∥∞)
is a Banach space. Let ε > 0. Since (fk)∞

k=1 is a Cauchy sequence, we can choose nε ∈ N
such that ∥fk − fm∥∞ ≤ ε whenever k,m ≥ nε. This also implies that for every fixed
t0 ∈ [a, b] we have

|fk(t0)− fm(t0)| ≤ sup
t∈[a,b]

|fk(t)− fm(t)| = ∥fk − fm∥∞ ≤ ε (1.4)

whenever k,m ≥ nε. Since ε > 0 was arbitrary, we deduce that (fk(t0))∞
k=1 is a

Cauchy sequence in (C, |·|). But since (C, |·|) is a complete space, this scalar Cauchy
sequence converges to a limit ct0 ∈ C, that is, |fk(t0) − ct0| → 0 as k → ∞. We can
now define a function f : [a, b] → C such that f(t0) = ct0 for every t0 ∈ [a, b]. At
this point we do not yet know that the function f is continuous. Thus in order to
complete the proof, we still need to show that f ∈ C([a, b]) and that ∥fk − f∥∞ → 0
as k → ∞. To this end, we can let m → ∞ on the left-hand side of (1.4) to deduce
that |fk(t0) − f(t0)| ≤ ε whenever k ≥ nε. Since this is true for an arbitrary ε > 0,
and since nε does not depend on t0 ∈ [a, b], the functions fk converge to f uniformly.
This property together with the Uniform Convergence Theorem implies that the limit
function f is continuous.
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Finally, let ε > 0 is arbitrary. As shown above, there exists nε ∈ N such that
|fk(t0)− f(t0)| ≤ ε whenever k ≥ nε and t0 ∈ [a, b]. Because of this, we also have

∥fk − f∥∞ = sup
t0∈[a,b]

|fk(t0)− f(t0)| ≤ ε

whenever k ≥ nε. Thus ∥fk − f∥∞ → 0 as k → ∞. Since (fk)k ⊂ C([a, b]) was
an arbitrary Cauchy sequence, and since we proved that (fk)k converges to a limit
f ∈ C([a, b]), we conclude that C([a, b]) is a Banach space.

In the next example we consider the normed space (C([−1, 1]), ∥·∥1) and construct a
Cauchy sequence which does not converge in this space. This implies (C([−1, 1]), ∥·∥1)
is not complete, and therefore it is not a Banach space. The same construction can
be generalised to show that (C([a, b]), ∥·∥p) is not a Banach space for any 1 ≤ p <∞.
Similarly, the spaces (C(Ω), ∥·∥p) where Ω ⊂ Rn are not complete either.

Example 1.37 ((C([−1, 1]), ∥·∥1) is not a Banach space). Consider the sequence (fn)
in the space (C([−1, 1]), ∥ · ∥1), where (see Figure 1.2)

fn(t) =


0 −1 ≤ t < 0
nt 0 ≤ t ≤ 1

n

1 1
n
≤ t ≤ 1.

−1 0 1/n 1 t

1
fn(t)

Figure 1.2: The function fn(·).

Clearly,

∥fn − fm∥1 =
∫ 1

−1
|fn(t)− fm(t)| dt ≤ 1

2 min{n,m} → 0

as n,m → ∞, and thus (fn) is a Cauchy sequence. We will now show that (fn)
does not converge in (C([−1, 1]), ∥ · ∥1). Assume on the contrary that there exists
f ∈ C([−1, 1]) such that limn→∞ fn = f . Since fn(t) = 0 for t ∈ [−1, 0], we have

0← ∥fn − f∥1 =
∫ 1

−1
|fn(t)− f(t)| dt ≥

∫ 0

−1
|f(t)| dt ≥ 0

as n→∞, which implies
∫ 0

−1|f(t)| dt = 0. Since f is continuous, we must have f(t) = 0
for all t ∈ [−1, 0]. On the other hand, for any n0 ∈ N and for all n ≥ n0 we similarly
have

0← ∥fn − f∥1 =
∫ 1

−1
|fn(t)− f(t)| dt ≥

∫ 1

1/n0
|f(t)− 1| dt ≥ 0
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as n → ∞, and since f is continuous we have f(t) = 1 for all t ∈ [1/n0, 1]. However,
since this is true for any n0 ∈ N, we have f(t) = 1 for all t ∈ (0, 1]. However,
this shows that f can not be continuous at t = 0, which is a contradiction with the
assumption f ∈ C([−1, 1]). This contradiction concludes that (fn) does not converge
in (C([−1, 1]), ∥·∥1). ⋄

The sequence spaces (ℓp(C), ∥·∥p) for 1 ≤ p <∞ and (ℓ∞(C), ∥·∥∞) are important
examples of Banach spaces. The proof of this result is also a great exercise in consid-
ering a sequence of sequences: we consider a Cauchy sequence (xk)k∈N on a sequence
space, which means that every element xk is an infinite sequence of complex numbers,
i.e., xk = (xn

k)n∈N, where xn
k ∈ C for all n ∈ N and k ∈ N.

Theorem 1.38. The spaces (ℓ∞(C), ∥·∥∞) and (ℓp(C), ∥·∥p) for 1 ≤ p < ∞ are
Banach spaces.

Proof. We will prove that (ℓp(C), ∥·∥p) is a Banach space for p ≥ 1, and the proof for
completeness of (ℓ∞(C), ∥·∥∞) is left as an exercise. Let p ≥ 1 be arbitrary, and let
(xk)∞

k=1 ⊂ ℓp(C) be a Cauchy sequence. In this sequence every element xk ∈ ℓp(C)
is a sequence of complex numbers. For these sequences, we use the notation xk =
(xn

k)∞
n=1 = (x1

k, x
2
k, . . .). By assumption we have ∥xk − xm∥p → 0 as k,m → ∞. For

every fixed n ∈ N we thus have that the nth elements xn
k of xk satisfy

|xn
k − xn

m| ≤
( ∞∑

n=1
|xn

k − xn
m|p

) 1
p

= ∥xk − xm∥p → 0

as k,m → ∞. Thus for every fixed n ∈ N the sequence (xn
k)∞

k=1 ⊂ C is a Cauchy
sequence in (C, |·|), and since (C, |·|) is complete, there exists a limit yn ∈ C such that
xn

k → yn as k →∞.
We can now define a sequence y = (yn)∞

n=1 = (y1, y2, . . .). Our aim is to show that
y ∈ ℓp(C) and that ∥xk−y∥p → 0 as k →∞. As shown in the exercises, every Cauchy
sequence is bounded. Thus there exists M > 0 such that ∥xk∥p ≤M for all k ∈ N. If
we let N ∈ N be arbitrary, we also have that for every k ∈ N

(
N∑

n=1
|xn

k |p
) 1

p

≤
( ∞∑

n=1
|xn

k |p
) 1

p

= ∥xk∥p ≤M.

Since ∑N
n=1|xn

k |p is a finite sum, we can take a limit of this expression by letting k →∞.
In particular, the above estimate implies

(
N∑

n=1
|yn|p

) 1
p

=
(

N∑
n=1
| lim
k→∞

xn
k |p
) 1

p

= lim
k→∞

(
N∑

n=1
|xn

k |p
) 1

p

≤M.

Since N ∈ N was arbitrary and since M is independent of N , the previous estimate
also implies

( ∞∑
n=1
|yn|p

) 1
p

= lim
N→∞

(
N∑

n=1
|yn|p

) 1
p

≤M <∞,

and thus y ∈ ℓp(C). To show that ∥xk − y∥p → 0 as k → ∞, let ε > 0 be arbitrary.
Since (xk)k is a Cauchy sequence, we can choose nε ∈ N such that ∥xk − xm∥p ≤ ε
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whenever k,m ≥ nε. This also implies that for an arbitrary N ∈ N and for all
k,m ≥ nε we have

(
N∑

n=1
|xn

k − xn
m|p

) 1
p

≤
( ∞∑

n=1
|xn

k − xn
m|p

) 1
p

= ∥xk − xm∥p ≤ ε.

Since ∑N
n=1|xn

k − xn
m|p is a finite sum, we can take a limit m → ∞ in the above

estimate, which implies that for all k ≥ nε we have

(
N∑

n=1
|xn

k − yn|p
) 1

p

=
(

N∑
n=1
|xn

k − ( lim
m→∞

xn
m)|p

) 1
p

= lim
m→∞

(
N∑

n=1
|xn

k − xn
m|p

) 1
p

≤ ε.

Since N ∈ N was arbitrary, this estimate finally implies

∥xk − y∥p =
( ∞∑

n=1
|xn

k − yn|p
) 1

p

= lim
N→∞

(
N∑

n=1
|xn

k − yn|p
) 1

p

≤ ε

for all k ≥ nε. Since ε > 0 was arbitrary, we have that ∥xk − y∥p → 0 as k →∞.

1.3 Completion of a Normed Space
In this section we define the concept of a “completion” of a normed space (X, ∥·∥X),
which is (roughly speaking) the smallest complete normed space which contains X
(and has the same norm ∥·∥X).

Definition 1.39. Let (X, ∥·∥) be a normed space. The set A ⊂ X is dense in the
set B ⊂ X if

∀x ∈ B, ∀ε > 0 ∃yε ∈ A so that ∥x− yε∥ < ε.

The definition that the set A is dense in B means precisely that it is possible
to “approximate” any element x ∈ B with arbitrary accuracy with an element from
the set A. As a classical example, the property that any real number t ∈ R can be
approximated with arbitrary accuracy with a rational number q ∈ Q means that the
set Q is dense in R (in the vector space (R, |·|)). Note that the dense set A does not
necessarily need to be a subset of A, and therefore the rational numbers Q are also
dense in set of irrational numbers R \Q.

Exercise 1.40. Let (X, ∥·∥) be a normed space. Show that the set A ⊂ X is dense
in the set B ⊂ X if and only if for every x ∈ B there exists a sequence (xk)∞

k=1 ⊂ A
such that

∥x− xk∥ → 0 as k →∞.

⋄

Exercise 1.41. Let (X, ∥·∥) be a normed space. Let A ⊂ X be dense in B ⊂ X and
let B be dense in C ⊂ X. Show that A is dense in C. ⋄
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Definition 1.42 (Completion — Simplified Version). Let (X, ∥ · ∥X) be a normed
space and let (Y, ∥·∥X) be a Banach space. If X ⊂ Y is a subspace of Y and if X is
dense in Y , then Y is a completion of X.

Note that in this definition the norms on the two spaces need to be the same, and X
is required to be a dense subset of Y . The role of the assumption that X is dense in Y is
to ensure that the completion is “minimal” in the sense that Y does not contain parts
which are not related to the original space X. The above definition of a “completion”
of a normed space is actually a highly simplifed and restricted version. In the full
definition of a completion (see, e.g., [NS82, Sec. 3.14]), the space X does not need to
be contained in the space Y , but instead it needs to be “isometrically isomorphic” to
a normed space (Ỹ , ∥·∥Y ) where Ỹ is a subspace of Y . This more general version of
the definition is illustrated in Figure 1.3. In particular, the “isometrically isomorphic”
relationship between X and Ỹ means that these two spaces can be considered to be the
same space (in terms of properties of normed spaces), and this part of the definition
of a completion is sometimes essential in identifying a completion of a space. This
way, completions in the sense of Definition 1.42 are indeed “completions” also in the
sense of the full definition, but it is good to remember that in the sense of its true
definition, a completion Y does not always need to contain the original space X, but
only its copy. In this section we will use Definition 1.42 to study completions which
do contain the original space.

(X, ∥·∥) (Ỹ , ∥·∥Y )
dense

(Y, ∥·∥Y )
complete

isometric isomorphism

Figure 1.3: Completion (Y, ∥·∥Y ) of a normed space (X, ∥·∥).

Theorem 1.43 (Weierstrass Approximation Theorem). The set P ([a, b]) is dense in
C([a, b]) with respect to the norm ∥·∥∞.

Proof. We can without loss of generality assume a = 0 and b = 1, since otherwise we
can define a change of variables s = t−a

b−a
. Let f ∈ C([0, 1]) be arbitrary, and define the

sequence (pn) ∈ P ([0, 1]) of polynomials so that

pn(t) =
n∑

k=0
f

(
k

n

)(
n

k

)
tk(1− t)n−k.
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Here
(

n
k

)
= n!

k!(n−k)! is the binomial coefficient. The functions pn(t) are called Bern-
stein polynomials. From real analysis we know that a continuous function f on a
closed interval [a, b] is uniformly continuous, i.e.

∀ε > 0 ∃δ > 0 such that |s− t| < δ ⇒ |f(s)− f(t)| < ε.

Let ε > 0 be arbitrary, and let δ > 0 be such that the above property holds. The
binomial formula tells us that

1 = 1n = [t+ (1− t)]n =
n∑

k=0

(
n

k

)
tk(1− t)n−k,

and using this identity we can write for any t ∈ [0, 1] and n ∈ N

|f(t)− pn(t)| =
∣∣∣∣∣f(t)−

n∑
k=0

f

(
k

n

)(
n

k

)
tk(1− t)n−k

∣∣∣∣∣
=
∣∣∣∣∣f(t) [t+ (1− t)]n −

n∑
k=0

f

(
k

n

)(
n

k

)
tk(1− t)n−k

∣∣∣∣∣
=
∣∣∣∣∣

n∑
k=0

[
f(t)− f

(
k

n

)](
n

k

)
tk(1− t)n−k

∣∣∣∣∣ ≤
n∑

k=0

∣∣∣∣∣f(t)− f
(
k

n

)∣∣∣∣∣
∣∣∣∣∣
(
n

k

)
tk(1− t)n−k

∣∣∣∣∣
=

∑
|t− k

n
|<δ

∣∣∣∣∣f(t)− f
(
k

n

)∣∣∣∣∣
(
n

k

)
tk(1− t)n−k +

∑
|t− k

n
|≥δ

∣∣∣∣∣f(t)− f
(
k

n

)∣∣∣∣∣
(
n

k

)
tk(1− t)n−k

≤ ε
n∑

k=0

(
n

k

)
tk(1− t)n−k +

∑
(k−nt)2

n2δ2 ≥1

1 · 2M
(
n

k

)
tk(1− t)n−k

where M = supt∈[0,1] |f(t)|. Using the property 1 ≤ (t− k
n

)2

δ2 in the second sum we get

|f(t)− pn(t)| ≤ ε+ 2M
n2δ2

n∑
k=0

(k − nt)2
(
n

k

)
tk(1− t)n−k = ε+ 2M

δ2
1
n
t(1− t).

Here the last identity follows from probability theory, and more precisely from the
fact that if Z ∼ B(n, t) is a binomially distributed random variable, then the expected
value and the variance of Z are given by E(Z) = nt and Var(Z) = E [(Z − E(Z))2] =
nt(1− t), and thus

n∑
k=0

(k − nt)2
(
n

k

)
tk(1− t)n−k = Var(Z) = nt(1− t).

If n > M
δ2ε

, we obtain

|f(t)− pn(t)| ≤ ε+ 2M
δ2 ·

1
n
· 14 < ε+ 1

2ε = 3ε
2 ,

i.e ∀ε > 0 ∃nε ∈ N which does not depend on t, so that

n > nε ⇒ |f(t)− pn(t)| < 3ε
2 .
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It follows that for all n > nε we have

∥f − pn∥∞ = sup
t∈[0,1]

|f(t)− pn(t)| ≤ 3ε
2 < 2ε.

Thus ∥f − pn∥∞ → 0 as n→∞. Since f ∈ C([a, b]) was arbitrary and since we found
a sequence (pn)∞

n=1 ⊂ P ([a, b]) such that pn → f as n→∞ in (C([a, b]), ∥·∥∞), the set
P ([a, b]) is dense in C([a, b]) by Exercise 1.40.

Corollary 1.44. The space (C([a, b]), ∥·∥∞) is the completion of (P ([a, b]), ∥·∥∞).

Proof. Due the Weierstrass Approximation Theorem the set of polynomials P ([a, b])
is dense in C([a, b]). The claim now follows directly from the fact that C([a, b]) is
complete with respect to the norm ∥·∥∞.

1.4 Lebesgue Spaces
We already learned that if I ⊂ R is a finite interval, then the space C(I) of continuous
functions is not complete with respect to the norm ∥·∥p defined by

∥f∥p =
(∫

I
|f(t)|p dt

) 1
p

,

for any 1 ≤ p < ∞. In this section we will study the completions of the spaces
(C(I), ∥·∥p). These spaces turn out to be the so-called “Lebesgue spaces” which
are denoted by Lp(I). Lebesgue spaces are studied in greater detail on the course
“MATH.MA.840 Measure and Integration”. This section only provides a quick overview
of some of the basic properties of these spaces (and provides a very quick introduc-
tion to the main concepts to those who may have not completed the Measure and
Integration course). The main purpose of the current section is to confirm that the
spaces (C(I), ∥·∥p) do have well-defined completions, and to study some fundamental
properties of the norms ∥·∥p for 1 ≤ p <∞.

The definition of the Lebesgue spaces Lp(Ω) for 1 ≤ p < ∞ are given below. We
also define these spaces for functions of several variables (i.e. f : Ω ⊂ Rn → C), but
in our examples we will mostly consider the functions of a single variable.

Definition 1.45. For Ω ⊂ Rn the Lebesgue space Lp(Ω) is defined as

Lp(Ω) =
{
f : Ω→ C

∣∣∣∣ ∫
Ω
|f(z)|p dz <∞

}
,

and the norm on Lp(Ω) is defined by

∥f∥p =
(∫

Ω
|f(z)|p dz

) 1
p

, f ∈ Lp(Ω).

The integrals
∫

Ω
|f(z)|p dz are defined as “Lebesgue integrals”.
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In the case where Ω ⊂ R is an interval, we also use the following notation

Lp(I) = Lp(a, b), I = (a, b) or I = [a, b] (“the same space!”)
Lp(I) = Lp(0,∞), I = (0,∞) or I = [0,∞)
Lp(I) = Lp(−∞, 0), I = (−∞, 0) or I = (−∞, 0]

If Ω ⊂ Rn is compact (closed and bounded), the space Lp(Ω) contains all functions
in C(Ω) (since the Lebesgue integral is well-defined and coincides with the Riemann
integral for all uniformly continuous functions), i.e., C(Ω) ⊂ Lp(Ω). This also explains
the notation “∥·∥p” for the norm on Lp(Ω), since this norm is equal to the one defined
in (1.3) on the subspace C(Ω) of Lp(Ω). In addition to continuous functions, Lp(a, b)
contains several types of discontinuous functions, such as the limit of the Cauchy
sequence in Example 1.37, which satisfies f(t) = 0 for −1 < t < 0 and f(t) = 1 for
0 < t < 1.

The precise characterization of the space Lp(Ω) can be given using measure and
integration theory. For us, there are two main complications to notice, and these
are discussed in the following two examples.

Example 1.46. Lp(a, b) (and similarly Lp(Ω)) is not a space of functions: If we take
any function f : [a, b] → C such that ∥f∥p < ∞, and another function g : (a, b) → C
which differs from f only at a finite number of points t1, . . . , tn ∈ (a, b), then

∥f − g∥p
p =

∫ b

a
|f(t)− g(t)| dt =

∫
{t1}
|f(t)− g(t)| dt+ · · ·+

∫
{tn}
|f(t)− g(t)| dt = 0,

since the integral over a single point is always 0. The axiom (1) of the norm would
then require that f − g = 0, that is, f = g, which is not true since f(tk) ̸= g(tk) for
1 ≤ k ≤ n. This difficulty will be avoided by defining the two functions f and g to be
the same function. More generally, we will say that f = g in the space Lp(Ω) if (and
only if) ∥f − g∥p = 0. This way, we can see that instead of single functions, Lp(Ω) in
fact consists of equivalence classes of functions, and especially the values f(z0) at
individual points z0 ∈ Ω do not matter when considering f as an element of Lp(Ω). ⋄

Example 1.47. The Riemann integral is not suitable for defining the norm ∥·∥p

on Lp(Ω): When considering the limits of Cauchy sequences of functions in C(Ω), we
arrive at situations where the limit functions f may not have a well-defined Riemann
integral. This is the situation, for example, for the two functions f : (0, 1)→ C

f(t) = sin
(1
t

)
or g(t) =

{
1 t ∈ (0, 1) is rational
0 t ∈ (0, 1) is irrational

(if you like, you can plot the function f and investigate its behaviour). Because of
this, we instead define the norm ∥·∥Lp using the Lebesgue integral, which can handle
integration of more complicated functions than the Riemann integral. For example,
the above second function satisfies g ∈ Lp(a, b) for any p ≥ 1, since it has a well-defined
Lebesgue integral

∫ 1
0 |g(t)| dt = 0, due to the fact that [a, b] ∩Q is a “set of measure

zero”. If we compare this property to the comments in Example 1.46, then we can see
that in fact g = 0 as a function of Lp(a, b). ⋄
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Example 1.48. The functions in Lp-spaces for 1 ≤ p <∞ do not need to be bounded
(i.e., they can have arbitrarily large values). For example, the function f : (0, 1)→ R
defined by f(t) = t−1/2 belongs to L1(0, 1) even though f(t)→∞ as t→ 0. ⋄

The scale of Lp(Ω)-spaces is made complete by including the case “p = ∞”. Here
ess supz∈Ω|f(z)| is defined as the smallest upper bound of |f(z)| “outside sets of mea-
sure zero”, i.e., we can ignore values in any countable number of points z ∈ Ω just like
explained in Example 1.46.

Definition 1.49. For Ω ⊂ Rn the Lebesgue space L∞(Ω) is defined as

L∞(Ω) =
{
f : Ω→ C

∣∣∣∣ ess sup
z∈Ω

|f(z)| <∞
}
,

with norm ∥f∥∞ = ess supz∈Ω|f(z)|.

The essential supremum ess supz∈Ω|f(z)| is equal to the supremum supz∈Ω|f(z)|
whenever the function f : Ω→ C is continuous, and therefore the norm ∥·∥∞ coincides
with the norm ∥·∥∞ defined in (1.3) for continuous functions in L∞(Ω).

The norms on Lebesgue spaces satisfy the Minkowski’s Inequality (which is ex-
actly the triangle inequality for the norm ∥·∥p), as well as the very useful Hölder’s
Inequality. The special case where p = q = 2 the Hölder’s Inequality is called the
Cauchy–Schwarz Inequality.

Theorem 1.50. Let Ω ⊂ Rn.

• Hölder’s Inequality: Let p, q > 1 and 1
p

+ 1
q

= 1, or p = 1 and q = ∞. If
f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∥fg∥1 ≤ ∥f∥p∥g∥q.

• Cauchy–Schwarz Inequality: If f, g ∈ L2(Ω), then fg ∈ L1(Ω) and

∥fg∥1 ≤ ∥f∥2∥g∥2.

• Minkowski’s Inequality: If p ≥ 1 or p =∞, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p, f, g ∈ Lp(Ω).

The completeness of Lp(Ω) in the following theorem is sometimes called the Riesz–
Fischer Theorem (but it is worthwile to note that this name is sometimes used for
another result as well).

Theorem 1.51. The spaces Lp(I) and L∞(I) are Banach spaces.

Proof. The proof is presented in on the course “MATH.MA.840 Measure and Integra-
tion”, and can be found, for example, in the references [Rud87, Axl20].
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1.4.1 Dense Subspaces of Lebesgue Spaces
The Lebesgue spaces are complete normed spaces, i.e., Banach spaces. In this section
we will demonstrate that for 1 ≤ p < ∞ the space Lp(Ω) is also the completion of
the space of continuous functions equipped with the norm ∥·∥p. In reality, here we
already require a more general version of the concept of “completion” due the fact that
if Ω ⊂ Rn is a compact set, then C(Ω) is not truly a subset of the space Lp(Ω), because
the latter consists of equivalence classes of functions rather than functions f : Ω→ C.
However, we can interpret C(Ω) as a subset of Lp(Ω) if we identify every function
f ∈ C(Ω) with the equivalence class containing this particular function. In fact, this
correspondence is precisely the “isometric isomorphism” in the more general definition
of completions of normed spaces. As long as we keep this in mind, we can show that for
a compact Ω ⊂ Rn, the space (Lp(Ω), ∥·∥p) is a completion of (C(Ω), ∥·∥p) by showing
that for every element f ∈ Lp(Ω) and for every ε > 0 there exists a function fε ∈ C(Ω)
such that ∥f − fε∥p < ε1. This will prove that the equivalence classes of continuous
functions form a dense subspace of Lp(Ω).

Another important thing to note is that (C(Ω), ∥·∥p) is in general not a normed
space if Ω ⊂ Rn is an unbounded set (for example if Ω = Rn, Ω = { z = (z1, . . . , zn)T ∈
R | z1 > 0 }, or Ω = Rn \ B(0, 1)), since in this case the integral

∫
Ω|f(z)|p dz can

diverge for certain continuous functions f ∈ C(Ω). Motivated by this, in the following
we define the space Cc(Ω) of functions with “compact support”.

Definition 1.52. The support of the function f : Ω ⊂ Rn → C is defined as

supp f =
{
z ∈ Ω

∣∣∣ f(z) ̸= 0
}
.

Here the vertical line denotes the closure of the set in Rn. The space Cc(Ω) of
“functions with compact support in Ω” is defined as

Cc(Ω) = { f ∈ C(Ω) | supp f ⊂ K for some compact set K ⊂ Ω }.

Exercise 1.53. Let Ω ⊂ Rn. Prove that Cc(Ω) has an equivalent characterisation

Cc(Ω) = { f ∈ C(Ω) | supp f is compact and supp f ⊂ Ω }.

Hint: Note that supp f is by definition always a closed subset of Rn. ⋄

For us, the most important property of the space Cc(Ω) is that the norms ∥f∥p and
∥f∥∞ are clearly well defined (i.e., finite) for every f ∈ Cc(Ω) even when Ω ⊂ Rn is
an unbounded (measurable) subset of Rn. However, functions with compact support
are often very useful even in the case where Ω is already a bounded set. This is
especially the case in the study of differential equations and “differential operators”,
which are topics of the course “MATH.MA.830 Advanced Functional Analysis”. One
of the implications of the definition is that if Ω ⊂ Rn is an open set, then the functions
f ∈ Cc(Ω) need to be identically zero near the boundary of the set Ω. This is illustrated
in the case of open intervals in the following exercise.

Exercise 1.54. Assume a < b and Ω = (a, b) ⊂ R. Show that if f ∈ Cc(Ω), then
there exists ε > 0 such that f(t) = 0 whenever t ∈ (a, a+ ε) or t ∈ (b− ε, b). ⋄

1The notation “∥f−fε∥p” here may appear sloppy, but in the case of Lebesgue spaces it is typical
to identify the actual equivalence class with a function f : Ω→ C which belongs to this class.
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In the following we will show that the Lp-spaces are indeed completions of spaces
of continuous functions. We will only present the results in the case of functions of
a single variable when Ω ⊂ R is an interval (either bounded or unbounded, and not
necessarily open or closed), but corresponding results also exist for the more general
case Ω ⊂ Rn.
Theorem 1.55. Let I ⊂ R be an interval and let 1 ≤ p <∞.

(a) (Lp(I), ∥·∥p) is the completion of (Cc(I), ∥·∥p).

(b) (Lp(R), ∥·∥p) is the completion of (C∞
c (R), ∥·∥p), where

C∞
c (R) =

{
f ∈ C∞(R)

∣∣∣ supp f is compact
}

(c) If I = [a, b], then (Lp(I), ∥·∥p) is the completion of (P (I), ∥·∥p).

Proof. Part (a): Since (Lp(I), ∥·∥p) is Banach and Cc(I) ⊂ Lp(I), it suffices to show
that Cc(I) is dense in Lp(I) with respect to the norm ∥·∥p. Here we will only outline
the proof, the details can be found, for example, in the reference [Rud87, Thm. 3.14].
Let f ∈ Lp(I) and ε > 0 be arbitrary. Our aim is to find fε ∈ Cc(I) such that
∥f − fε∥p < ε. We can do this by finding three different functions f0, sε, fε which can
be used to estimate

∥f − fε∥p ≤ ∥f − f0∥p + ∥f0 − sε∥p + ∥sε − fε∥p <
ε

3 + ε

3 + ε

3 = ε.

The first step is find a function f0 ∈ Lp(I) with a compact support satisfying
∥f − f0∥p < ε/3. Since

∫
I |f(t)|p dt < ∞, we can choose a compact set K ⊂ I

such that ∫
I\K
|f(t)|p dt <

(
ε

3

)p

,

and if we choose f0 = fχK , where χK is the characteristic function of K, i.e.

χK(t) =
1 t ∈ K

0 t ∈ I \K
then

∥f − f0∥p =
(∫

I
|f(t)− f0(t)|p

) 1
p

=
(∫

I\K
|f(t)|p dt

) 1
p

<
ε

3 .

The next step in the proof is to approximate the function f0 with a “simple func-
tion” sε ∈ Lp(I) in such a way that ∥f0 − sε∥p < ε/3. By definition, a simple
function g : R→ C is a function that only has a fixed set of values {α1, . . . , αN} for
some N ∈ N, i.e., there exist sets X1, . . . , XN ⊂ I such that

g(t) =
N∑

k=1
αk · χXk

(t),

where χXk
(·) is a characteristic function of Xk. It is important that the sets Xk are

“measurable”. However, we do not need to know the precise definition of measur-
ability of a set (which is one of the topics on the course “MATH.MA.840 Measure
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and Integration”), for us it mainly means that the characteristic functions χXk
(·) have

well-defined (Lebesgue) integrals
∫

I χXk
(t) dt.

If a function g : I → [0,∞) has nonnegative real values, we can do a “sampling”
to the values of g by choosing a function φn : [0,∞) → [0,∞) in such a way that φn

has a distinct set of values {α1, . . . , αN} with N →∞ as n→∞, and the parameter
t is “rounded down” to the value φn(t) ∈ {α1, . . . , αN} (see Figure 1.4). Then we
have that sn(t) = (φn ◦ g)(t) = φn(g(t)) is a simple function. Moreover, it is not at
all obvious (especially since f1 is in general discontinuous!), but it follows from the
theory of Lebesgue integrals that

∥sn − f0∥p → 0 as n→∞.
This implies that we can choose a simple function sε such that ∥f0−sε∥p < ε/3. Since
f0 has compact support, we can also choose sε with a compact support.

f0
sε

α1

α2

α3

α4

X1 X1X2 X2X3 X3X4

Figure 1.4: Approximation with a simple function sε.

Finally, it is again not at all obvious, but the discontinuous sampled function sε can
be approximated with a continuous function with any given finite accuracy (this is due
to “Lusin’s Theorem”, but intuitively you can also think of the jumps in the simple
function being replaced with steep rises and drops). Because of this, we can choose
fε ∈ C(I) in such a way that ∥sε − fε∥p < ε/3, and since sε has compact support, we
can choose fε to have the same property. Since the estimate in the beginning of the
proof implies ∥f − fε∥p < ε, the proof is complete.
Part (b): We have from Part (a) that Cc(R) is dense in Lp(R) with respect to the
norm ∥·∥p. Therefore by Exercise 1.41 it suffices to show that C∞

c (R) is dense in
Cc(R) with respect to the norm ∥·∥p. To this end, let f ∈ Cc(R) be arbitrary. For
α > 0, define The function mα(t) has derivatives of all orders, mα ∈ C∞

c (R), and

mα(t) =
cα · e

1
t2−α2 if |t| < α

0 otherwise

where cα =
(∫ α

−α
e

1
s2−α2 ds

)−1
.
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Figure 1.5: Plot of mα for α = 1.

∫ α
−α mα(t) dt = 1. Define

fα(t) =
∫
R
f(t− s)mα(s) ds.
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A change of variables u = t− s shows that

fα(t) =
∫
R
f(u)mα(t− u) du. (1.5)

Because mα ∈ C∞
c (R) and f ∈ Cc(R), the above formula implies that we also have

fα ∈ C∞
c (R). Since f has a compact support by assumption, f is uniformly continuous

on R, and thus for any ε > 0 there exists an α > 0 such that

|f(t− s)− f(t)| < ε whenever |s| < α.

Using this, for any t ∈ R we can estimate the difference |fα(t) − f(t)| by (recall that∫
Rmα(u) du = 1, and that mα(u) = 0 if |u| ≥ α)

|fα(t)− f(t)| =
∣∣∣∣∫

R
[f(t− u)− f(t)]mα(u) du

∣∣∣∣
≤
∫
R
|f(t− u)− f(t)|mα(u) du

=
∫ α

−α
|f(t− u)− f(t)|mα(u) du < ε.

We examine the problem now from the point of view of the p-norm. Since f and fα

have compact supports, we can choose a, b ∈ R such that a < b. The formula (1.5)
implies that supp fα ⊂ [a−α, b+α], because if t > b+α, then mα(t−u) in the integral
is nonzero only if |t− u| < |α|, in which case necessarily u > b and f(u) = 0 (the case
t < a− α can be analysed similarly). Thus we have

∥fα−f∥p
p =

∫
R
|fα(t)−f(t)|p dt =

∫ b+α

a−α
|fα(t)−f(t)|p dt ≤

∫ b+α

a−α
εp dt = εp(b−a+2α)

so that ∥fα−f∥p ≤ ε(b−a+2α)1/p. Thus the norm ∥fα−f∥p can be made arbitrarily
small by choosing a sufficiently small α > 0. Therefore (C∞

c (R), ∥·∥p) is dense in
(Cc(R), ∥·∥p) and the claim holds.
Part (c): Since [a, b] is a finite and closed interval, we have Cc([a, b]) = C([a, b]) (we
can choose K = [a, b] in the definition of Cc([a, b])). Since by Part (a), (Lp(a, b), ∥·∥p)
is the completion of (C([a, b]), ∥·∥p), it is sufficient to show that P ([a, b]) is dense
in C([a, b]) with respect to the norm ∥·∥p. We already have from the Weirstrass
Approximation Theorem (in Theorem 1.43) that P ([a, b]) is dense in C([a, b]) with
respect to the norm ∥·∥∞. Since the interval [a, b] has finite length, for any f ∈ C([a, b])
and p ∈ P ([a, b]) we can estimate

∥f − p∥p =
(∫ b

a
|f(t)− p(t)|p dt

)1/p

≤
(∫ b

a
sup

s∈[a,b]
|f(s)− p(s)|p dt

)1/p

=
(∫ b

a
1 dt

)1/p

sup
s∈[a,b]

|f(s)− p(s)| = (b− a)1/p∥f − p∥∞.

This estimate and the denseness of (P ([a, b]), ∥·∥∞) in (C([a, b]), ∥·∥∞) directly imply
that any function f ∈ C([a, b]) can be approximated in the norm ∥·∥p with arbitrary
accuracy with elements p ∈ P ([a, b]). Thus (P ([a, b]), ∥·∥p) is dense in (C([a, b]), ∥·∥p).
This completes the proof that (Lp(a, b), ∥·∥p) is the completion of (P ([a, b]), ∥·∥p).



2. Linear Operators

In this chapter we study functions (or “mappings”) T : X → Y between two normed
spaces (X, ∥·∥X) and (Y, ∥·∥Y ), meaning that an element x ∈ X is mapped to a element
y = T (x) ∈ Y . We in particular focus on functions which are linear in the sense that

T (αx+ βy) = αT (x) + βT (y) ∀α, β ∈ C, ∀x, y ∈ X.

Such linear mappings, which are traditionally called linear operators, have a very well-
formed theory and in this chapter we will begin to study their most fundamental
properties. We begin by defining linear operators more precisely.

Definition 2.1. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces. A mapping T : X →
Y is a linear operator if

T (αx+ βy) = αT (x) + βT (y) ∀α, β ∈ C, ∀x, y ∈ X. (2.1)

More generally, the linear operator T may be defined only for elements x ∈ D(T )
where D(T ) is a subspace of X, and we denote T : D(T ) ⊂ X → Y . In this case
D(T ) is called the domain of T and the identity in (2.1) is required to hold for all
α, β ∈ C and x, y ∈ D(T ).

For a linear operator T : D(T ) ⊂ X → Y it is customary to write Tx instead of
T (x) for x ∈ D(T ).

We begin by introducing examples of linear operators between different types of
normed spaces. We will also encounter these same operators several times throughout
our course.

Example 2.2. As we recall from linear algebra, a matrix A ∈ Cm×n can be interpreted
as a mapping between two Euclidean spaces Cn and Cm. More precisely, if A ∈ Cm×n

is a fixed matrix, we can define T : Cn → Cm as the operation of multiplication of
x ∈ Cn (from the left) with the matrix A, i.e., Tx = Ax ∈ Cm for all x ∈ Cn. Then T
is indeed a linear operator because the linearity of the matrix multiplication implies
that

T (αx+ βy) = A(αx+ βy) = αAx+ βAy = αTx+ βTy

for all α, β ∈ C and x, y ∈ Cn.
Because every matrix A ∈ Cm×n defines a linear operator, the theory of linear

operators can (in some sense) be considered as an extension of the theory of matrices.
Indeed, on this course we will see that linear operators have many features which closely
resemble the familiear properties of matrices. On the other hand, we will also see that
parts of the theory of linear operators are very “rich” compared to the corresponding

31



32 Chapter 2. Linear Operators

theory of matrices. This is for example the case with spectral theory of linear operators
(Chapter 4) which generalises the study of eigenvalues and eigenvectors of matrices. ⋄

Example 2.3 (Point evaluation). Let Ω ⊂ Rn be a closed and bounded set, and let
X = C(Ω) with the norm ∥·∥∞. For a fixed z0 ∈ Ω we can define the operator Tz0 :
X → C which “evaluates” a function f ∈ C(Ω) at the point z0, i.e., Tz0f = f(z0) ∈ C.
Since the functions in C(Ω) are continuous, every f ∈ C(Ω) has a well-defined value
at the point z0, and thus Tz0f is well-defined for every f ∈ X. The linearity of the
operator Tz0 follows from the definitions of the addition and scalar multiplication in
C(Ω). Indeed, for all α, β ∈ C and f, g ∈ X we have

Tz0(αf + βg) = (αf + βg)(z0) = (αf)(z0) + (βg)(z0)
= αf(z0) + βg(z0) = αTz0f + βTz0g.

We can also define the point evaluation operator Tz0 as an operator fromX = Lp(Ω)
for p ≥ 1 (with the norm ∥·∥p) to C. However, since the functions f ∈ Lp(Ω) do not
have uniquely defined values at any particular points, the expression “Tz0f” cannot be
defined for all functions f ∈ X! Instead, we need to choose the domain D(Tz0) of the
operator Tz0 in such a way that Tz0f is well-defined for all f ∈ D(Tz0). Since Ω ⊂ Rn

is compact (closed and bounded), we have C(Ω) ⊂ Lp(Ω), and we can for example
choose D(Tz0) = C(Ω). In this case f(z0) is again well-defined for all f ∈ D(Tz0) and
the linearity of the operator Tz0 : D(Tz0) ⊂ X → C follows directly from our earlier
computation. ⋄

Example 2.4 (Shift operators on ℓp(C) and ℓ∞(C)). Let X = ℓp(C) for p ≥ 1 or
X = ℓ∞(C). For every infinite sequence (xk)∞

k=1 ∈ X we can define the operators
of shifting all the elements of a sequence either “to the left” or “to the right”. More
precisely, we can define the right shift operator Sr : X → X such that

Srx = (0, x1, x2, x3, . . .), x = (xk)∞
k=1

and the left shift operator Sl : X → X such that

Slx = (x2, x3, x4 . . .), x = (xk)∞
k=1.

Clearly both Srx and Slx are well-defined infinite sequences of complex numbers. In
order to show that Sr and Sl are well-defined mappings from X to X, we want to
show that Srx ∈ X and Slx ∈ X whenever x ∈ X. Since X = ℓp(C) for p ≥ 1 or
X = ℓ∞(C), our aim is to show that ∥Srx∥X <∞ and ∥Slx∥X <∞ for all x ∈ X.

Let us first consider the case where X = ℓp(C) for p ≥ 1. Let x = (xk)∞
k=1 ∈ X be

arbitrary and denote Srx = y = (yk)∞
k=1. By definition, we have y1 = 0 and yk = xk−1

for k ≥ 2. We then have

∥Srx∥p = ∥y∥p =
( ∞∑

k=1
|yk|p

) 1
p

=
( ∞∑

k=2
|xk−1|p

) 1
p

=
( ∞∑

k=1
|xk|p

) 1
p

= ∥x∥p <∞,

and thus Srx ∈ X. On the other hand, if x = (xk)∞
k=1 ∈ X is arbitrary and we denote

Slx = y = (yk)∞
k=1, then yk = xk+1 for k ∈ N. Because of this, we have

∥Slx∥p =
( ∞∑

k=1
|yk|p

) 1
p

=
( ∞∑

k=1
|xk+1|p

) 1
p

=
( ∞∑

k=2
|xk|p

) 1
p

≤
( ∞∑

k=1
|xk|p

) 1
p

= ∥x∥p <∞,



33

which implies Slx ∈ X. Thus Sr : X → X and Sl : X → X are well-defined when
X = ℓp(C) with p ≥ 1. Repeating the arguments in the case where X = ℓ∞(C) is left
as an exercise.

Finally, the linearity of the operators Sr and Sl follow from the definitions of
addition and scalar multiplication for sequences. Indeed, if α, β ∈ C and x, y ∈ X are
arbitrary, we have

Sr(αx+ βy) = (0, αx1 + βy1, αx2 + βy2, . . .)
= α(0, x1, x2, . . .) + β(0, y1, y2, . . .)
= αSrx+ βSry

and
Sl(αx+ βy) = (αx2 + βy2, αx3 + βy3, . . .)

= α(x2, x3, . . .) + β(y2, y3, . . .)
= αSlx+ βSly.

Thus both Sr : X → X and Sl : X → X are linear operators. ⋄

Exercise 2.5. In Example 2.4, prove that Srx ∈ ℓ∞(C) and Slx ∈ ℓ∞(C) for all
x ∈ ℓ∞(C). ⋄

Exercise 2.6. If T : X → X, the nth power T n : X → X of T is defined as the
composition T nx = T (T n−1x) = · · · = T (T (· · · (Tx))) for x ∈ X. Alternatively, it
is possible to denote T n = TT · · ·T (where T appears n times). Write down the
definitions of the powers S2

r , S2
l , S3

r , and S3
l for the shift operators in Example (2.4).

⋄

Example 2.7 (Differential operators). Differentiation of a function is a linear oper-
ation, and we can indeed define an operator T which differentiates a given function
f : [a, b]→ C, i.e. Tf = f ′ (the values of this function for t ∈ [a, b] can be denoted by
(Tf)(t) = f ′(t)).

In order to make the operator well-defined, we need to choose the spaces X and
Y in a suitable way. For example, if our aim is to consider continuously differentiable
functions, we can choose X = C1([a, b]) (the space of functions having continuous
derivative, and at t = a and t = b the derivatives are defined as the “one-sided”
derivatives) with (for example) the norm ∥·∥∞ and we can let Y = C([a, b]) with
the norm ∥·∥∞. Due to our choises, we have that Tf = f ′ ∈ C([a, b]) = Y for all
f ∈ C1([a, b]) = Y , and thus T is well-defined as an operator T : X → Y . The
operator T is also linear, since for all α, β ∈ C and for all f, g ∈ X = C1([a, b]) the
linearity of differentiation implies

T (αf + βg) = (αf + βg)′ = αf ′ + βg′ = αTf + βTg.

In the case of operators which map functions f : [a, b] → C to other functions
g : [a, b]→ C (and in other similar instances) it is often convenient to be able to choose
the spaces X and Y to be the same space, i.e., X = Y . Especially, the property X = Y
will allow us to later consider the spectrum of the operator (Chapter 4), or define powers
of the operator (similarly as in Exercise 2.6). In the case of the differential operator,
we can achieve this by defining X = Y = C([a, b]) with the norm ∥·∥∞, and defining
the operator T : D(T ) ⊂ X → X on the domain D(T ) = C1([a, b]) which is a subspace
of X. ⋄
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2.1 Bounded Linear Operators
We will now focus our attention to an important class of linear operators, namely,
bounded linear operators.

Definition 2.8. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces. The linear operator
T : D(T ) ⊂ X → Y is bounded if there exists M ≥ 0 such that

∥Tx∥Y ≤M∥x∥X , ∀x ∈ D(T ).

The linearity of an operator T : D(T ) ⊂ X → Y has very strong consequences
especially for the continuity of the operator (in the sense of continuity of a function
from X to Y ). More precisely, the mapping T : D(T ) ⊂ X → Y is defined to be
continuous at the point x ∈ D(T ) if for every ε > 0 there exists δx > 0 such that

∥Tx− Ty∥Y < ε whenever y ∈ D(T ) and ∥x− y∥X < δx.

Here the value δx > 0 is allowed to depend on x ∈ D(T ). In particular, as shown in
the next theorem, a linear operator T : D(T ) ⊂ X → Y is continuous at the single
point x = 0 if and only if it is a bounded operator, and in this case it is also “uniformly
continuous” everywhere on D(T ). In uniform continuity, the value “δx > 0” can be
chosen independently of x ∈ D(T ). The theorem below also explains why both terms
bounded linear operator and continuous operator appear in the literature and
that both of them refer to the same class of operators.

Theorem 2.9. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces and let T : D(T ) ⊂
X → Y be a linear operator. The following are equivalent.

(i) T is continuous at x = 0.

(ii) T is uniformly continuous on D(T ), i.e., for every ε > 0 there exists δ > 0
such that

∥Tx− Ty∥Y < ε whenever x, y ∈ D(T ) and ∥x− y∥X < δ.

(iii) T is a bounded operator.

Proof. (i) ⇒ (ii): Assume that T is continuous at x = 0 and let ε > 0 be arbitrary.
Since T0 = 0, by definition of continuity there exists δ0 > 0 such that

∥Ty∥Y < ε whenever y ∈ D(T ) and ∥y∥X < δ0. (2.2)

Our aim is to show that we can directly choose δ = δ0 > 0 in the definition of uniform
continuity. Assume that x ∈ D(T ) and y ∈ D(T ) satisfy ∥x− y∥X < δ0. The linearity
of T implies that T (x− y) = Tx− Ty, and thus (2.2) implies

∥Tx− Ty∥Y = ∥T (x− y)∥Y < ε

since ∥x − y∥X < δ0. Since ε > 0 was arbitrary, this shows that T : D(T ) ⊂ X → Y
is uniformly continuous.
(ii) ⇒ (iii): Assume T : D(T ) ⊂ X → Y is uniformly continuous. Thus for ε = 1
we can find δ > 0 such that (choosing x = 0) ∥Ty∥Y < 1 whenever y ∈ D(T ) and
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∥y∥X < δ. Now let x ∈ D(T ) be arbitrary. We can assume x ̸= 0, since otherwise
Tx = 0 and the claim is trivial. In order to use the continuity of T , our aim is to
define a vector y ∈ D(T ) satisfying ∥y∥X < δ by “scaling” the norm of the vector of
x. In particular, if we define y = αx ∈ D(T ) with α = δ/(2∥x∥X), then we have

∥y∥X = ∥αx∥X = |α|∥x∥X = δ

2∥x∥X

∥x∥X = δ/2 < δ.

Because of this, we have

∥Ty∥Y < 1 ⇔ ∥T (αx)∥Y < 1 ⇔ |α|∥Tx∥Y < 1 ⇔ ∥Tx∥Y <
1
|α|

= 2
δ
∥x∥X .

Since x ∈ D(T ) was arbitrary, we have shown that ∥Tx∥Y ≤M∥x∥X with M = 2/δ >
0 for all x ∈ D(T ), and thus the operator T is bounded.

(iii) ⇒ (i): This part is left as an exercise.

Exercise 2.10. Prove the implication from (iii) to (i) in Theorem 2.9. ⋄

Remark 2.11. In the case of mappings between different normed spaces, for example,
(X, ∥·∥X) and (Y, ∥·∥Y ), it is very important to distinguish between the norms ∥·∥X

and ∥·∥Y ! Indeed, if the vector spaces X and Y are different, there is no reason
why the norm ∥x∥Y would be defined for elements x ∈ X (see, e.g., Example 2.3).
Moreover, even if X and Y are the same vector space, the norms ∥·∥X and ∥·∥Y may
be different, and for example different choices of norms on these spaces define which
operators T : X → Y are bounded and which operators are not.

This being said, throughout the course we very often use the notation ∥x∥ for ∥x∥X

in the case where the choice of the norm is uniquely defined and clear from the context.
For example, if (X, ∥·∥X) and (Y, ∥·∥Y ) are two normed spaces, then we may write the
definition of the boundedness of T : D(T ) ⊂ X → Y as

∃M ≥ 0 : ∥Tx∥ ≤M∥x∥, ∀x ∈ D(T ).

This is because “∥Tx∥” only makes sense if it is exactly ∥Tx∥Y , and similarly “∥x∥”
can only mean the norm ∥x∥X . However, we will only use this shorter notation if we
are not simultaneously considering multiple norms on the vector spaces X and Y , and
sometimes we write ∥·∥X and ∥·∥Y simply for additional emphasis or clarity.

Example 2.12. The identity operator I : X → X mapping every element of X to
itself, i.e. Ix = x for all x ∈ X, is a bounded linear operator. Indeed,

∥Ix∥X = ∥x∥X , ∀x ∈ X

implies that the condition in Definition 2.8 holds with M = 1. Similarly, we can study
the boundedness of the zero operator O : X → Y mapping every element of X to
the zero element of Y , i.e., Ox = 0. We have

∥Ox∥Y = ∥0∥Y = 0 = 0 · ∥x∥X , ∀x ∈ X.

Thus the condition in Definition 2.8 holds with M = 0 and O : X → Y is bounded. ⋄

Before considering more examples of bounded (and unbounded) operators, we will
also define the space of bounded linear operators from X to Y .
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Definition 2.13. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces. We define the
space of bounded linear operators B(X, Y ) as

B(X, Y ) = {T : X → Y | T is a bounded linear operator }.

The space B(X, Y ) becomes a vector space with addition S+T : X → Y and scalar
multiplication αT : X → Y defined by

(S + T )x = Sx+ Tx,

(αT )x = αTx,

for all S, T ∈ B(X, Y ), α ∈ C, and x ∈ X.

Linear operators with D(T ) = X and Y = C have a special name: A linear
operator T : X → C is called a linear functional, and the space of bounded linear
functionals B(X,C) is called the dual space of X. The point evaluation operator
Tz0 : C(Ω)→ C in Example 2.3 is an example of a linear functional (in Example 2.18
we will see that it is also a bounded linear functional).

Exercise 2.14. Prove that S + T : X → Y and αT : X → Y in Definition 2.13 are
bounded linear operators, i.e., S + T ∈ B(X, Y ) and αT ∈ B(X, Y ). ⋄

In the case where the two normed spaces are the same, we denote B(X,X) by
B(X). The zero element O ∈ B(X, Y ) of the vector space is the zero operator in
Example 2.12 (mapping every element x ∈ X to the zero element 0 ∈ Y , i.e., Ox =
0 ∈ Y for all x ∈ X). The space B(X, Y ) in fact becomes a normed space with the
operator norm defined below.

Definition 2.15. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces. Then the (opera-
tor) norm of T ∈ B(X, Y ) is defined as

∥T∥B(X,Y ) = sup
∥x∥X≤1

∥Tx∥Y .

Exercise 2.16. Prove that (B(X, Y ), ∥·∥B(X,Y )) is a normed space (i.e., prove that
∥·∥B(X,Y ) is a norm on B(X, Y )). ⋄

The definition of the operator norm indicates that ∥T∥ can be seen as the maximal
size of the norm of the image Tx of any vector x ∈ X with norm ∥x∥ ≤ 1. The
definition also directly implies that if ∥x∥ ≤ 1, then ∥Tx∥ ≤ ∥T∥B(X,Y ). This further
implies that if x ̸= 0 and if we define y = 1

∥x∥x, then ∥x∥y = x, ∥y∥ = 1, and

∥Tx∥ = ∥∥x∥Ty∥ = ∥x∥∥Ty∥ ≤ ∥T∥∥x∥.

Because of this, in the Definition 2.8 it is in particular always possible to choose
M = ∥T∥ ≥ 0.

Exercise 2.17. Prove that if T ∈ B(X, Y ) and if M ≥ 0 is such that ∥Tx∥ ≤ M∥x∥
for all x ∈ X, then ∥T∥ ≤M . ⋄
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The most typical way to compute the norm ∥T∥ of a linear operator is to first find
(as small as possible) upper bound M ≥ 0 such that ∥Tx∥ ≤ M∥x∥ (which implies
that necessarily ∥T∥ ≤ M). If it is then possible to find an element y ∈ X such that
∥Ty∥ = M∥y∥, we can deduce ∥T∥ = M . More generally, in the second part it is
sufficient to find a sequence (xk)∞

k=1 ⊂ X such that xk ̸= 0 for all k ∈ N and

∥Txk∥
∥xk∥

→M, as k →∞.

Example 2.18. Let Ω ⊂ Rn be a closed and bounded set, let z0 ∈ Ω, and consider
the point evaluation operator Tz0 : X → C in Example 2.3. We will show that Tz0 is
a bounded linear operator when we choose X = C(Ω) with the norm ∥·∥∞. Indeed,
with this choice of X, we have that for any f ∈ C(Ω)

∥Tf∥C = |f(z0)| ≤ sup
z∈Ω
|f(z)| = ∥f∥∞.

Thus Tz0 ∈ B(X,C) is bounded and in particular ∥Tz0f∥ ≤ ∥f∥∞ for all f ∈ X. To
compute the norm ∥Tz0∥ we can note that if we choose f ∈ C(Ω) to be the constant
function such that f(z) = 1 for all z ∈ Ω, then

∥Tz0f∥ = |f(z0)| = 1 = sup
z∈Ω
|f(z)| = ∥f∥∞,

and thus for this function we have ∥Tf∥ = 1 · ∥f∥, which implies together with our
earlier estimate implies that ∥T∥ = 1.

On the other hand, the operator Tz0 is not bounded if we define it instead as an
operator Tz0 : D(Tz0) ⊂ Lp(Ω)→ C with domain D(Tz0) = C(Ω). This is because it is
possible to define a sequence (fk)∞

k=1 ⊂ C(Ω) of continuous functions which all have p-
norm equal to ∥fk∥p = 1, but whose values fk(z0) at the point z0 ∈ Ω increase without
bound as k → ∞. Indeed, this can be done by defining suitable “hat functions”
centered at the point z0 and with decreasing radii (this is especially simple if the point
z0 ∈ Ω is in the interior of Ω). ⋄

Example 2.19. In this example we will show that the differential operator T :
C1([a, b]) → C([a, b]) in Example 2.7 is not bounded (and thus is an unbounded op-
erator). Since both the spaces C1([a, b]) and C([a, b]) use the norm ∥·∥∞, our aim
is to find a sequence (fk)∞

k=1 of functions such that the maximal values f ′
k(t) become

increasingly large when compared to the maximal values fk(t) of the functions them-
selves. Ideal functions for this purpose are functions whose values are bounded, but
which behave in an “oscillatory” manner, such as trigonometric functions sin(ωt) and
cos(ωt) for ω > 0. Indeed, if we define fk(t) = sin(kt), then (fk)k ⊂ C1([a, b]), but for
high values of k the oscillation of fk(t) becomes more and more rapid. This is directly
reflected in the norm ∥Tfk∥, since

∥Tfk∥∞ = sup
t∈[a,b]

|f ′
k(t)| = sup

t∈[a,b]
| d
dt

sin(kt)| = sup
t∈[a,b]

|k sin(kt)| = k.

On the other hand, we have

∥fk∥∞ = sup
t∈[a,b]

|fk(t)| = sup
t∈[a,b]

|sin(kt)| = 1
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for all k ∈ N. Since (fk)k ⊂ C1([a, b]) is a sequence such that ∥fk∥∞ = 1 and
∥Tfk∥∞ → ∞ as k → ∞, the operator T is not bounded (it is not possible to find a
constant M ≥ 0 such that the condition of Definition 2.8 would hold).

Whether or not an operator between two vector spaces is bounded or not is highly
dependent on the choices of the norms (i.e., the boundedness is indeed a property of
the operator between two normed spaces). The differential operator in this example
becomes a bounded operator if we change the norm on the space C1([a, b]) to be defined
as ∥f∥C1 = ∥f∥∞ + ∥f ′∥∞. Indeed, it is a straighforward exercise to verify that ∥·∥C1

is a norm on C1([a, b]), and for all f ∈ C1([a, b]) we have

∥Tf∥∞ = ∥f ′∥∞ ≤ ∥f∥∞ + ∥f ′∥∞ = ∥f∥C1 .

Thus T ∈ B(C1([a, b]), C([a, b])) with the choice ∥·∥C1 of the norm on C1([a, b]). ⋄

Exercise 2.20. Let X = ℓp(C) with p ≥ 1, or X = ℓ∞(C). Prove that the shift
operators Sr and Sl in Example 2.4 satisfy Sr ∈ B(X) and Sr ∈ B(X). Moreover,
compute ∥Sl∥ and ∥Sr∥. ⋄

Example 2.21. Assume (t, s) 7→ k(t, s) ∈ C(Ω) where Ω = [a, b] × [a, b] ⊂ R2. We
can define an integral operator T on the space X = Lp(a, b) with 1 ≤ p < ∞ so
that for every f ∈ X the function Tf : [a, b]→ C is defined by

(Tf)(t) =
∫ b

a
k(t, s)f(s) ds, ∀t ∈ [a, b].

The function k(·, ·) is called the kernel of the integral operator. The expression Tf
is well-defined for all f ∈ X, since the function k(·, ·) is continuous on [a, b] × [a, b],
and thus uniformly continuous, and thus for all f ∈ Lp(a, b) we have that k(t, ·)f(·) ∈
Lp(a, b) ⊂ L1(a, b) for every fixed t ∈ [a, b].

Our aim is to show that T ∈ B(X,X). Our first task is to verify that the mapping
T : X → X is well-defined in the sense that Tf ∈ X for all f ∈ X. We will not
consider the measurability of Tf , but we will show that Tf is p-integrable. Since
k(·, ·) ∈ C([a, b]2), there exists a constant C > 0 such that |k(t, s)| ≤ C for all
t, s ∈ [a, b]. Let f ∈ X = Lp(a, b) be arbitrary. We can estimate
∫ b

a
|(Tf)(t)|p dt =

∫ b

a

∣∣∣∣∣
∫ b

a
k(t, s)f(s) ds

∣∣∣∣∣
p

dt ≤
∫ b

a

(∫ b

a
|k(t, s)||f(s)| ds

)p

dt

≤
∫ b

a

(∫ b

a
C|f(s)| ds

)p

dt = Cp

(∫ b

a
1 dt

)(∫ b

a
|f(s)| ds

)p

= Cp(b− a)∥f∥p
1.

Since f ∈ Lp(a, b) ⊂ L1(a, b), this estimate shows that Tf is p-integrable. Since f ∈ X
was arbitrary, we deduce that T is well-defined as a mapping T : X → X. In order to
show that T is bounded, we need to show that there exists M > 0 such that

∥Tf∥p ≤M∥f∥p, ∀f ∈ X = Lp(a, b).

Let f ∈ X be arbitrary. Our previous estimate shows that ∥Tf∥p ≤ C(b−a)1/p∥f∥1. If
p = 1, this estimate is exactly of the correct form, and we can chooseM = C(b−a)1/p =
C(b − a). On the other hand, if 1 < p < ∞, we can use the Hölder’s inequality
(Theorem 1.50) to estimate the norm ∥f∥1 with the norm ∥f∥p. Indeed, if we define
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q = p/(p − 1) and define g : [a, b] → C such that g(s) = 1 for all s ∈ [a, b], then
g ∈ Lq(a, b) and Hölder’s inequality implies

∥f∥1 = ∥gf∥1 ≤ ∥g∥q∥f∥p =
(∫ b

a
1q ds

) 1
q

∥f∥p = (b− a)
1
q ∥f∥p.

Combining this with our ealier estimate for ∥Tf∥p shows that

∥Tf∥p ≤ C(b− a)1/p∥f∥1 ≤ C(b− a)1/p+1/q∥f∥p = C(b− a)∥f∥p.

We can therefore choose M = C(b−a) also in the case where 1 < p <∞. Proving the
linearity of the operator T is left as an exercise, and after this step we can conclude
that T ∈ B(X,X). Finally, we note that our estimate ∥Tf∥p ≤ C(b − a)∥f∥p for all
f ∈ X also implies that the operator norm of T satisfies ∥T∥ ≤ C(b− a). ⋄

Exercise 2.22. Show that the integral operator T : X → X in Example 2.21 is linear.
Moreover, find the kernel k(·, ·) which corresponds to the integral operator T ∈ B(X)
which is defined so that

(Tf)(t) =
∫ t

a
f(s)ds, ∀f ∈ Lp(a, b)

for all t ∈ [a, b]. ⋄

We already confirmed that (B(X, Y ), ∥·∥B(X,Y )) is a normed space. This space is
complete whenever the space Y is a Banach space.

Theorem 2.23. Let (X, ∥·∥X) be a normed space and assume (Y, ∥·∥Y ) is a Banach
space. The space (B(X, Y ), ∥·∥B(X,Y )) is a Banach space.

Proof. Let (Tk)∞
k=1 ⊂ B(X, Y ) be an arbitrary Cauchy sequence. Our aim is to show

that (Tk)k converges in B(X, Y ), i.e., there exists T ∈ B(X, Y ) such that ∥Tk−T∥ → 0
as k →∞. For every fixed x ∈ X we have that

∥Tkx− Tmx∥ = ∥(Tk − Tm)x∥ ≤ ∥Tk − Tm∥∥x∥ → 0 (2.3)

as k,m → ∞, and thus (Tkx)∞
k=1 ⊂ Y is a Cauchy sequence in the space (Y, ∥·∥Y )

for every x ∈ X. Since (Y, ∥·∥Y ) was assumed to be Banach space, every one of
these sequences converges in Y , i.e., for every x ∈ X there exists yx ∈ Y such that
∥Tkx − yx∥ → 0 as k → ∞. We will now define an operator T : X → Y so that
Tx = yx for all x ∈ X. Our aim is to show that T ∈ B(X, Y ) and ∥Tk − T∥ → 0 as
k →∞. The operator T is linear because for all α, β ∈ C and x, y ∈ X we have

T (αx+ βy) = lim
k→∞

Tk(αx+ βy) = α lim
k→∞

Tkx+ β lim
k→∞

Tky = αTx+ βTy.

In order to show that T is bounded and that Tk → T as k →∞, we take an arbitrary
ε > 0. Since (Tk)k is a Cauchy sequence, we can choose nε ∈ N such that ∥Tk−Tm∥ ≤ ε
for all k,m ≥ nε. The estimate in (2.3) implies that for all k,m ≥ nε and x ∈ X we
have

∥Tkx− Tmx∥ ≤ ∥Tk − Tm∥∥x∥ ≤ ε∥x∥.
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Since the norm on a normed space is always continuous as a mapping ∥·∥Y : Y → C,
we further have that for every x ∈ X and m ≥ nε

∥(T − Tm)x∥ = ∥Tx− Tmx∥ =
∥∥∥∥( lim

k→∞
Tkx)− Tmx

∥∥∥∥ = lim
k→∞
∥Tkx− Tmx∥ ≤ ε∥x∥.

Thus T − Tm : X → Y is in particular a bounded operator if m ≥ nε, and since
T = (T − Tm) + Tm where T − Tm ∈ B(X, Y ) and Tm ∈ B(X, Y ), we also have
T ∈ B(X, Y ). Indeed, this follows directly from Exercise 2.14 where we showed
that B(X, Y ) is a vector space, and therefore closed under addition of operators.
Moreover, the above estimate also implies that the operator norm of T − Tm satisfies
(see Exercise 2.17)

∥T − Tm∥ ≤ ε, ∀m ≥ nε. (2.4)

Since ε > 0 was arbitrary, and there exists nε ∈ N such that (2.4) holds, we have
that ∥Tm − T∥ → 0 as m → ∞. Since (Tk)∞

k=1 was an arbitrary Cauchy sequence in
B(X, Y ), we conclude that (B(X, Y ), ∥·∥B(X,Y )) is complete.

2.2 Invertible Operators
For a linear operator T : D(T ) ⊂ X → Y , the range Ran(T ) (the “space of values
y = Tx of T”) and the kernel or null space Ker(T ) (the “space where the values of
T are zero”) are defined as follows.

Definition 2.24. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces and let T : D(T ) ⊂
X → Y be a linear operator. The range Ran(T ) and kernel (or null space) Ker(T )
of T are defined as

Ran(T ) = { y ∈ Y | y = Tx for some x ∈ D(T ) }
Ker(T ) = {x ∈ D(T ) | Tx = 0 }.

The operator T is said to be

• injective (or one-to-one) if Ker(T ) = {0}.

• surjective (or onto) if Ran(T ) = Y .

• bijective (or one-to-one and onto) if it is both injective and surjective.

The range Ran(T ) is a subspace of Y and the kernel T is a subspace of D(T ).
Indeed, we have T0 = 0, and thus 0 ∈ Ran(T ) and 0 ∈ Ker(T ). Moreover, if y1, y2 ∈
Ran(T ) and α, β ∈ C are arbitrary, then by definition there exist x1, x2 ∈ D(T ) such
that y1 = Tx1 and y2 = Tx2. Because of this, the linearity of T implies

αy1 + βy2 = αTx1 + βTx2 = T (αx1 + βx2) ∈ Ran(T ).

Thus Ran(T ) is a subspace of Y . Moreover, if x1, x2 ∈ Ker(T ) and α, β ∈ C are
arbitrary, we have

T (αx1 + βx2) = αTx1 + βTx2 = α0 + β0 = 0,
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which implies that αx1 + βx2 ∈ Ker(T ). This implies that Ker(T ) is a subspace of
D(T ).

For linear operators, the definition injectivity in Definition 2.24 coincides perfectly
with its more general definition as the property that distinct elements x1 ̸= x2 are
mapped to distinct elements Tx1 ̸= Tx2. Indeed, if the linear operator T : D(T ) ⊂
X → Y has the property Ker(T ) = {0} and if x1, x2 ∈ D(T ) are such that Tx1 = Tx2,
then

T (x1 − x2) = Tx1 − Tx2 = 0 ⇒ x1 − x2 ∈ Ker(T ) = {0} ⇒ x1 − x2 = 0

which implies that x1 = x2. On the other hand, the injectivity of T in the more general
sense implies that only the zero element 0 ∈ D(T ) can be mapped to the zero element
0 ∈ Y , which means that necessarily Ker(T ) = {0}.

Exercise 2.25. Prove that if D(T ) = X, then Ker(T ) is a closed subspace of X. One
convenient way of doing this is to take an arbitrary sequence (xk)∞

k=1 ⊂ Ker(T ) which
converges in X, and to show that the limit of the sequence is in Ker(T ). ⋄

Definition 2.26. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces and let T : D(T ) ⊂
X → Y be a linear operator. A mapping S : Ran(T ) ⊂ Y → X is an inverse of T if

STx = x ∀x ∈ D(T )
TSy = y ∀y ∈ Ran(T ).

If such an S exists, then T is said to be invertible, and inverse S is denoted by
T−1 = S.

The operator T : D(T ) ⊂ X → Y is said to be boundedly invertible if T has
an inverse T−1 ∈ B(Y,X).

Our definition of bounded invertibility in particular requires that T−1 is defined on
Y , and thus Ran(T ) = Y . There are differences in this terminology in the literature,
and sometimes T is defined to be boundedly invertibly if its inverse T−1 is a bounded
as an operator T : Ran(T ) ⊂ Y → X. The following theorem shows that the inverse of
a linear operator is always linear, and that every injective operator has a well-defined
and unique inverse.

Theorem 2.27. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces and let T : D(T ) ⊂
X → Y be a linear operator. Then the following hold.

(a) The inverse of an operator T is unique (if it exists).

(b) The inverse T−1 (if it exists) is a linear operator.

(c) The operator T has an inverse if and only if it is injective.

Proof. Part (a): Let S1 : D(T ) ⊂ Y → X and S2 : D(T ) ⊂ Y → X be two inverses
of T . For every y ∈ Ran(T ) there exists x ∈ D(T ) such that y = Tx, and we have

S1y = S1Tx = x = S2Tx = S2y.

Thus S1 = S2.
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Part (b): Left as an exercise.
Part (c): If the operator T is injective, for every y ∈ Ran(T ) there exists a unique

x ∈ D(T ) such that y = Tx. We can define a mapping S : Ran(T ) ⊂ Y → X such
that for every y ∈ Ran(T ) the value Sy is defined to be this unique x ∈ X (this is
often called the algebraic inverse of T ). By definition we then have that if y ∈ Ran(T )
and x ∈ D(T ) is such that y = Tx, then

TSy = Tx = y.

Moreover, if x ∈ D(T ), we also have STx = x, since x ∈ D(T ) is the unique element
which maps to Tx ∈ Ran(T ). Thus S is an inverse of T in the sense of Definition 2.26.

Assume now that T has an inverse T−1 : Ran(T ) ⊂ Y → X. If x ∈ Ker(T ) is
arbitrary, then the properties of T−1 in Definition 2.26 and the linearity of T−1 (part
(b)) imply that

x = S Tx︸︷︷︸
=0

= S0 = 0.

Since x ∈ Ker(T ) was arbitrary, we have that Ker(T ) = {0} and the operator T is
injective.

Exercise 2.28. Consider the shift operators Sr and Sl in Example 2.4. Show that Sr

is injective but not surjective, and that Sl is surjective but not injective. Moreover,
show that S−1

r = Sl. ⋄

Exercise 2.29. Let (X, ∥·∥X), (Y, ∥·∥Y ), and (Z, ∥·∥Z) be normed spaces and assume
S : D(S) ⊂ X → Y and T : Y → Z are bijective. Show that the composition
ST : D(T ) ⊂ X → Z is well-defined and invertible, and that its inverse satisfies
(ST )−1 = T−1S−1. ⋄

Example 2.30. In this example we demonstrate that a bounded operator does not
necessarily have a bounded inverse. Let X = ℓp(C) for some p ≥ 1 and consider a
multiplication operator T ∈ B(X) defined so that

Tx =
(
xk

k

)∞

k=1
, ∀x = (xk)∞

k=1 ∈ X.

Thus the application of the operator T on x multiplies each element xk of the sequence
x = (xk)k with 1/k. The multiplication operator is well-defined as an operator T :
X → X, since for every x ∈ X = ℓp(C) we have

∥Tx∥p =
( ∞∑

k=1

∣∣∣∣xk

k

∣∣∣∣p
) 1

p

≤
(

max
k∈N

{ 1
kp

} ∞∑
k=1
|xk|p

) 1
p

=
( ∞∑

k=1
|xk|p

) 1
p

= ∥x∥p,

and thus Tx ∈ X for all x ∈ X. It is a straightforward exercise to verify that T is
linear, and the above estimate also shows that T ∈ B(X) with ∥T∥ ≤ 1. Moreover,
the operator T is injective, since for any x ∈ X the property Tx = 0 implies that
xk/k = 0 for all k ∈ N, and thus xk = 0 for all k ∈ N as well. However, the operator
T is not surjective. In fact, our aim is to show that Ran(T ) is a “proper” subspace of
X (meaning that Ran(T ) ̸= X), namely,

Ran(T ) = { (yk)∞
k=1 ∈ X | (kyk)∞

k=1 ∈ X }. (2.5)
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Indeed, every element y ∈ Ran(T ) belongs to the space on the right-hand side of (2.5),
since y = Tx for some x = (xk)∞

k=1 ∈ X, and thus

(kyk)∞
k=1 =

(
k · xk

k

)∞

k=1
= (xk)∞

k=1 ∈ X.

On the other hand, if we take an arbitrary y ∈ X such that (kyk)∞
k=1 ∈ X and define

sequence x = (xk)∞
k=1 such that xk = kyk for all k ∈ N, then our assumptions imply

that x = (xk)k = (kyk)k ∈ X, and

y = (yk)k =
(
kyk

k

)
k

=
(
xk

k

)
k

= Tx ∈ Ran(T ).

Thus Ran(T ) is given by (2.5), and Ran(T ) ̸= X.
Since T ∈ B(X) is injective, it has a well-defined inverse T−1 : Ran(T ) ⊂ X → X.

It’s quite easy to guess that the inverse operator should have the effect of multiplying
every element yk of a sequence with k, and indeed if we define D(S) = Ran(T ) and

Sy = (kyk)∞
k=1, ∀y = (yk)∞

k=1 ∈ D(S),

then for all x ∈ X and y ∈ Ran(T ) we have

STx = S
(
xk

k

)
k

=
(
k · xk

k

)
k

= (xk)k = x

TSy = T (kyk)k =
(
kyk

k

)
k

= (yk)k = y.

Thus T−1 = S. ⋄

Remark 2.31. The multiplication operators on ℓp(C) and ℓ∞(C), such as the one in
Example 2.30, are often called infinite diagonal matrices. Indeed, if we interpret
the sequences x = (xk)∞

k=1 ∈ ℓp(C) to be “infinite column vectors”, then the operator
T in Example 2.30 has the effect of multiplication of the vector x (from the left) with
an “infinite” diagonal matrix with diagonal elements 1/k for k ∈ N.

The following theorem shows that a bijection between two Banach spaces is always
boundedly invertible. The assumption of the completeness of the spaces (X, ∥·∥X)
and (Y, ∥·∥Y ) is important in this result (in fact, we could make any injective operator
T : D(T ) ⊂ X → Y bijective by simply redefining it as an operator T : D(T ) ⊂ X →
Ran(T ), since (Ran(T ), ∥·∥Y ) is a normed space).

Theorem 2.32 (Bounded Inverse Theorem). Let (X, ∥·∥X) and (Y, ∥·∥Y ) be Banach
spaces. Every bijective operator T ∈ B(X, Y ) has a bounded inverse T−1 ∈ B(Y,X).

Proof. The theorem is very important, but its proof is unfortunately outside the scope
of our course. You can find it, for example, from [Rud87, Thm. 5.10], and it appears
often together with the so-called Closed Graph Theorem and Open Mapping Theorem
(these three results are in fact equivalent).

The Bounded Inverse Theorem also has a more general version where the operator
T is not necessarily a bounded operator, but instead a “closed operator”. However,
the above version is very suitable for our purposes. The Bounded Inverse Theorem
is especially imporant in spectral theory (Chapter 4), which studies “the ways in
which an operator can fail to have a bounded inverse”.
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Definition 2.33 (Isometric Isomorphism). Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed
spaces. An operator T ∈ B(X, Y ) is an isometric isomorphism if T is boundedly
invertible and if

∥Tx∥Y = ∥x∥X , ∀x ∈ X. (2.6)

If an isometric isomorphism T ∈ B(X, Y ) exists, then the spaces (X, ∥·∥X) and
(Y, ∥·∥Y ) are said to be isometrically isomorphic.

The isometric isomorphism of (X, ∥·∥X) and (Y, ∥·∥Y ) means that we can consider
X and Y to be the “same normed space” by identifying the elements x ∈ X and
y = Tx ∈ Y . In particular, the isometric isomorphism between the spaces preserves
the sizes of the elements (∥y∥Y = ∥Tx∥Y = ∥x∥X) and the distances between two
elements (∥y1 − y2∥Y = ∥T (x1 − x2)∥Y = ∥x1 − x2∥X). However, it is important
to note that the isometric isomorphism is allowed to lose any other structure of the
space: For example, the spaces (C, |·|) and (R2, ∥·∥2) are isometrically isomorphic (via
the mapping T (a + ib) = (a, b)T ∈ R2), but for example defining a multiplication
between two elements is possible only on C, and not on R2 [NS82, p. 258].

Exercise 2.34. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces. Prove that if T ∈
B(X, Y ) is isometric in the sense that (2.6) holds, then T is an isometric isomorphism
between (X, ∥·∥X) and (Ran(T ), ∥·∥Y ). ⋄

2.3 The Hahn–Banach Theorem
In this section we study the Hahn–Banach Theorem, which is a fundamentally impor-
tant result in functional analysis. This result appears in the literature in many forms
and has several useful corollaries, some of which we will also utilise in the next section
when considering “dual spaces” in greater detail. The result deals with extensions of
linear operators defined below.

Definition 2.35. Let X and Y be vector spaces and let T : D(T ) ⊂ X → Y and
S : D(S) ⊂ X → Y be linear operators. The operator S is an extension of T if
D(T ) ⊂ D(S) and Sx = Tx for all x ∈ D(T ). Conversely, in this situation T is a
restriction of S.

Recall that a linear functional is a linear operator from a vector space X to the
space of complex numbers C. The main result of this section shows that any bounded
linear functional ψ defined on a subspace Y of a normed space X can be extended
to the full space X without increasing the norm of the functional. This theorem is
the version of the Hahn–Banach Theorem “on a normed space”. A more general (and
classical) version of this result is also applicable in the situation where X is a vector
space and the values of the functional ψ are bounded from above by a seminorm
(see, e.g., [TL80, Sec. III.2], [Kre89, Sec. 4.2–4.3]). Note that in the case of linear
functionals, it is customary to use slightly different notation than for other linear
operators: linear functionals are often denoted, for example, with lower case letters
f, g : X → C, or with Greek letters ϕ, ψ : X → C, and in this case the parentheses
are not removed from the notation, i.e., we denote “f(x)” or “ψ(x)” for x ∈ X.
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Theorem 2.36 (The Hahn–Banach Theorem (on a Normed Space)). Let (X, ∥·∥) be
a normed space and let Y be a subspace of X (considered with the same norm). Every
bounded linear functional ψ ∈ B(Y,C) has an extension ϕ ∈ B(X,C) satisfying

∥ϕ∥B(X,C) = ∥ψ∥B(Y,C).

The proof of the Hahn–Banach Theorem is presented separately in Section 2.5.
It is definitely advanced material, and you are encouraged to study it, but you don’t
need to memorise it! The proof has a few quite interesting aspects: First of all, this is
one instance (and perhaps the only one) where we encounter the real vector spaces on
our course, since the standard proof of the result first verifies that the result is true
for a real vector space X and a real linear functional ψ : X → R, and subsequently
uses this to prove the generalised version of the theorem for complex vector spaces.
Moreover, the proof makes use of Zorn’s Lemma which is a fundamental mathematical
building block in set theory (and in particular equivalent to the Axiom Of Choice). In
our proof, Zorn’s Lemma is used to show that among all the possible extensions of ψ,
there is a “maximal” extension ϕ which is defined on the whole space X.

In the rest of this section we focus on two important consequences of the Hahn–
Banach Theorem. The first such corollary is that for any nonzero element x ∈ X of
a normed space X, we can find a bounded linear functional ϕ with norm ∥ϕ∥ = 1
such that the functional ϕ evaluated at x produces the norm of x, i.e., ϕ(x) = ∥x∥. In
this case ϕ is called a norming functional of x. This fairly simple looking result is
quite important in our study of the “dual space” B(X,C) in the next section. We’ll
especially use Lemma 2.37 to show that the space B(X,C) is always non-trivial (i.e.,
it always contains nonzero elements) whenever X itself is not trivial.

Lemma 2.37. Let (X, ∥·∥) be a normed space. For every x ∈ X satisfying x ̸= 0
there exists ϕx ∈ B(X,C) such that

ϕx(x) = ∥x∥,

and ∥ϕx∥ = 1. In particular,

∥x∥ = sup
∥ϕ∥≤1

|ϕ(x)|.

Proof. Let x ∈ X, x ̸= 0, be fixed and consider the subspace Y = {αx | α ∈ C } of
X. Define a linear functional ψx : Y → C by ψx(αx) = α∥x∥ for all α ∈ C. Then for
all y = αx ∈ Y we have

|ψx(y)| = |α∥x∥| = |α|∥x∥ = ∥αx∥ = ∥y∥,

and thus ψx ∈ B(Y,C) with norm ∥ψx∥ = 1. The Hahn–Banach Theorem implies that
ψx has an extension ϕx ∈ B(X,C) satisfying ∥ϕx∥ = ∥ψx∥ = 1. Moreover, since x ∈ Y
has the form x = αx with α = 1, we have

ϕx(x) = ψx(x) = 1 · ∥x∥ = ∥x∥,

as required.



46 Chapter 2. Linear Operators

To prove the last identity in the statement, we can first note that |ϕ(x)| ≤ ∥ϕ∥∥x∥
implies that sup∥ϕ∥≤1|ϕ(x)| ≤ ∥x∥, and since the norming functional ϕx ∈ B(X,C)
satisfies ∥ϕx∥ = 1, we also have

sup
∥ϕ∥≤1

|ϕ(x)| ≥ |ϕx(x)| = ∥x∥.

Another very useful consequence of the Hahn–Banach Theorem is that we can use
bounded linear functionals to “test the denseness” of a subspace Z of a normed space
X. Indeed, the next lemma implies that we can prove that a subspace Z of X is dense
in X by letting ϕ ∈ B(X,C) be an arbitrary functional such that ϕ(x) = 0 for all
x ∈ Z, and then proving that ϕ is then necessarily the zero functional.

Lemma 2.38. The subspace Z of a normed space X. Then Z is dense in X if and
only if for every ϕ ∈ B(X,C)

ϕ(x) = 0, ∀x ∈ Z only if ϕ = 0. (2.7)

Proof. To prove that “only if” part, assume that Z is dense in X. If ϕ ∈ B(X,C) is
such that ϕ(x) = 0 for all x ∈ Z, then the continuity of ϕ implies that ϕ(x) = 0 also
for all x ∈ X, and thus ϕ = 0.

To prove the “if” part, assume that (2.7) holds. Assume on the contrary that Z is
not dense in X. Then there exists x0 ∈ X and ε > 0 such that ∥x0 − z∥ ≥ ε for all
z ∈ Z. Our aim is to show that there exists ϕ ∈ B(X,C) such that ϕ(x) = 0 for all
x ∈ Z but ϕ(x0) ̸= 0, which is a contradiction with our assumption that (2.7) holds.
To this end, we consider the subspace Y = {x+ αx0 | x ∈ Z, α ∈ C } of X and define
a linear functional ψ : Y → C so that ψ(x + αx0) = α for all x ∈ Z and α ∈ C. It
is easy to verify that ψ is linear. To show that ψ ∈ B(Y,C) we first note that for all
x ∈ Z we have ψ(x) = 0 (corresponding to α = 0). Moreover, if x ∈ Z and α ̸= 0,
then −α−1x ∈ Z and thus

|ψ(x+ αx0)| = |α| =
|α|
ε
· ε ≤ |α|

ε
∥α−1x+ x0∥ = 1

ε
∥x+ αx0∥.

Thus ψ ∈ B(Y,C) with norm ∥ψ∥ ≤ 1/ε. The Hahn-Banach theorem implies that ψ
has an extension ϕ ∈ B(X,C). Since ϕ is an extension of ψ, we in particular have

ϕ(x0) = ψ(x0) = ψ(0 + 1 · x0) = 1 ̸= 0,
and for all x ∈ X ⊂ Y

ϕ(x) = ψ(x) = ψ(x+ 0 · x0) = 0.

Thus ϕ(x) = 0 for all x ∈ Z, but ϕ ̸= 0 since ϕ(x0) ̸= 0. Because of this, condition (2.7)
does not hold, which is a contradiction with our original assumption.

2.4 The Dual Space
In this section we study the “dual space” of a normed space, which consists of the
bounded linear functionals on the space. Since (C, |·|) is a complete space, Theo-
rem 2.23 especially implies that the dual space of a normed space (X, ∥·∥) is always a
Banach space.
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Definition 2.39. Let (X, ∥·∥X) be a normed space. The dual space X ′ of X is the
space of bounded linear functionals on X, i.e., X ′ := B(X,C). The dual space is a
Banach space (X ′, ∥·∥X′) with the norm ∥·∥X′ = ∥·∥B(X,C).

As we already saw in the last section, linear functionals are often denoted slightly
differently than other operators between normed spaces, for example, with lower case
letters f, g ∈ X ′, or with Greek letters ϕ, ψ ∈ X ′. Moreover, it is customary to keep
the parentheses when writing these functions, such as in “f(x)” or “ϕ(x)” for x ∈ X.
Another very common notation in the case of dual spaces is the “dual pairing”
⟨x, ϕ⟩X,X′ , which consists of a vector x ∈ X and a functional ϕ ∈ X ′. This notation
simply means that “the functional ϕ ∈ X ′ is evaluated at x ∈ X”, i.e.

⟨x, ϕ⟩X,X′ := ϕ(x), ∀x ∈ X.

Our investigation of the Hahn–Banach Theorem in the previous section gives us
important information regarding dual spaces of normed spaces. In particular, the dual
space X ′ of a non-trivial normed space X (i.e., X ̸= {0}) always contain nonzero
functionals (and are thus non-trivial). This is a consequence of Lemma 2.37, since
if there exists x ∈ X such that x0 ̸= 0, this result shows us there also exists ϕ ∈
B(X,C) = X ′ such that ϕ(x0) = ∥x0∥ > 0, and thus ϕ ̸= 0. Another way to interpret
this same consequence is to note that the space X ′ separates the points of X in
the sense that “if x1, x2 ∈ X are such that x1 ̸= x2, then there exists ϕ ∈ X ′ such that
ϕ(x1) ̸= ϕ(x2)” (this follows from choosing x0 = x1 − x2 above).

We can now take look at particular examples of bounded linear functionals ϕ ∈ X ′

in the case of different spaces X.

Example 2.40. Let Ω ⊂ Rn be a closed and bounded set, and let X = C(Ω) with
the norm ∥·∥∞. In Examples 2.3 and 2.18 we studied the point evaluation operator
Tz0 , which is defined by Tz0f = f(z0) ∈ C (where z0 ∈ Ω is fixed). We proved that
Tz0 ∈ B(X,C), and thus Tz0 is a bounded linear functional on X, i.e., Tz0 ∈ X ′. ⋄

Exercise 2.41. Let X = ℓp(C) for some p ≥ 1 or p =∞. Show that if n ∈ N is fixed,
then the operator ϕn : X → C defined by

ϕn(x) = xn, ∀x = (xk)k∈N ∈ X

is a bounded linear functional on X, i.e., ϕn ∈ X ′. (You can note that this in a way a
“sequence version” of the point evaluation in Example 2.40.) ⋄

Example 2.42. Let I ⊂ R be an interval and let X = Lp(I) for some 1 < p < ∞.
Moreover, if we choose q = p/(p − 1), then 1/p + 1/q = 1. In this example we will
show that for any g ∈ Lq(I) we can define a bounded linear functional ϕg on X with
the formula

ϕg(f) =
∫

I
f(t)g(t) dt, ∀f ∈ Lp(I).

To show this, let g ∈ Lq(I) be fixed. The integral formula for ϕg(f) is well-defined for
any f ∈ Lp(I), since the Hölder’s inequality in Theorem 1.50 implies that∫

I
|f(t)g(t)| dt = ∥fg∥1 ≤ ∥f∥p∥g∥q <∞.
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Thus fg ∈ L1(I) and ϕg(f) =
∫

I f(t)g(t) dt ∈ C for any f ∈ X. In order to show that
ϕg : X → C is linear, let α1, α2 ∈ C and f1, f2 ∈ X be arbitrary. Using the linearity
of integration

ϕg(α1f1 + α2f2) =
∫

I
(α1f1 + α2f2)(t)g(t) dt =

∫
I
(α1f1(t) + α2f2(t))g(t) dt

= α1

∫
I
f1(t)g(t) dt+ α2

∫
I
f2(t)g(t) dt = α1ϕg(f1) + α2ϕg(f2),

which shows that ϕg is linear. Finally, to show that ϕg is bounded we can again use
the Hölder’s inequality in Theorem 1.50. Indeed, for any f ∈ Lp(I) we can estimate

|ϕg(f)| =
∣∣∣∣∫

I
f(t)g(t) dt

∣∣∣∣ ≤ ∫
I
|f(t)g(t)| dt = ∥fg∥1 ≤ ∥g∥q∥f∥p.

This shows that ϕg is indeed bounded and ∥ϕg∥B(X,C) ≤ ∥g∥q. Thus ϕg is a bounded
linear functional on X, i.e., ϕg ∈ X ′, and ∥ϕg∥X′ = ∥ϕg∥B(X,C) ≤ ∥g∥q. ⋄

Exercise 2.43. Let X = ℓp(C) for some 1 < p <∞. Moreover, let 1 < q <∞ be such
that 1/p + 1/q = 1 and let y ∈ ℓq(C) be fixed. Show that the operator ϕy : X → C
defined by

ϕy(x) =
∞∑

k=1
xkyk, ∀x = (xk)k∈N ∈ X

is a bounded linear functional on X, i.e., ϕy ∈ X ′. (You can note that this is a
“sequence version” of the linear functional defined in Example 2.42.) ⋄

It is possible to explicitly characterise and identify dual spaces of certain normed
spaces X. We can especially do this for the Lebesgue spaces Lp(Ω) and for the sequence
spaces ℓp(C). In this we also customarily consider two normed space X and Y to be
the same space if they are isometrically isomorphic (Definition 2.33), and similarly
we denote “X ⊂ Y ” whenever X is isometrically isomorphic with a subspace Z of
Y . The theorem below characterises the duals of Lebesgues spaces Lp(I) (except the
space L∞(I) whose characterisation is way beyong the scope of our course!). Note
that in particular that the space L2(I) is its own dual, i.e., (L2(I))′ = L2(I). This is
a fundamental property of Hilbert spaces which we will study later on this course.

Theorem 2.44. Let I ⊂ R be an interval and let 1 < p, q < ∞ be such that
1/p+ 1/q = 1. Then the dual space of Lp(I) is (isometrically isomorphic to) Lq(I).
Moreover, (L1(I))′ = L∞(I) but (L∞(I))′ ̸= L1(I).

Proof. We will only prove the statements of the theorem for the case 1 < p < ∞.
To this end, let p > 1, denote X = Lp(I), and define q = p/(p − 1) (in which case
1/p + 1/q = 1). In Example 2.42 we saw that for any g ∈ Lq(I) we can define a
bounded linear functional ϕg ∈ X ′ with the formula

ϕg(f) =
∫

I
f(t)g(t) dt, ∀f ∈ Lp(I).

A much deeper result, the so-called Radon–Nikodym Theorem implies that actu-
ally every functional ϕ ∈ (Lp(I))′ is of the form ϕ = ϕg for some g ∈ Lq(I) (see, e.g.,
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[Rud87, Thm. 6.16]). This already gives a strong indication that the space (Lp(I))′

could be identified with Lq(I). In the remaining part of the proof we will confirm
this by showing that the mapping T : Lq(I) → (Lp(I))′ which maps g ∈ Lq(I) to
Tg = ϕg ∈ X ′ is an isometric isomorphism.

We already saw that ∥Tg∥X′ = ∥ϕg∥X′ ≤ ∥g∥q, and thus T ∈ B(Lq(I), X ′) with
norm ∥T∥ ≤ ∥g∥q. Moreover, the fact that T is surjective follows from the property
that any functional ϕ ∈ X ′ is of the form ϕ = ϕg = Tg for some g ∈ Lq(I) (as implied
by the Radon–Nikodym Theorem). Since Lq(I) and X ′ are both Banach spaces,
Exercise 2.34 shows that T is an isometric isomorphism if it satisfies the condition (2.6),
i.e., if ∥ϕg∥X′ = ∥g∥q for all g ∈ Lq(I). To show this, let g ∈ Lq(I) be arbitrary. Since
we already know that ∥ϕg∥X′ ≤ ∥g∥q, we only need to find a function f ∈ Lp(I) such
that |ϕg(f)| = ∥f∥p∥g∥q. To this end, we define f(·) such that f(t) = g(t)|g(t)|q/p−1

for (almost) all t ∈ I such that g(t) ̸= 0, and f(t) = 0 if g(t) = 0. We then have

∥f∥p =
(∫

I
|f(t)|pdt

) 1
p

=
(∫

I
|g(t)|p· q

pdt
) 1

p

= ∥g∥q/p
q <∞,

and thus f ∈ Lp(I). Moreover, q/p+ 1 = q(1/p+ 1/q) = q shows that

|ϕg(f)| =
∣∣∣∣∫

I
g(t)g(t)|g(t)|q/p−1 dt

∣∣∣∣ =
∫

I
|g(t)|q/p+1 dt

=
∫

I
|g(t)|q dt = ∥g∥q

q = ∥g∥q/p
q ∥g∥q = ∥f∥p∥g∥q.

This completes the proof of the property ∥ϕg∥X′ = ∥g∥q, and thus T is an isometric
isomorphism between (Lp(I))′ and Lq(I).

A similar result holds for the sequence spaces ℓp(C) for p ≥ 1 and p =∞.

Theorem 2.45. Let 1 < p, q < ∞ be such that 1/p + 1/q = 1. The dual space
of ℓp(C) is (isometrically isomorphic to) ℓq(C). Moreover, (ℓ1(C))′ = ℓ∞(C) but
(ℓ∞(C))′ ̸= ℓ1(C).

Proof. The proof is left as an exercise.

The following result shows that a normed space X is always a subspace of its
“second dual” X ′′ = (X ′)′ (again, more precisely in the sense that X is isometrically
isomorphic to a subspace of X ′′). This result is another important consequence of the
Hahn–Banach Theorem, and its corollary in Lemma 2.37.

Theorem 2.46. Let (X, ∥·∥) be a normed space. The second dual (or bidual)
X ′′ := (X ′)′ of X has the property X ⊂ X ′′.

Proof. For any fixed x ∈ X we can define a functional ψx : X ′ → C which evaluates
every functional ϕ ∈ X ′ at the point x, i.e.,

ψx(ϕ) = ϕ(x) ∈ C, ∀ϕ ∈ X ′.

Showing that ψx is a bounded linear functional on X ′, and that “evaluation map”
J : X → X ′′ defined by Jx = ψx for all x ∈ X is an isometric isomorphism between
X and Ran(J) ⊂ X ′′ are left as exercises (also see Exercise 2.34).

The isometric mapping J : X → X ′′ in the proof of Theorem 2.46 is an important
tool and it has a special name.
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Definition 2.47. Let (X, ∥·∥) be a normed space. The evaluation map J : X →
X ′′ is defined by Jx = ψx for all x ∈ X, where ψx ∈ X ′′ is such that

ψx(ϕ) = ϕ(x), ∀ϕ ∈ X ′.

Exercise 2.48. Show that evaluation map J : X → X ′′ in Definition 2.47 is well-
defined (meaning that Jx ∈ X ′′ for all x ∈ X) and that it is an isometric isomorphism
between (X, ∥·∥X) and (Ran(J), ∥·∥X′′). ⋄

In a general situation, the space X ′′ can be strictly larger than the space X (this is
for example the case with L1(Ω) and ℓ1(C)). On the other hand, if X has the property
that every functional ψ ∈ X ′′ is necessarily of the form ψ = ψx for some x ∈ X,
then the space is called reflexive. This property can be described equivalently as
the property that the evaluation map J : X → X ′′ is surjective. By Exercise 2.48
this immediately implies that a reflexive space is isometrically isomorphic with its
second dual X ′′, but in fact the condition of reflexivity is strictly stronger, and it is
in particular possible that a space X is isometrically isomorphic to X ′′ without being
reflexive [Jam51]! Note that since X ′′ (as a dual of a normed space) is always complete,
a normed space X with the property X ′′ = X is always a Banach space.

Definition 2.49. A Banach space (X, ∥·∥) is called reflexive if the evaluation map
J : X → X ′′ is surjective, i.e., Ran(J) = X ′′.

In many ways, reflexive spaces are a very nicely behaving subclass of normed
spaces, and there are several particular results which are only true on reflexive spaces.
Among the Lebesgue spaces Lp(Ω) and the sequence spaces ℓp(C), the reflexive spaces
are exactly those with 1 < p <∞.

Theorem 2.50. Let I ⊂ R be an interval. The spaces Lp(I) and ℓp(C) are reflexive
if and only if 1 < p <∞.

Proof. Assume 1 < p < ∞. To show that X = Lp(I) is reflexive, let q = p/(p − 1).
The fairly simple idea in the proof is to use the isometric isomorphism between the
Lebesgue space and its dual in the proof of Theorem 2.44 twice — once for Lp(I) and
once for Lq(I) — but the full argument is quite delicate.

Let T ∈ B(Lq(I), X ′) be the isometric isomorphism in the proof of Theorem 2.44.
Then by definition T−1 maps every ϕ ∈ X ′ to a function T−1ϕ ∈ Lq(I), and

ϕ(f) =
∫

I
f(t)(T−1ϕ)(t) dt, ∀ϕ ∈ X ′, ∀f ∈ Lp(I). (2.8)

Now let ψ ∈ X ′′ be arbitrary. Our aim is to show that ψ is in the range of the
evaluation map J : X → X ′′, which is equivalent to showing that ψ is of the form
ψ(ϕ) = ϕ(h) for some h ∈ Lp(I) and for all ϕ ∈ X ′. If we define the composition map
φ = ψ ◦ T (i.e., φ(g) = ψ(Tg) for all g ∈ Lq(I)), then φ ∈ B(Lq(I),C) = (Lq(I))′.
The isometric isomorphism in the proof of Theorem 2.44 (now applied on Lq(I)) shows
that there exists a function h ∈ Lp(I) such that

φ(g) =
∫

I
g(t)h(t) dt, ∀g ∈ Lq(I).
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For an arbitrary ϕ ∈ X ′ the above identity together with (2.8) imply that

ψ(ϕ) = ψ(TT−1ϕ) = φ(T−1ϕ) =
∫

I
(T−1ϕ)(t)h(t) dt = ϕ(h).

Thus ψ is indeed in the range of the evaluation map, and since ψ ∈ X ′′ was arbitrary,
we have that Lp(I) is reflexive by definition.

Proving that ℓp(C) is reflexive if 1 < p <∞ is left as an exercise. On the other hand,
(L1(I))′′ = (L∞(I))′ ̸= L1(I) and (ℓ1(C))′′ = (ℓ∞(C))′ = c0(C) ̸= ℓ1(C) immediately
imply that L1(I) and ℓ1(C) cannot be reflexive. In addition, the second duals of L∞(I)
and ℓ∞(C) are also strictly larger than the spaces themselves.

Exercise 2.51. Prove that ℓp(C) is reflexive if 1 < p <∞. ⋄

2.4.1 Completion of a Normed Space Revisited [Optional]
We already discussed completions of a normed space in Section 1.3. We can come back
to this topic now that we are familiar with the concept of isometric isomorphisms. The
full definition of a completion is stated in the following.

Definition 2.52 (Completion — Full Version). Let (X, ∥ · ∥X) be a normed space
and let (Y, ∥·∥X) be a Banach space. If X is isometrically isomorphic with a dense
subspace of Y , then Y is a completion of X.

Our main motivation for returning to the topic of completions in connection with
dual spaces is that the evaluation map J : X → X ′′ gives us the means to construct
the completion of any normed space. In fact, as the theorem shows, the completion
of a normed space is always unique up to isometric isomorphisms between different
completions. There are different ways to construct the completion, but the guiding
principle is that the completion should contain the “missing” limits of the Cauchy
sequences of X. However, as we already discussed before, identifying these limits may
either be difficult (when there is no intuitive larger superspace for X) or straightfor-
ward (the space X is already a subspace of a larger complete space) based on the
properties of the space. The dual spaces provide a way to guarantee the existence of
these missing elements, since X is isometrically isomorphic with Ran(J), which is a
subspace of the Banach space X ′′ containing the limits of all the Cauchy sequences in
Ran(J) (or equivalently, in X).

Theorem 2.53. Every normed linear space (X, ∥·∥) has a completion which is unique
up to isometric isomorphisms. A particular completion of (X, ∥·∥) is given by(

Ran(J), ∥·∥X′′

)
(the closure of Ran(J) in X ′′).

Proof. To prove that (Ran(J), ∥·∥X′′) is a completion of X we first note that this space
is complete because Ran(J) is by definition a closed subspace of the Banach space
X ′′. Moreover, as shown in the proof of Theorem 2.46, the space X is isometrically
isomorphic to Ran(J) ⊂ Ran(J), which is a dense subspace of Ran(J).
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The uniqueness of the completion is based on the property that a bounded linear
operator defined on a dense subspace of a Banach space can be extended uniquely to the
full space. We do not present the proof here (see, e.g., [NS82, Sec. 5.9, Problem 6]).

2.5 The Proof of the Hahn–Banach Theorem
[Optional]

In this section we present the proof of the Hahn–Banach Theorem. The proof is also
a bit long (by our standards), so to clarify its structure we divide it into three parts:

Part I: Constructing a particular extension ψ1 : Y1 → R of ψ : Y → R on Y1 ̸= Y .

Part II: Using Zorn’s Lemma to show that the set of all extensions of ψ has a “max-
imal extension” defined on all of X (this maximal extension will be our ϕ).

Part III: Extending the result from the case of a real vector space X and ψ : X → R
to a complex vector space X and ψ : X → C.

Proof of Theorem 2.36.
Part I:
Assume first that X is a real vector space (i.e., Definition 1.1 is satisfied with R in
place of C) and that for a subspace Y ⊂ X, the mapping ψ : Y → R is real-linear in
the sense that ψ(αx + βy) = αψ(x) + βψ(y) for all α, β ∈ R and x, y ∈ Y . We can
assume Y ̸= X, since otherwise we can choose ϕ = ψ. Because of this, we can choose
x0 ∈ X such that x0 /∈ Y , and define a subspace Y1 = {x + λx0 | x ∈ Y, λ ∈ R } of
X. Moreover, for a fixed α ∈ R we can define a mapping ψ1 : Y1 → R by

ψ1(x+ λx0) = ψ(x) + λα, ∀x ∈ Y, λ ∈ R.

It is an easy exercise to show that ψ1 : Y1 → R is a (real-)linear functional. Moreover,
ψ1 is an extension of ψ, since for all x ∈ Y we have

ψ1(x) = ψ1(x+ 0x0) = ψ(x) + 0α = ψ(x).

In the next step, our aim is to show that it is possible to choose α ∈ R in such a way
that ∥ψ1∥ = ∥ψ∥ (here and in the rest of the proof we denote ∥ψ∥ = ∥ψ∥B(Y,C), ∥ψ1∥ =
∥ψ1∥B(Y1,C), and so on). Since ψ1 is an extension of ψ, we always have ∥ψ1∥ ≥ ∥ψ∥
because

∥ψ1∥ = sup
x∈Y1

|ψ1(x)| ≥ sup
x∈Y
|ψ1(x)| = sup

x∈Y
|ψ(x)| = ∥ψ∥.

Thus (by definition of ψ1) it is sufficient to show that |ψ(x) + λα| ≤ ∥ψ∥∥x+ λx0∥ for
all x ∈ Y and λ ∈ R \ {0} (note that for λ = 0 the inequality holds by assumption).
Moreover, choosing x = −λy ∈ Y for y ∈ Y in the previous inequality, we arrive at
another equivalent condition for α ∈ R, namely,

|ψ(−λy) + λα| ≤ ∥ψ∥∥−λy + λx0∥, ∀y ∈ Y, λ ∈ R \ {0}.
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We can modify this condition using the linearity of ψ. Indeed, for all y ∈ Y and
λ ∈ R \ {0} we have

|ψ(−λy) + λα| ≤ ∥ψ∥∥−λy + λx0∥
⇔ |λ||−ψ(y) + α| ≤ |−λ|∥ψ∥∥y − x0∥
⇔ |−ψ(y) + α| ≤ ∥ψ∥∥y − x0∥

⇔ ψ(y)− ∥ψ∥∥y − x0∥ ≤ α ≤ ψ(y) + ∥ψ∥∥y − x0∥.

Because the last condition is required to hold for all y ∈ Y , we can see that our choice
of α ∈ R is possible if (and only if) all the real intervals [ψ(y)− ∥ψ∥∥y − x0∥, ψ(y) +
∥ψ∥∥y − x0∥] ⊂ R for different y ∈ Y contain at least one common point. This is
satisfied, if all of the upper limits of these different intervals are greater than equal to
all of the lower limits of these intervals, i.e., if we have

ψ(y)− ∥ψ∥∥y − x0∥ ≤ ψ(x) + ∥ψ∥∥x− x0∥, ∀x, y ∈ Y (2.9)

But for arbitrary x, y ∈ Y we can estimate

ψ(y)− ψ(x) = ψ(y − x) ≤ ∥ψ∥∥y − x∥ = ∥ψ∥∥y − x0 + x0 − x∥
≤ ∥ψ∥∥y − x0∥+ ∥ψ∥∥x0 − x∥

which immediately implies that (2.9) holds. This completes our proof that it is possible
to choose α ∈ R in such a way that the extended functional ψ1 ∈ B(Y1,R) satisfies
∥ψ1∥ = ∥ψ∥.

Part II:
If Y1 = X, our proof is complete, and the desired extension ϕ is ψ1. On the other
hand, if Y1 ̸= X, we could repeat our earlier process to find a functional ψ2 defined
on a larger subspace Y2 of X. However, in the case of general infinite-dimensional
vector spaces, repeating this process (possibly) infinite number of times would not
necessarily lead to an extension ϕ defined on all of X! Instead, we can prove the
existence of ϕ using Zorn’s Lemma:
Lemma 2.54 (Zorn’s Lemma). Let P be a nonempty partially ordered set with the
property that every completely ordered subset of P has an upper bound in P . Then
P contains at least one maximal element.

To apply this result, our aim is to set up a partial order on the set of all extensions
of ψ with the same norm, and define the partial ordering so that φ1 ≺ φ2 if φ2 is an
extension of φ1. Our motivation is that the “maximal element” in Zorn’s Lemma will
then be our functional ϕ. More precisely, let P be the set of all φ : D(φ) ⊂ X → R
which are extensions of ψ : Y → R (i.e., Y ⊂ D(φ) ⊂ X and φ(x) = ψ(x) for all
x ∈ Y ) with D(φ) ̸= Y and which satisfy ∥φ∥ = ∥ψ∥. For φ1, φ2 ∈ P we define that
φ1 ≺ φ2 if D(φ1) ⊂ D(φ2) and φ2 is an extension of φ1. This relation ≺ defines a
partial ordering on P and P is not empty, since the extension ψ1 : Y1 ⊂ X → R we
constructed above satisfies ψ1 ∈ P .

To apply Zorn’s Lemma, we need to show that “every completely ordered subset
of P has an upper bound”. To this end, let Q be a completely ordered subset of P
(meaning that for any φ1, φ2 ∈ Q we have either φ1 ≺ φ2 or φ2 ≺ φ1). Our aim
is to show that the set Q has an upper bound φ ∈ P , meaning that φ1 ≺ φ for all
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φ1 ∈ Q. Due to our definitions, φ : D(φ) ⊂ X → R is required to be a functional
which satisfies ∥φ∥ = ∥ψ∥ and which is an extension of all functionals φ1 in Q. To
this end, define D(φ) to be the union of all domains D(φ1) for different φ1 ∈ Q, which
is defined as

D(φ) =
⋃

φ1∈Q

D(φ1) := {x ∈ X | x ∈ D(φ1) for some φ1 ∈ Q }.

The fact that D(φ) is a subspace of X is verified as an exercise. We can now define
a functional φ : D(φ) ⊂ X → R so that for every x ∈ D(φ) we have φ(x) = φ1(x)
if x ∈ D(φ1). Showing that the value φ(x) is uniquely defined for all x ∈ D(φ) and
that φ is indeed a (real-)linear functional satisfying ∥φ∥ = ∥ψ∥ are left as exercises.
Since every φ1 ∈ Q is an extension of ψ, we in particular have that Y ⊂ D(φ) and
φ(x) = ψ(x) for x ∈ Y . Thus φ is indeed an extension of ψ, and we have φ ∈ P .
Moreover, we can similarly deduce that φ is an extension of every functional in Q, i.e.,
φ1 ≺ φ for all φ1 ∈ Q, and thus φ is an “upper bound” of Q.

Zorn’s Lemma now implies that the set P must have (at least one) maximal element
φ ∈ P , meaning that φ : D(φ) ⊂ X → R is an extension of every φ1 ∈ P , and therefore
also an extension of our original functional ψ : Y → R. It remains to argue that
necessarily D(φ) = X. However, if we had D(φ) ̸= X, then we could further extend
φ (exactly as we constructed ψ1) to arrive at a functional φ̃ which is an extension of
both ψ and φ, and D(φ) ⊊ D(φ̃). However, this would contradict the property that
φ is “maximal”, since φ̃ ̸≺ φ. Thus D(φ) = X and φ : X → R satisfies the properties
in the theorem.

Part III:
Now consider the case where X is a complex vector space and ψ ∈ B(Y,C). We first
note that both X is also a real vector space, since it trivially satisfies the conditions
of Definition 1.1 for all scalars in R, and similarly Y is a also subspace of the real
vector space X. As an exercise (Exercise 2.55) you will show that φ ∈ B(Z,C) is a
(complex-)linear functional on the complex vector space Z if and only if it has the
form

φ(x) = φR(x)− iφR(ix), ∀x ∈ Z,

where φR ∈ B(Z,R) is a real-linear functional on the real vector space Z. Furthermore,
you will show that ∥φ∥ = ∥φR∥. These results imply that our original functional
ψ ∈ B(Y,C) satisfies ψ(x) = ψR(x) − iψR(ix) for all x ∈ Y , where ψR ∈ B(Y,R)
is a real-linear functional satisfying ∥ψR∥ = ∥ψ∥. By Parts I and II, ψR has an
extension ϕR ∈ B(X,R) with norm ∥ϕR∥ = ∥ψR∥. Thus if we define a linear functional
ϕ : X → C such that ϕ(x) = ϕR(x)− iϕR(ix) for all x ∈ X, then for all x ∈ Y we have

ϕ(x) = ϕR(x)− iϕR(ix) = ψR(x)− iψR(ix) = ψ(x),

and thus ϕ : X → C is an extension of ψ. Finally, since ϕR ∈ B(X,R) implies
ϕ ∈ B(X,C) and

∥ϕ∥ = ∥ϕR∥ = ∥ψR∥ = ∥ψ∥

our proof is complete.
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Exercise 2.55. Let X be a complex vector space. Prove that φ ∈ B(X,C) is a linear
functional if and only if there exists a (real-)linear functional φR ∈ B(X,C) such that

φ(x) = φR(x)− iφR(ix), ∀x ∈ X.

Also prove that ∥φR∥ = ∥φ∥. ⋄

Exercise 2.56. Consider the completely ordered subset Q of P and the mapping
φ ∈ P in the proof of the Hahn–Banach Theorem. Prove that D(φ) is a subspace of
the (real) vector space X. Moreover, prove that the values of φ : D(φ) ⊂ X → R
are uniquely defined, and that φ ∈ B(D(φ),R) is a (real-)linear functional satisfying
∥φ∥ = ∥ψ∥. ⋄



3. Hilbert Spaces

In this chapter we take a look at a special class of Banach spaces having additional
structure in the form of an inner product, which is closely connected to the norm
of the space. In addition to the sizes and distances (determined by the norm), the
inner product allows us to also consider angles between two elements of vector space,
and in particular define orthogonality of vectors. More generally as well, on inner
product spaces we tend to meet various geometric concepts such as the Pythagorean
theorem and similar identities, orthogonal complements, and orthogonal projections
onto subspaces.

Definition 3.1. Let X be a vector space. An inner product on X is a function
⟨·, ·⟩ : X ×X → C so that

(a) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0

(b) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩ for all x, y, z ∈ X and α, β ∈ C

(c) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X

The pair (X, ⟨·, ·⟩) is called an inner product space.

Sometimes we use the notation ⟨·, ·⟩X to distinguish the inner product on the space
X from different inner products. The definition of an inner product has a similar nature
as the definition of a norm in Definition 1.19. In fact, every inner product ⟨·, ·⟩ defines
a norm, and therefore every inner product space (X, ⟨·, ·⟩) is also a normed space.

Definition 3.2. Let (X, ⟨·, ·⟩) be an inner product space. The norm ∥·∥ induced
by the inner product is defined by

∥x∥ =
√
⟨x, x⟩ ∀x ∈ X.

If we do not state otherwise, we always by default consider the inner product space
(X, ⟨·, ·⟩) also to be a normed space with the norm induced by the inner product (as
opposed to X being equipped with some other norm).

Every inner product defines a norm, but the converse is not true and only a rela-
tively small portion of normed spaces are inner product spaces. This will be demon-
strated in the examples in this chapter, but before looking more closely at concrete
inner product spaces, we will first justify that the norm induced by the inner product
is indeed a norm. This follows fairly directly (using exactly the same proof as in the
case of Euclidean spaces) from the following generalised Cauchy–Schwarz Inequality,
which holds for all inner products.
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Lemma 3.3 (Cauchy–Schwarz Inequality). Let (X, ⟨·, ·⟩) be an inner product space.
Then

|⟨x, y⟩| ≤ ∥x∥∥y∥ ∀x, y ∈ X,

where ∥·∥ is the norm induced by the inner product, i.e,. ∥z∥ =
√
⟨z, z⟩ for z ∈ X.

Proof. If ⟨y, y⟩ = 0, then y = 0 and the claim holds. Assume now that y ̸= 0. For
every α ∈ C the properties of the inner product imply

0 ≤ ⟨x− αy, x− αy⟩ = ⟨x, x⟩ − α⟨y, x⟩ − α⟨x, y⟩+ αα⟨y, y⟩
= ∥x∥2 − α⟨y, x⟩ − α⟨y, x⟩+ |α|2∥y∥2

= ∥x∥2 − 2 Re
(
α⟨y, x⟩

)
+ |α|2∥y∥2.

Since ∥y∥2 = ⟨y, y⟩ ̸= 0, we can choose α = ⟨x, y⟩/∥y∥2 ∈ C. Then α⟨y, x⟩ =
|⟨x, y⟩|2/∥y∥2 ∈ R, and therefore the above inequality implies

0 ≤ ∥x∥2 − 2 Re
(
α⟨y, x⟩

)
+ |α|2∥y∥2

= ∥x∥2 − 2 |⟨x, y⟩|
2

∥y∥2 + |⟨x, y⟩|
2

∥y∥4 ∥y∥
2

= ∥x∥2 − |⟨x, y⟩|
2

∥y∥2 .

This immediately implies |⟨x, y⟩|2 ≤ ∥x∥2∥y∥2.

Exercise 3.4. Prove that the norm induced by the inner product on (X, ⟨·, ·⟩) is a
norm on X. ⋄

Exercise 3.5. Prove that two vectors x, y ∈ X with x ̸= 0 satisfy the Cauchy–Schwarz
Inequality in Lemma 3.3 as an equality, i.e., |⟨x, y⟩| = ∥x∥∥y∥, if and only if y = αx
for some α ∈ C. (Hint: In the “only if”-part, you can prove that ∥y − αx∥2 = 0 when
α = eiθ∥y∥/∥x∥ where θ ∈ [0, 2π] is chosen in a suitable way). ⋄

Exercise 3.6. Let (X, ⟨·, ·⟩) be an inner product space. Prove that for every fixed
y ∈ X, the mappings ⟨·, y⟩ : X → C and ⟨y, ·⟩ : X → C are linear functionals.
Moreover, prove that the mapping ⟨·, ·⟩ : X → X → C is continuous when the space
X × X is equipped with the norm ∥·∥X×X satisfying ∥(x, y)∥2

X×X = ∥x∥2
X + ∥y∥2

X

for all x, y ∈ X. Note that the norm on X × X is induced by the inner product
⟨(x1, y1), (x2, y2)⟩X×X = ⟨x1, y1⟩X + ⟨x2, y2⟩X . ⋄

When an inner product space is complete (i.e., a Banach space) with respect to
the norm induced by the inner product, it is called a Hilbert space. Alternatively, a
Hilbert space is a Banach space whose norm is induced by an inner product.

Definition 3.7. An inner product space (X, ⟨·, ·⟩) is a Hilbert space if it is complete
with respect to the norm induced by the inner product.

Our primary examples of inner product and Hilbert spaces come from the Lebesgue
spaces Lp(Ω) and the sequence spaces ℓp(C). In both cases, the spaces are Hilbert
spaces precisely for the exponent p = 2. As a further point of reference we can also
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immediately note that on the Euclidean spaces the Euclidean norm ∥·∥2 is induced by
the inner product ⟨x, y⟩ = ∑n

k=1 xkyk for x, y ∈ Cn. Since Cn and Rn are complete
with respect to the Euclidean norm, both of these spaces are also Hilbert spaces.

Example 3.8 (Function Spaces). Let Ω ⊂ Rn be a closed and bounded set. We can
define an inner product on the space X = C(Ω) by

⟨f, g⟩ =
∫

Ω
f(z)g(z) dz, ∀f, g ∈ C(Ω). (3.1)

Since z 7→ f(z)g(z) is uniformly continuous, the inner product ⟨f, g⟩ is well-defined
for all f, g ∈ X. The three axioms of the inner product can be verified in the following
way. For every f ∈ C(Ω) we have

⟨f, f⟩ =
∫

Ω
f(z)f(z) dz =

∫
Ω
|f(z)|2 dz = ∥f∥2

2 ≥ 0,

and the properties of the ∥·∥2-norm on C(Ω) imply that ⟨f, f⟩ = ∥f∥2
2 = 0 if and only

if f = 0. Thus the first axiom is satisfied. On the other hand, if f, g, h ∈ C(Ω) and
α, β ∈ C are arbitrary, we have

⟨αf + βg, h⟩ =
∫

Ω
(αf(z) + βg(z))h(z) dz

= α
∫

Ω
f(z)h(z) dz + β

∫
Ω
g(z)h(z) dz = α⟨f, h⟩+ β⟨g, h⟩.

Finally, for all f, g ∈ C(Ω) we have

⟨f, g⟩ =
∫

Ω
f(z)g(z) dz =

∫
Ω
g(z)f(z) dz =

∫
Ω
g(z)f(z) dz = ⟨g, f⟩.

Thus (3.1) is an inner product, and (C(Ω), ⟨·, ·⟩) is an inner product space. However,
this space is not a Hilbert space, since as we saw in Section 1.2.1, the C(Ω) is not
complete with respect to the norm ∥·∥2. But it is perhaps not surprising that the
completion of this normed space, namely L2(Ω), is in fact a Hilbert space!

Indeed, if Ω ⊂ Rn is an open or closed set, we can define an inner product on
X = L2(Ω) similarly as above, by

⟨f, g⟩ =
∫

Ω
f(z)g(z) dz, ∀f, g ∈ L2(Ω). (3.2)

The fact that the inner product ⟨f, g⟩ is well-defined for all f, g ∈ L2(Ω) follows directly
from the Hölder inequality (Theorem 1.50) with p = q = 2, which implies that∫

Ω
|f(z)g(z)| dz ≤ ∥f∥2∥g∥2 = ∥f∥2∥g∥2 <∞,

which implies that z 7→ f(z)g(z) ∈ L1(Ω) and the Lebesgue integral in (3.2) exists.
Similarly as above, we again have ⟨f, f⟩ = ∥f∥2

2 for all f ∈ L2(Ω), which in particular
implies that ⟨f, f⟩ ≥ 0 and ⟨f, f⟩ = 0 if and only if f = 0 (in L2(Ω)). The other
two axioms of Definition 3.1 can be verified exactly as in the case of C(Ω). Thus ⟨·, ·⟩
in (3.2) is indeed an inner product and (L2(Ω), ⟨·, ·⟩) is an inner product space. Since
the inner product induces the natural norm ∥·∥2 on L2(Ω), and the space L2(Ω) is
complete with respect to this norm, L2(Ω) is a Hilbert space.
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Of all the spaces Lp(Ω) with different p ≥ 1 or p = ∞, only the space L2(Ω) is
a Hilbert space. It is possible to define inner products on different spaces as well (in
particular, Lp(Ω) ⊂ L2(Ω) if Ω ⊂ Rn is compact and p > 2 or p = ∞), but these
spaces are not complete normed spaces. Moreover, it is possible to define other inner
products on the space L2(Ω). The most trivial way is through scaling, i.e., by defining
⟨f, g⟩new = α⟨f, g⟩ for some α > 0. More generally, if w : Ω → R is a continuous
function such that there exist w0, w1 > 0 such that 0 < w0 ≤ w(z) ≤ w1, then

⟨f, g⟩w =
∫

Ω
f(z)g(z)w(z) dz, ∀f, g ∈ L2(Ω)

defines an inner product on L2(Ω). This is often called a weighted inner product,
and the function w(·) is its “weight (function)”. It is straighforward to show that
(L2(Ω), ⟨·, ·⟩w) is also a Hilbert space due to the fact that the norm induced by ⟨·, ·⟩w
is equivalent with the natural norm on L2(Ω) in the sense of Definition 1.34. ⋄

Example 3.9 (Sequence Spaces). We can define an inner product on ℓ2(C) using the
formula

⟨x, y⟩ =
∞∑

k=1
xkyk,

for all x = (xk)∞
k=1 ∈ ℓ2(C) and y = (yk)∞

k=1. Indeed, the inner product is well-defined,
since the Hölder inequality in (with p = q = 2) in Theorem 1.22 implies that

∞∑
k=1
|xkyk| =

∞∑
k=1
|xkyk| ≤ ∥x∥2∥y∥2 <∞

and thus the series in the definition of ⟨x, y⟩ is absolutely convergent. To prove that
⟨·, ·⟩ is really an inner product on ℓ2(C), we first note that if x ∈ ℓ2(C), then

⟨x, x⟩ =
∞∑

k=1
xkxk =

∞∑
k=1
|xk|2 = ∥x∥2

2 ≥ 0.

Thus ⟨·, ·⟩ (provided that it is an inner product) induces the norm ∥·∥2 of ℓ2(C). In
particular, the properties of the norm also imply that ⟨x, x⟩ = 0 if and only if x = 0.

If α, β ∈ C and x, y, z ∈ ℓ2(C) are arbitrary, then

⟨αx+ βy, z⟩ =
∞∑

k=1
(αxk + βyk)zk = α

∞∑
k=1

xkzk + β
∞∑

k=1
ykzk = α⟨x, z⟩+ β⟨y, z⟩,

and

⟨x, y⟩ =
∞∑

k=1
xkyk =

∞∑
k=1

xkyk =
∞∑

k=1
xkyk = ⟨y, x⟩.

Thus ⟨·, ·⟩ satisfies the axioms of an inner product. Moreover, since this inner product
induces the norm ∥·∥2, and since (ℓ2(C), ∥·∥2) is a complete normed space, we have
that (ℓ2(C), ⟨·, ·⟩) is a Hilbert space.

Similarly as in the case of the Lebesgue spaces, the space ℓ2(C) is the only Hilbert
space among the spaces of p-summable sequences ℓp(C) for 1 ≤ p <∞ and p =∞. ⋄
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3.1 Orthogonality and The Riesz Representation
Theorem

In this section we continue to study the special properties of Hilbert spaces. In partic-
ular, the inner product allows us to consider angles and orthogonality between vectors
and subspaces. As the main results of this section we will see that a Hilbert space can
be decomposed into a sum of any closed subspace and its “orthogonal complement”.
This strong property also leads to the remarkable Riesz Representation Theorem which
presents a simple characterisation of all bounded linear functionals on a Hilbert space!

On the Euclidean space Rn, the inner product (which is exactly the “dot product”)
can be used to compute the angle between two vectors x, y ∈ Rn using the Law of
Cosines, which states that the smallest angle θ between x ̸= 0 and y ̸= 0 satisfies

cos θ = ⟨x, y⟩
∥x∥∥y∥

. (3.3)

Motivated by this, we can also use the formula (3.3) to define the angle θ between
two vectors x, y ∈ X on a Hilbert space X whenever the inner product between these
vectors satisfies ⟨x, y⟩ ∈ R. Moreover, in the more general case where ⟨x, y⟩ ∈ C, the
angle between x and y can sometimes be defined by replacing ⟨x, y⟩ with Re⟨x, y⟩ ∈ R
on the right-hand side of (3.3). There are two especially important cases of angles
between vectors, namely, when the vectors are orthogonal (when the angle between
them is θ = π/2) or when they are parallel (or collinear), i.e., when y = αx for some
α ∈ C. Since cos(π/2) = 0, in view of (3.3) the orthogonality of two vectors x, y ∈ X
can be defined using the inner product as the condition ⟨x, y⟩ = 0.

Definition 3.10. Let X be an inner product space.

• Elements x, y ∈ X are orthogonal if ⟨x, y⟩ = 0. In this case we denote x ⊥ y.

• Subsets M ⊂ X and N ⊂ X are orthogonal if ⟨x, y⟩ = 0 for all x ∈ M and
y ∈ N . In this case we denote M ⊥ N .

• For a subset M ⊂ X, the orthogonal complement M⊥ of M is defined as

M⊥ =
{
y ∈ X

∣∣∣ ⟨x, y⟩ = 0 ∀x ∈M
}
.

Exercise 3.11. Let X be an inner product space and let M ⊂ X. Show that M⊥ is a
closed subspace of X. Moreover, show that M⊥ = M⊥ (M denotes the closure of M).
(Hint: For every x ∈M there exists (xk)∞

k=1 ⊂M such that xk → x as k →∞). ⋄

Exercise 3.12. Let M be a subspace of a Hilbert space X. Prove M ∩M⊥ = {0}. ⋄

Exercise 3.13. Let X be an inner product space. Prove that for every y ∈ X we
have

∥y∥ = sup
∥x∥≤1

|⟨y, z⟩|.

⋄

If two vectors x and y in an inner product space are orthogonal, then they satisfy
the familiar Pythagorean Theorem.
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Lemma 3.14. If X is an inner product space and x ∈ X and y ∈ X are orthogonal,
then

∥x+ y∥2 = ∥x∥2 + ∥y∥2.

Proof. If x ⊥ y, then ⟨x, y⟩ = ⟨y, x⟩ = 0, and thus a direct computation shows

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩ = ∥x∥2 + ∥y∥2.

Another similar example of the geometric properties of a Hilbert space is the fol-
lowing Parallelogram Law, which has the same form as the corresponding result in
plane geometry (concerning proportions of parts in a parallelogram).

Lemma 3.15 (Parallelogram Law). The norm induced by the inner product on X
satisfies

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 ∀x, y ∈ X.

Proof. Left as an exercise.

Sums, direct sums, and orthogonal sums of two subspaces of an inner product space
can be defined exactly as in the case of Euclidean spaces.

Definition 3.16. Let M and N be subspaces of a vector space X.

(a) The sum M +N of M and N is defined as

M +N =
{
z ∈ X

∣∣∣ z = x+ y, x ∈M, y ∈ N
}
. (3.4)

(b) If M ∩N = {0}, then M +N is a direct sum, and it is denoted by M ⊕N .

(c) If X is an inner product space and M ⊥ N , then M + N is an orthogonal
sum and it is denoted by M ⊕⊥N .

Note that in each case (a)–(c) in Definition 3.16 the actual set, M+N , M⊕N , and
M ⊕⊥N is exactly the same set in (3.4). The “direct sum” and the notation M ⊕N
simply means that subspaces M and N have the additional property M ∩ N = {0},
and similarly in the “orthogonal sum” and the notation M⊕⊥N means that M and N
have the property M ⊥ N . Similarly as on Euclidean spaces, it is easy to show that
in direct and orthogonal sums every element has a unique representation z = x + y
with x ∈ M and y ∈ N . Moreover, if M and N are closed subspaces of X, then
the orthogonal sum M ⊕⊥N is also a closed subspace of X [NS82, Thm. 5.15.5] (in
contrast, a direct sum M ⊕N is not in general closed [NS82, Exer. 11 of Sec. 5.17]).

Remark 3.17. Note that the notations for direct and orthogonal sums of subspaces
vary quite a bit in the literature! Take care to always make sure that you are using
the right concept.

Hilbert spaces have the following very strong (again geometric) property which
shows that the full space can be decomposed in to the sum of any closed subspace M
and its orthogonal complement. This property is radically different from the case of
Banach spaces, where it is possible that if M is a closed subspace, then there may not
exist a closed subspace N such that M ∩N = {0} and X = M +N .
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Theorem 3.18. If M is a closed subspace of a Hilbert space X, then

X = M ⊕⊥M⊥.

The proof of Theorem 3.18 can be found, for example, in [NS82, Thm. 5.15.6], and
it is also presented in detail in Appendix A.3.

Exercise 3.19. Let X be a Hilbert space.
(a) Show that if M and N are closed subspaces of X such that X = M ⊕⊥N , then

N = M⊥.
(b) Show that if M is a subspace of X, then (M⊥)⊥ = M (the closure of M). (Hint:

Use Exercise 3.11 and part (a)).
(c) Show that a subspace M ⊂ X is dense in X if and only if M⊥ = {0}. (Hint:

Note that N = N ⊕⊥{0} for any subspace N of X).

⋄

The possibility of decomposing a Hilbert space into the sum of a closed subspace
and its orthogonal complement also leads to one of the most fundamentally important
result on Hilbert spaces, namely, the Riesz Representation Theorem. This result shows
that all bounded linear functionals on a Hilbert space X have a one-to-one correspon-
dence with elements of X. In particular, a Hilbert space X is isometrically isomorphic
with itself (in a slightly generalised sense, see the comments before Theorem 3.22). As
a corollary of this theorem, every Hilbert space is reflexive (see Exercise 3.23).

Theorem 3.20 (Riesz Representation Theorem). Let ϕ be a bounded linear func-
tional on a Hilbert space X. There exists a unique z ∈ X such that

ϕ(x) = ⟨x, z⟩, ∀x ∈ X. (3.5)

Moreover, ∥ϕ∥B(X,C) = ∥z∥X .

Proof. Let ϕ ∈ B(X,C) be arbitrary. Define M = Ker(ϕ) = {x ∈ X | ϕ(x) = 0 }.
Since ϕ is bounded, M is a closed subspace of X. If M = X, we have ϕ = 0 and we
can choose z = 0. On the other hand, if M ̸= X, then we have X = M ⊕⊥M⊥ by
Theorem 3.18.

To narrow down our choice of z ∈ X, we will first argue that we must have
z ∈ M⊥. To this end, we note that the element z ∈ X has a unique representation
z = xz + yz ∈M ⊕⊥M⊥ such that xz ∈M = Ker(ϕ) and yz ∈M⊥. If z ∈ X satisfies
the conditions of the theorem, then the fact that ϕ(xz) = 0 and xz ⊥ yz imply that

0 = ϕ(xz) = ⟨xz, z⟩ = ⟨xz, xz + yz⟩ = ⟨xz, xz⟩+ ⟨xz, yz⟩ = ∥xz∥2.

Thus xz = 0, and we indeed have z = yz ∈ M⊥. We can now turn to finding the
correct element z ∈M⊥. Even though we will not prove it here, it turns out that the
space M⊥ is in fact a one-dimensional subspace of X, meaning that it only contains
a single linearly independent vector. Because of this, we always have z = αy0, where
y0 ∈ M⊥ is an arbitrary vector with ∥y0∥ = 1, and we only need to find the suitable
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constant α ∈ C \ {0}. To find the correct value of α ∈ C, we can require that the
identity (3.5) holds for x = y0, which implies (using ⟨y0, y0⟩ = ∥y0∥2 = 1)

ϕ(y0) = ⟨y0, z⟩ = ⟨y0, αy0⟩ = α⟨y0, y0⟩ = α ⇔ α = ϕ(y0).

Thus we should have z = ϕ(y0)y0 in the theorem.
We still need to prove that (3.5) holds for our choice z = ϕ(y0)y0 and for all x ∈ X.

To this end, we let x ∈ X be arbitrary and we study the difference ϕ(x)−⟨x, z⟩, where
z = ϕ(y0)y0. Using again the property that ⟨y0, y0⟩ = ∥y0∥2 = 1 and the axioms of the
inner product, we get

ϕ(x)− ⟨x, z⟩ = ϕ(x) · 1− ⟨x, ϕ(y0)y0⟩ = ϕ(x)⟨y0, y0⟩ − ϕ(y0)⟨x, y0⟩ (3.6a)
= ⟨ϕ(x)y0 − ϕ(y0)x, y0⟩. (3.6b)

In order to show that ϕ(x)−⟨x, z⟩ = 0, we need to show that the inner product in the
last expression is equal to zero, which is equivalent to the property that ϕ(x)y0−ϕ(y0)x
and y0 are orthogonal. Since we know that y0 ∈ M⊥, it is sufficient to show that
ϕ(x)y0 − ϕ(y0)x ∈ M = Ker(ϕ). Using the linearity of ϕ, a direct computation shows
that

ϕ(ϕ(x)y0 − ϕ(y0)x) = ϕ(x)ϕ(y0)− ϕ(y0)ϕ(x) = 0,

which indeed means that ϕ(x)y0−ϕ(y0)x ∈M = Ker(ϕ). Because of this, (3.6) implies
that ϕ(x)− ⟨x, z⟩ = 0. Since x ∈ X was arbitrary, we have proved that (3.5) holds.

To prove the claim regarding the norms of ϕ and z, we can note that (3.5) and
Exercise 3.13 imply ∥ϕ∥B(X,C) = sup∥x∥≤1 |ϕ(x)| = sup∥x∥≤1 |⟨x, z⟩| = ∥z∥.

Finally, to prove that z ∈ X is unique, let z1, z2 ∈ X such that ϕ(x) = ⟨x, z1⟩ =
⟨x, z2⟩ for all x ∈ X. Then for x = z1 − z2 we have

0 = ⟨x, z1⟩ − ⟨x, z2⟩ = ⟨x, z1 − z2⟩ = ∥z1 − z2∥2,

which implies z1 = z2.

You can also compare the Riesz Representation Theorem to the “Radon–Nikodym
Theorem” which we employed in describing the dual spaces of Lebesgue space in the
proof of Theorem 2.44. As we recall, this result stated that if 1 < p <∞, then every
bounded linear functional ϕ ∈ (Lp(I))′ has the form

ϕ(f) =
∫

I
f(t)g(t) dt, ∀f ∈ Lp(I)

for some fixed g ∈ Lq(I) where q = p/(p − 1). We can see that in the case where
p = 2 (when L2(I) is a Hilbert space), this result is precisely equivalent to the Riesz
Representation Theorem due to the fact that q = 2 (the element “z” being g ∈ L2(I)).
On the other hand, the Radon–Nikodym Theorem shows that also those Lebesgue
spaces Lp(I) for 1 < p <∞ which are not Hilbert spaces have a similar characterisation
of bounded linear functionals as in the Riesz Representation Theorem, but in this case
the function g does not necessarily need to a member of the original space Lp(I), but
instead belongs to a different space Lq(I).
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Corollary 3.21. If X is a Hilbert space, then the extension ϕ in the Hahn-Banach
theorem (Theorem 2.36) is unique.

Proof. By the Riesz-Representation theorem, the extension ϕ has the form ϕ(x) =
⟨x, z⟩ for some unique element z ∈ X, and thus it is unique.

The Riesz Representation Theorem also implies that every Hilbert space is reflexive.
The proof of this result (in Theorem 3.22 below) is based on the fact that we can define
a mapping T : X → X ′ such that for every z ∈ X the value ϕ = Tz is the functional
satisfying

ϕ(x) = ⟨x, z⟩, ∀x ∈ X. (3.7)

Indeed, the Cauchy–Schwarz Inequality in Lemma 3.3 immediately implies that ϕ is a
bounded linear functional on X, and therefore the mapping T is well-defined. More-
over, the Riesz Representation Theorem implies that every bounded linear functional
is of this form and that ∥ϕ∥X′ = ∥z∥Z , and thus this mapping is surjective, injective,
and isometric (since ∥Tz∥X′ = ∥ϕ∥X′ = ∥z∥X). However, the mapping is in fact not
linear, but instead it is “antilinear” (sometimes called “conjugate linear”), since for
all α, β ∈ C and z1, z2 ∈ X the properties of the inner product imply

T (αz1 + βz2) = ⟨·, αz1 + βz2⟩ = ⟨·, αz1 + βz2⟩ = α⟨·, z1⟩+ β⟨·, z2⟩ = αTz1 + βTz2.

However, the fact that the mapping T : X → X ′ is antilinear instead of linear does not
give rise to any difficulties as long as we take the additional complex conjugations into
account, and in all other ways the mapping T behaves like a linear isometric isomor-
phism. In particular, the mapping T has a bounded inverse which is also antilinear
and isometric (since the isometry of T implies ∥T−1ϕ∥X = ∥TT−1ϕ∥X′ = ∥ϕ∥X′).

Theorem 3.22. Every Hilbert space is reflexive.

Proof. Left as an exercise (Exercise 3.23).

Exercise 3.23. In this exercise we prove that every Hilbert space is reflexive. For
this, you can complete the following two steps below. Here T : X → X ′ is the mapping
described above such that Tz = ϕ satisfies (3.7).

(a) Show that X ′ is a Hilbert space with the inner product defined by

⟨ϕ, ψ⟩X′ = ⟨T−1ψ, T−1ϕ⟩X .

(b) Use part (a) to prove that X is reflexive (Hint: Apply the Riesz Representation
Theorem on X ′).

⋄

3.2 The Adjoint of a Bounded Operator
We can now turn to investigating some special properties of operators on Hilbert
spaces. We begin by defining the concept of an adjoint of a bounded linear operator
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T ∈ B(X, Y ) between two Hilbert spaces (X, ⟨·, ·⟩X) and (Y, ⟨·, ·⟩Y ). To this end, we
first note that for every such operator and for every fixed y ∈ Y we can define a
bounded linear functional ϕy on X using the formula

ϕy(x) = ⟨Tx, y⟩Y , ∀x ∈ X.

Indeed, ϕy is clearly well-defined and linear since T ∈ B(X, Y ). Moreover, for all
x ∈ X the Cauchy–Schwarz Inequality implies that

|ϕy(x)| = |⟨Tx, y⟩Y | ≤ ∥Tx∥Y ∥y∥Y ≤ ∥T∥B(X,Y )∥x∥X∥y∥Y ,

which implies that ϕy ∈ B(X,C) and ∥ϕy∥ ≤ ∥T∥∥y∥. Since X is a Hilbert space
and ϕy is a bounded linear functional, the Riesz Representation Theorem implies that
there exists a zy ∈ X (depending on y ∈ Y ) such that

⟨Tx, y⟩Y = ϕy(x) = ⟨x, zy⟩X , ∀x ∈ X. (3.8)

Since the element zy ∈ X in the Riesz Representation Theorem is unique, we can
define a mapping T ∗ : Y → X from the element y ∈ Y to zy ∈ X, simply by defining
T ∗y = zy for all y ∈ Y . As shown below, it turns out that this mapping is linear and
bounded, and its operator norm is the same as the norm of T . Using the relationship
T ∗y = zy, the identity (3.8) can be written in the form

⟨Tx, y⟩Y = ⟨x, T ∗y⟩X , ∀x ∈ X, ∀y ∈ Y. (3.9)

This formula is of course very familiar for us from linear algebra as one fundamental
property of the conjugate transpose of a matrix A ∈ Cm×n. Indeed, if the matrix
A ∈ Cm×n is interpreted as a linear operator A ∈ B(Cn,Cm), then its adjoint operator
corresponds to the matrix A∗ ∈ B(Cm,Cn). Finally, it turns out that T ∗ is also the
unique operator in B(Y,X) which satisfies the identity (3.9).

Definition 3.24. Let X and Y be Hilbert spaces and T ∈ B(X, Y ). The operator
T ∗ ∈ B(Y,X) satisfying (3.9) is called the adjoint (operator) of T .

Exercise 3.25. Prove that the adjoint T ∗ of T ∈ B(X, Y ) is uniquely defined, i.e.,
that if there are two linear operators S1 : Y → X and S2 : Y → X satisfying

⟨Tx, y⟩Y = ⟨x, S1y⟩X = ⟨x, S2y⟩X , ∀x ∈ X, ∀y ∈ Y,

then S1 = S2 (Hint: Show that S1y = S2y for all y ∈ Y ). ⋄

The uniqueness of the adjoint also gives us a way of finding the adjoint of T ∈
B(X, Y ): If we can find S : Y → X such that ⟨Tx, y⟩ = ⟨x, Sy⟩ for all x ∈ X and
y ∈ Y , then T ∗ = S.

Exercise 3.26. Prove that T ∗ ∈ B(Y,X) (i.e., T ∗ is linear and bounded). ⋄

The fundamental properties of the adjoint operator are collected in the following
theorem.
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Theorem 3.27. Let X and Y be Hilbert spaces. Every T ∈ B(X, Y ) has a uniquely
defined adjoint operator T ∗ ∈ B(Y,X). The operators T and T ∗ satisfy

⟨Tx, y⟩Y = ⟨x, T ∗y⟩X , ∀x ∈ X, ∀y ∈ Y

and ∥T ∗∥ = ∥T∥.

Proof. The construction at the beginning of the section based on the Riesz Represen-
tation Theorem showed that every T ∈ B(X, Y ) has (at least one) adjoint, and this
adjoint operator is unique by Exercise 3.25. Moreveor, T ∗ ∈ B(Y,X) by Exercise 3.26.
Finally, for y ∈ Y we can use (3.9) to estimate

∥T ∗y∥2 = ⟨T ∗y, T ∗y⟩ = ⟨TT ∗y, y⟩ ≤ ∥TT ∗y∥∥y∥ ≤ ∥T∥∥T ∗y∥∥y∥,

which implies ∥T ∗∥ ≤ ∥T∥. On the other hand, if x ∈ X, the identity (3.9) similarly
implies

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T ∗Tx, x⟩ ≤ ∥T ∗Tx∥∥x∥ ≤ ∥T ∗∥∥Tx∥∥x∥,

which implies ∥T∥ ≤ ∥T ∗∥. Combining the two inequalities we get ∥T ∗∥ = ∥T∥.

Example 3.28 (Adjoints of the Shift Operators on ℓ2(C)). In this example we consider
the right and left shift operators in 2.4 on X = ℓ2(C). Recall that the right shift
operator Sr : X → X was defined by

Srx = (0, x1, x2, x3, . . .), x = (xk)∞
k=1 ∈ X

and the left shift operator Sl : X → X by

Slx = (x2, x3, x4 . . .), x = (xk)∞
k=1 ∈ X.

These operators were shown to be bounded in Exercise 2.20, i.e., Sr, Sl ∈ B(X). To
identify the adjoint S∗

r of the right shift operator, our aim is to find a linear operator
T : X → X such that ⟨Srx, y⟩ = ⟨x, Ty⟩ for all x, y ∈ X. We then have from
Exercise 3.25 that S∗

r = T . By definition of the shift operators and the inner product
on X = ℓ2(C), for all x, y ∈ X we have (using (Srx)1 = 0 and (Srx)k = xk−1 for k ≥ 2)

⟨Srx, y⟩ =
∞∑

k=1
(Srx)kyk =

∞∑
k=2

xk−1yk =
∞∑

j=1
xjyj+1 =

∞∑
j=1

xj(Sly)j = ⟨x, Sly⟩.

Since x, y ∈ X were arbitrary, the above identity implies that in fact S∗
r = Sl! More-

over, since the same identity also implies

⟨Sly, x⟩ = ⟨x, Sly⟩ = ⟨Srx, y⟩ = ⟨y, Srx⟩, ∀x, y ∈ X,

we also have S∗
l = Sr. Because of this, the right and left shift operators on ℓ2(C) are

each others’ adjoint operators. ⋄

Example 3.29 (Multiplication Operator). Let Ω ⊂ Rn be an open or closed set and
consider the Hilbert space X = L2(Ω). For a fixed complex-valued and continuous
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function q ∈ C(Ω) satisfying supz∈Ω|q(z)| < ∞ we can define a multiplication op-
erator Mq : X → X so that for every f ∈ L2(Ω) the value Mqf ∈ L2(Ω) is a function
such that

(Mqf)(z) = q(z)f(z), for (almost) all z ∈ Ω.

The map Mq : X → X is well-defined, since for all f ∈ L2(Ω) the estimate∫
Ω
|q(z)f(z)|2 dz =

(
sup
z∈Ω
|q(z)|

)2 ∫
Ω
|f(z)|2 dz <∞

implies that Mqf ∈ L2(Ω). Moreover, it is easy to show that Mq : X → X is linear,
and the previous estimate also implies that

∥Mqf∥2 =
(∫

Ω
|q(z)f(z)|2 dz

) 1
2
≤
(
sup
z∈Ω
|q(z)|

)
∥f∥2,

and thus Mq ∈ B(X) with norm ∥Mq∥ ≤ supz∈Ω|q(z)|.
In exactly the same way, we could have defined Mq more generally on X = Lp(Ω).

In this example, however, we are especially interested in computing the adjoint oper-
ator of Mq. To this end, let f, g ∈ L2(Ω) be arbitrary. By definition, we have

⟨Mqf, g⟩ =
∫

Ω
q(z)f(z)g(z) dz =

∫
Ω
f(z)q(z)g(z) dz = ⟨f,Mqg⟩,

where Mq ∈ B(X) is the multiplication operator corresponding to the function q(·) ∈
C(Ω) and satisfying supz∈Ω|q(z)| = supz∈Ω|q(z)| <∞. By Exercise 3.25 we have that
M∗

q = Mq. ⋄

Example 3.30 (Adjoint of a Functional ϕ ∈ X ′). If X is a Hilbert space, we can
compute the adjoint of a bounded linear functional ϕ ∈ B(X,C) on X. For this, we
can use the Riesz Representation Theorem which implies that there exists a unique
zϕ ∈ X such that ϕ(x) = ⟨x, zϕ⟩X for all x ∈ X. We now have Y = C in the definition
of the adjoint. This Euclidean space is equipped with the inner product ⟨y1, y2⟩ = y1y2.
Thus if we let x ∈ X and y ∈ C be arbitrary, we have that

⟨ϕ(x), y⟩C = ϕ(x)y = ⟨x, zϕ⟩Xy = ⟨x, yzϕ⟩X .

The last expression is indeed of the form ⟨x, Sy⟩X , where the operator S : C → X is
defined by Sy = yzϕ for all y ∈ C. Thus by Exercise 3.25 we have that ϕ∗ ∈ B(C, X)
is such that

ϕ∗y = yzϕ, ∀y ∈ C.

Sometimes this relationship is denoted more compactly as ϕ∗ = zϕ, and in this notation
it is customary to think of B(C, X) and X as the same space. ⋄

The adjoints of sums and compositions of two operators also satisfy identities which
are familiar from linear algebra.



68 Chapter 3. Hilbert Spaces

Lemma 3.31. Let X, Y , and Z be Hilbert spaces.

(a) If T ∈ B(X, Y ), then (T ∗)∗ = T .

(b) If T, S ∈ B(X, Y ), then (T + S)∗ = T ∗ + S∗.

(c) If T ∈ B(X, Y ) and α ∈ C, then (αT )∗ = αT ∗.

(d) If T ∈ B(X, Y ) and S ∈ B(Y, Z), then (ST )∗ = T ∗S∗.

(e) If T ∈ B(X, Y ) is boundedly invertible, then also T ∗ is boundedly invertible
and (T ∗)−1 = (T−1)∗.

Proof. Left as an exercise.

Example 3.32. In Example 3.28, instead of the separate argument for showing that
S∗

l = Sr, we could have alternatively used part (a) of Lemma 3.31 together with
the property S∗

r = Sl. Indeed, these would have allowed us to more directly deduce
S∗

l = (S∗
r )∗ = Sr. ⋄

Exercise 3.33. Let X and Y be Hilbert spaces and let T ∈ B(X, Y ). Prove that
∥T ∗T∥ = ∥T∥2. ⋄

The following result describes the nice relationships between the ranges and kernels
of a bounded linear operator and its adjoint.

Theorem 3.34. Let X and Y be Hilbert spaces and let T ∈ B(X, Y ). Then

Ran(T ) = Ker(T ∗)⊥ and Ker(T ) = Ran(T ∗)⊥

(where Ran(T ) is the closure of Ran(T ) ⊂ Y ). In particular, the spaces X and Y
can be decomposed as

X = Ker(T )⊕⊥Ran(T ∗) and Y = Ker(T ∗)⊕⊥Ran(T ).

Proof. We begin by proving that Ker(T ) = Ran(T ∗)⊥. For every x ∈ X we have

x ∈ Ker(T ) ⇔ Tx = 0
⇔ ⟨Tx, y⟩ = 0 ∀y ∈ Y
⇔ ⟨x, T ∗y⟩ = 0 ∀y ∈ Y
⇔ ⟨x, z⟩ = 0 ∀z ∈ Ran(T ∗)
⇔ x ∈ Ran(T ∗)⊥,

and thus Ker(T ) = Ran(T ∗)⊥. Together with Exercise 3.19(b) and Lemma 3.31 this
identity applied to T ∗ ∈ B(Y,X) also implies that

Ker(T ∗)⊥ = (Ran((T ∗)∗)⊥)⊥ = (Ran(T )⊥)⊥ = Ran(T ).

The decompositions X = Ker(T )⊕⊥Ran(T ∗) and Y = Ker(T ∗)⊕⊥Ran(T ) now follow
directly from Theorem 3.18.
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A relatively small but quite important class of operators the coincide with their
own adjoints, i.e., T ∗ = T . Such operators are called self-adjoint. Note that since for
T ∈ B(X, Y ), the adjoint T ∗ is by definition an operator from Y to X, the condition
“T ∗ = T” in particular requires that Y = X.

Definition 3.35. Let X be a Hilbert space. The operator T ∈ B(X) is self-adjoint
if T ∗ = T .

Exercise 3.36. Show that if T ∈ B(X) is self-adjoint, then ⟨Tx, x⟩ ∈ R for all x ∈ X.
In fact, also the converse statement holds (if you want to prove this, you can study
the condition ⟨Tx, x⟩ ∈ R in the case where x = y+αz for suitable α ∈ C for example
α = 1 and α = i, to prove that Re⟨Ty, z⟩ = Re⟨y, Tz⟩ and Im⟨Ty, z⟩ = Im⟨y, Tz⟩). ⋄

Example 3.37. The multiplication operator Mq ∈ B(X) in Example 3.29 is self-
adjoint if (and only if) the function q(·) is real-valued, i.e., q(z) ∈ R for all z ∈ Ω.
Indeed, in this case we have M∗

q = Mq = Mq. ⋄

Theorem 3.38. Let X be a Hilbert space and let T ∈ B(X) be self-adjoint. Then

∥T∥ = sup
∥x∥=1

|⟨Tx, x⟩|.

Proof. [Optional] Denote M = sup∥x∥=1|⟨Tx, x⟩|. Since |⟨Tx, x⟩| ≤ ∥Tx∥∥x∥ ≤
∥T∥∥x∥2 for all x ∈ X, we clearly have M ≤ ∥T∥ due to the Cauchy–Schwarz Inequal-
ity. To show that ∥T∥ ≤ M , we first note that |⟨Tx, x⟩| ≤ M∥x∥2 for all x ∈ X. If
x, y ∈ X, then a direct computation shows that

⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩ = 2⟨Tx, y⟩+ 2⟨Ty, x⟩.

If we choose y = αTx for some α > 0, then the above identity, the self-adjointness of
T , and the definition of M further imply

4α∥Tx∥2 = 4α⟨Tx, Tx⟩ = 2α⟨Tx, Tx⟩+ 2α⟨T ∗Tx, x⟩ = 2⟨Tx, αTx⟩+ 2⟨T (αTx), x⟩
= ⟨T (x+ αTx), x+ αTx⟩ − ⟨T (x− αTx), x− αTx⟩
≤ |⟨T (x+ αTx), x+ αTx⟩|+ |⟨T (x− αTx), x− αTx⟩|
≤M∥x+ αTx∥2 +M∥x− αTx∥2.

Applying the Parallelogram Law in Lemma 3.15 to the last expression shows that

2α∥Tx∥2 ≤M
(
∥x∥2 + ∥αTx∥2

)
= M

(
∥x∥2 + α2∥Tx∥2

)
.

If x ∈ X is such that Tx ̸= 0, we can choose α = ∥x∥/∥Tx∥ > 0, and the above
inequality implies

2 ∥x∥
∥Tx∥

∥Tx∥2 ≤M

(
∥x∥2 + ∥x∥2

∥Tx∥2∥Tx∥
2
)

⇔ 2∥x∥∥Tx∥ ≤ 2M∥x∥2,

or ∥Tx∥ ≤ M∥x∥. On the other hand, if Tx = 0, then also ∥Tx∥ = 0, and therefore
we have ∥Tx∥ ≤ M∥x∥ for all x ∈ X. This immediately implies that ∥T∥ ≤ M , and
the proof is complete.
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Example 3.39. In this example we study the integral operator in Example 2.21 on the
space X = L2(a, b). We assume the kernel satisfies (t, s) 7→ k(t, s) ∈ C([a, b] × [a, b])
and define the integral operator T ∈ B(X) by

(Tf)(t) =
∫ b

a
k(t, s)f(s) ds, ∀t ∈ [a, b].

In Example 2.21 we saw that (now for p = q = 2)

∥T∥ ≤
(∫ b

a

∫ b

a
|k(t, s)|2dtds

) 1
2

= ∥k(·, ·)∥L2(Ω) <∞,

where ∥k(·, ·)∥L2(Ω) is the norm of k(·, ·) on the space L2(Ω) with Ω = [a, b] × [a, b].
We can first identify the adjoint of T . If f, g ∈ L2(a, b), then

⟨Tf, g⟩ =
∫ b

a
(Tf)(t)g(t) dt =

∫ b

a

(∫ b

a
k(t, s)f(s) ds

)
g(t) dt

=
∫ b

a

∫ b

a
k(t, s)f(s)g(t) ds dt =

∫ b

a

∫ b

a
f(s)k(t, s)g(t) dt ds

=
∫ b

a
f(s)

(∫ b

a
k(t, s)g(t) dt

)
ds = ⟨f, Sg⟩

(the order of integration can be changed using Fubini’s Theorem) where S is an oper-
ator defined as

(Sg)(t) =
∫ b

a
k(s, t)g(s)ds, ∀g ∈ L2(a, b).

Thus S = T ∗ by Exercise 3.25, and T ∗ is therefore an integral operator with kernel
(t, s) 7→ k(s, t). This also leads to the condition for the integral operator T to be
self-adjoint: T ∗ = T if (and in fact, only if) the kernel satisfies k(t, s) = k(s, t) for all
t, s ∈ [a, b]. ⋄

3.3 Orthonormal Bases in Separable Hilbert
Spaces [Optional]

In this section we explore the concept of a “basis” of a Banach or a Hilbert space
X. As we recall from linear algebra, a “basis” of the Euclidean space Cn (or Rn) is a
linearly independent set of vectors {ek}n

k=1 ⊂ Cn such that every vector x ∈ Cn can
be represented in the form

x =
n∑

k=1
αkek

with a unique set of “coordinates” {αk}n
k=1 ⊂ C. In addition, the basis {ek}n

k=1 is an
orthonormal basis, if ∥ek∥ = 1 and ek ⊥ ej for all k, j ∈ {1, . . . , n} such that k ̸= j.

First of all, Banach and Hilbert spaces (or more generally, infinite-dimensional vec-
tor spaces) do not in general have “bases” in this same sense. Moreover, by definition
of the dimension of a vector space in Definition 1.14, it is necessary that any “basis”
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of an infinite-dimensional vector space X contains an infinite number of elements. Be-
cause of this, we need to be particularly careful in how we define the concept of a basis
in order to ensure that the concept is sufficiently strong to be useful but at the same
time sufficiently general so that we are not focusing on too narrow class of cases. On
this course we will focus only on Schauder bases, which contain a countable number
of elements and which have the (very strong) property that every vector x ∈ X can
be expressed as an infinite linear combination of the basis vectors. The existence of a
Schauder basis on a Banach or a Hilbert space is always a special property of the par-
ticular space, but we will see that some of our familiar examples do possess Schauder
bases1.

The Schauder basis can be used to represent elements of the space X as infinite
linear combinations of the basis elements. For this purpose, we need the definition of
the convergence of an infinite series on a normed space.

Definition 3.40. Let (X, ∥·∥) be a normed space and let (xk)∞
k=1 ⊂ X. The series

∞∑
k=1

xk

converges on X if the sequence (sn)∞
n=1 ⊂ X of its partial sums sn := ∑n

k=1 xk

converges on X. If sn → s ∈ X as n→∞, then we define
∞∑

k=1
xk = s.

Exercise 3.41. Assume (X, ∥·∥) is a Banach space. Show that a series ∑∞
k=1 xk on X

converges if it converges absolutely, i.e., if

∞∑
k=1
∥xk∥ <∞.

(This result is a purely sufficient condition for convergence of a series, and there are
many important series which converge but fail to converge absolutely! Moreover, the
result holds if and only if X is a Banach space.) ⋄

Exercise 3.42. Assume (X, ∥·∥X) and (Y, ∥·∥Y ) are normed spaces and T ∈ B(X, Y ).
Show that if (xk)∞

k=1 ⊂ X is such that the series ∑∞
k=1 xk converges on X, then

∞∑
k=1

Txk = T
∞∑

k=1
xk

(i.e., the series on the left-hand side converges in Y and its value is given by Tx, where
x = ∑∞

k=1 xk). This result means that we can (formally) “take a bounded operator out
of a convergent series”. ⋄

1More generally, every infinite-dimensional Banach space does possess a more general form of a
“basis”, a Hamel basis, but this basis always contains an uncountable number of elements
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We can now define the concepts of a Schauder basis on a Banach space, and
orthonormal basis on a Hilbert space. In the definition, δkj denotes the Kronecker
delta, i.e.,

δkj =
1 if k = j

0 if k ̸= j.

Definition 3.43. Let X be a normed space. A sequence (ek)∞
k=1 ⊂ X is a Schauder

basis of X if for every x ∈ X there exists a unique sequence (αk)∞
k=1 ⊂ C such that

x =
∞∑

k=1
αkek. (3.10)

If X is an inner product space, then (ek)∞
k=1 ⊂ X is an orthonormal basis if it is

a Schauder basis of X and if ⟨ek, ej⟩ = δkj for all k, j ∈ N.

The scalars {αk}k in the representation (3.10) are called the coordinates of the
vector x ∈ X in the basis (ek)∞

k=1. By definition, a Schauder basis is an orthonormal
basis if ∥ek∥ = 1 for all k ∈ N, and in addition ek ⊥ ej for all k, j ∈ N such that k ̸= j.

Example 3.44. Consider the space X = ℓp(C) and define (ek)∞
k=1 ⊂ X such that

ek = (ej
k)∞

j=1 with ek
k = 1 and ej

k = 0 if j ̸= k. This set of vectors obviously corresponds
to the canonical Euclidean basis of Cn and Rn. Our aim is to show that (ek)∞

k=1 is also
a Schauder basis in ℓp(C), and an orthonormal basis in ℓ2(C).

If x = (xk)∞
k=1 ∈ ℓp(C) is arbitrary, then our aim is to show that (3.10) holds for

some scalars αk. Due to the structure of the vectors ek ∈ ℓp(C) (the kth element is
equal to 1 and the others are equal to 0), we can already see that if (3.10) holds, then
necessarily αk = xk for all k ∈ N (only the kth term on the right-hand side of (3.10)
affects the kth element of the series). Because we have such a good guess for the
coordinates αk, we can aim to directly show that the partial sums sn = ∑n

k=1 αkek

converge to x in X. Indeed, for all n ∈ N we have that

∥x− sn∥p
p =

∥∥∥∥∥x−
n∑

k=1
xkek

∥∥∥∥∥
p

p

= ∥x− (x1, . . . , xn, 0, 0, . . .)∥p
p

= ∥(0, . . . , 0, xn+1, xn+2, . . .)∥p
p =

∞∑
k=n+1

|xk|p → 0

as n → ∞ since x ∈ ℓp(C). Since x ∈ X was arbitrary, we have shown that every
element of X has a representation (3.10) with unique coordinates (αk)∞

k=1 ∈ C, and
thus (ek)∞

k=1 is by definition a Schauder basis of X = ℓp(C).
In the case where X = ℓ2(C), we can note that ∥ek∥2 = 1 for all k ∈ N, and (using

the definition of the inner product in Example 3.9), we have that if k ̸= j, then

⟨ek, ej⟩ =
∞∑

n=1
en

ke
n
j = 0

since in each term either en
k = 0 or en

j = 0. Thus (ek)∞
k=1 is by definition an orthonormal

basis of ℓ2(C). ⋄
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Exercise 3.45. Let X be a Hilbert space and assume the sequence (ek)∞
k=1 ⊂ X is

orthonormal, i.e., ⟨ek, ej⟩ = δkj for all k, j ∈ N. Show that if (αk)∞
k=1 ⊂ C, then the

series ∑∞
k=1 αkek converges in X if and only if (αk)∞

k=1 ∈ ℓ2(C). Moreover, prove that

∥∥∥∥∥
∞∑

k=1
αkek

∥∥∥∥∥
2

=
∞∑

k=1
|αk|2.

⋄

Exercise 3.46 (Bessel’s Inequality). Let X be an inner product space and assume
(ek)∞

k=1 ⊂ X is orthonormal, i.e., ⟨ek, ej⟩ = δkj for all k, j ∈ N. Prove that

∞∑
k=1
|⟨x, ek⟩|2 ≤ ∥x∥2, ∀x ∈ X.

(Hint: Expand
∥∥∥∑N

k=1⟨x, ek⟩ek−x
∥∥∥2

to show ∑N
k=1|⟨x, ek⟩|2 ≤ ∥x∥2, then let N →∞).

⋄

As mentioned above, not all Banach or even Hilbert spaces have Schauder bases.
In the case of Hilbert spaces, the precise condition required for the existence of an
orthonormal basis is the separability of the space.

Definition 3.47. A normed space X is separable if it contains a countable and
dense subset.

If a normed space X has a Schauder basis (ek)∞
k=1, it is necessarily a separable

(this can be shown by considering, for example, that the subset of all finite linear
combinations of (ek)k with coefficients αk whose real and imaginary parts are rational
numbers). The question whether or not the converse statement is true for complete
normed spaces, i.e., if every separable Banach space has a Schauder basis, was a long-
standing and famous open problem (posed by Stefan Banach in 1932). This problem
was solved in 1972 by Per Enflo, who constructed a separable (and even reflexive!)
Banach space which does not have a Schauder basis [Enf73]. On the other hand, as
the following theorem states, every separable Hilbert space does have a Schauder basis,
and even an orthonormal basis.
Theorem 3.48. Every nontrivial separable Hilbert space has an orthonormal basis.

The proof of Theorem 3.48 is not very difficult, but we will not consider it on this
course. Instead, we will limit ourselves to presenting selected fundamental properties
and characterisations of an orthonormal basis. In particular, the representation (3.11)
in the following theorem is a generalised Fourier series expansion of x ∈ X.
This terminology is fully justified, since in fact the classical Fourier series studied
are in fact infinite linear combinations of (for example) the sequences (ei2πk·/τ )∞

k=1, or
(cos(2πk · /τ))∞

k=1, or (sin(2πk · /τ))∞
k=1, which are precisely orthonormal bases of the

Hilbert space L2(0, τ)!
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Theorem 3.49. Let X be a Hilbert space and assume (ek)∞
k=1 ⊂ X is an orthonormal

sequence, i.e., ⟨ek, ej⟩ = δkj for all k, j ∈ N. Then the following are equivalent.

(a) The sequence (ek)∞
k=1 is an orthonormal basis of X.

(b) (Fourier Series Expansion) Every x ∈ X has the representation

x =
∞∑

k=1
⟨x, ek⟩ek. (3.11)

(c) For every x ∈ X we have

∥x∥2 =
∞∑

k=1
|⟨x, ek⟩|2.

(d) If x ∈ X is such that ⟨x, ek⟩ = 0 for all k ∈ N, then x = 0.

Proof. We will only present the “easy” parts of the proof. The complete proof for the
last implication “(d)⇒(a)” can be found, for example, in [NS82, Thm. 5.17.8].

(a)⇒(b): Assume (ek)∞
k=1 is an orthonormal basis of X and let x ∈ X. By definition,

there exist (αk)∞
k=1 ⊂ C such that

x =
∞∑

k=1
αkek.

The claim in (b) holds if αk = ⟨x, ek⟩ for all k ∈ N. To show this, let n ∈ N be
arbitrary. The mapping y 7→ ⟨y, en⟩ is a bounded linear functional on X, and thus by
Exercise 3.42 we have that

⟨x, en⟩ =
〈 ∞∑

k=1
αkek, en

〉
=

∞∑
k=1

αk⟨ek, en⟩ =
∞∑

k=1
αkδkn = αn

since the sequence (ek)∞
k=1 is orthonormal.

(b)⇒(c): Let x ∈ X and assume (3.11) holds. By Exercise 3.45 we have that

∥x∥2 =
∥∥∥∥∥

∞∑
k=1
⟨x, ek⟩ek

∥∥∥∥∥
2

=
∞∑

k=1
|⟨x, ek⟩|2.

(c)⇒(d): If x ∈ X is such that ⟨x, ek⟩ = 0 for all k ∈ N, then by part (c) we have

∥x∥2 =
∞∑

k=1
|⟨x, ek⟩|2 =

∞∑
k=1

0 = 0,

and thus x = 0.

Example 3.50 (The Complex Fourier Basis). Consider X = L2(0, 1) and define a
sequence (ek)∞

k=−∞ ⊂ X (i.e., a doubly infinite sequence (. . . , e−2, e−1, e0, e1, e2, . . .))
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such that ek(t) = ei2πkt for all k ∈ Z and t ∈ [0, 1]. The sequence is orthonormal, since
for all k, n ∈ Z we have

⟨ek, en⟩ =
∫ 1

0
ek(t)en(t) dt =

∫ 1

0
ei2πkte−i2πnt dt =

∫ 1

0
ei2π(k−n)t dt =

0 k ̸= n

1 k = n.

The theory of Fourier series implies that if f ∈ L2(0, 1), then

f(t) =
∞∑

k=−∞
cke

i2πkt

(in the sense that the series on the right-hand side converges in L2(0, 1)), where the
coefficients (ck)∞

k=−∞ ⊂ C are defined as

ck =
∫ 1

0
f(t)e−i2πkt dt =

∫ 1

0
f(t)ek(t) dt = ⟨f, ek⟩.

Thus the complex Fourier basis functions (ek)∞
k=−∞ are in fact an orthonormal basis

of the Hilbert space L2(0, 1). ⋄

The existence of an orthonormal basis has the consequence that in fact every
infinite-dimensional and separable Hilbert space is in fact isometrically isomorphic to
the space ℓ2(C). The proof of this very nice result is a consequence of Theorem 3.49
and the fact that by definition of a Schauder basis, there is a one-to-one correspondence
between every element x ∈ X and the coordinates (αk)∞

k=1 ⊂ X in the basis (ek)∞
k=1.

Theorem 3.51 (Riesz–Fischer Theorem). Every separable and infinite-dimensional
Hilbert space is isometrically isomorphic to ℓ2(C).

Proof. Let (ek)∞
k=1 ⊂ X be an orthonormal basis of X. Define T : X → ℓ2(C) so that

Tx =
(
⟨x, ek⟩

)∞

k=1
, ∀x ∈ X.

The mapping is well-defined, since Theorem 3.49(c) implies that for all x ∈ X
∞∑

k=1
|⟨x, ek⟩|2 = ∥x∥2

X <∞,

and thus Tx ∈ ℓ2(C). Moreover, this same result also implies that ∥Tx∥2
ℓ2 = ∥x∥2

X ,
and thus T ∈ B(X, ℓ2(C)) is isometric and in particular injective. It is also easy to
show that T is linear. Finally, to show that T is surjective, let (αk) ⊂ ℓ2(C). By
Exercise (3.45) the series ∑∞

k=1 αkek converges in X. For all n ∈ N we have〈 ∞∑
k=1

αkek, en

〉
=

∞∑
k=1

αk⟨ek, en⟩ =
∞∑

k=1
αkδkn = αn

and thus

T

( ∞∑
k=1

αkek

)
= (αn)∞

n=1

by definition. Since (αk)∞
k=1 ∈ ℓ2(C) was arbitrary, we have that T is surjective.

Thus T has a bounded inverse by Theorem 2.32, and it is by definition an isometric
isomorphism between X and ℓ2(C).



4. Spectral Theory

This final chapter is devoted to the study of the spectrum of a bounded linear operator
T ∈ B(X). For a bounded operator T ∈ B(X) on a Banach space, the spectrum
σ(T ) of T is defined as the set of complex numbers λ ∈ C such that the operator

λI − T ∈ B(X)

does not have a bounded inverse (λI − T )−1 ∈ B(X). Here I ∈ B(X) denotes the
identity operator on X. On the other hand, the resolvent set ρ(T ) of T is defined as
those values λ ∈ C such that this operator has a bounded inverse (λI − T )−1 ∈ B(X)
(and thus ρ(T ) = C \ σ(T )).

Definition 4.1. Let X be a Banach space and let T ∈ B(X). The resolvent set
ρ(T ) of T is defined as

ρ(T ) = {λ ∈ C | λI − T ∈ B(X) is boundedly invertible }.

The spectrum σ(T ) of T is defined as σ(T ) = C \ ρ(T ).

The spectrum of an operator describes many important features and properties
of an operator, and its study can be used to gain valuable information on how the
operator behaves as a mapping T : X → X. The spectrum and the resolvent are most
directly connected to the solvability of the operator equations of the form

(λI − T )x = y, (4.1)

where y ∈ X is given “data” and x ∈ X is the unknown solution of the linear equation.
The spectral analysis of the operator T can be used to study the existence, uniqueness
and continuity properties of the solution x of (4.1), and in important special cases it
can also be used to construct the solution x ∈ X explicitly. Because of this, spectral
theory of linear operators is an essential tool in the analysis of differential equations
(when T is a differential operator1) and integral equations (when T is an integral
operator).

When λ ∈ C is in the resolvent set of T , i.e., λ ∈ ρ(T ), the operator λI − T has a
bounded inverse (λI − T )−1 ∈ B(X) and

for every y ∈ X the operator equation (4.1) has a unique solution x ∈ X
depending continuously on y ∈ X.

1This topic is considered in greater detail on the course “MATH.MA.830 Advanced Functional
Analysis”.
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Indeed, for any y ∈ X the equation (4.1) has a solution x = (λI − T )−1y, and this
solution is unique because λI − T is injective (if (λI − T )x1 = y = (λI − T )x2, then
injectivity implies x1 = x2). In our setting the property “x depends continuously
on y” means that if y1, y2 ∈ X and if x1, x2 ∈ X are the solutions of the equations
(λI − T )x1 = y1 and (λI − T )x2 = y2, then

∥x1 − x2∥ = ∥(λI − T )−1y1 − (λI − T )−1y2∥ ≤ ∥(λI − T )−1∥∥y1 − y2∥.
This estimate implies that a small change in the data y ∈ X will result in a (relatively)
small change in the solution x ∈ X.

Example 4.2. The spectrum of a linear operator T ∈ B(X) generalises the concept of
eigenvalues of a square matrix A ∈ Cn×n. Indeed, λ ∈ C is by definition an eigenvalue
of A if there exists x ∈ Cn, x ̸= 0, such that (λI − A)x = 0. Thus λ ∈ C is an
eigenvalue of A precisely if the matrix λI − A is not injective, and therefore does not
have an inverse. On the other hand, for any λ ∈ C which is not an eigenvalue of A,
the square matrix λI −A has full rank, which means that λI −A is non-singular and
has the inverse matrix (λI − A)−1 ∈ Cn×n. ⋄

In the case of linear operators on infinite-dimensional spaces, spectral theory is very
rich compared to the analysis of eigenvalues of a matrix. Indeed, in the next section
we will learn that even though T ∈ B(X) can have eigenvalues and eigenvectors, these
do not usually provide the full picture of the spectral properties of a linear operator.
This is due to the fact that on an infinite-dimensional space the operator λI − T can
“fail to have a bounded inverse” in several different ways, whereas a matrix λI − A
has an inverse matrix if and only if it is not injective. In our examples we will see that
an operator may not have any eigenvalues at all, or alternatively it may even have an
uncountably infinite number of eigenvalues covering a domain of the complex plane C.

4.1 The Parts of the Spectrum
The spectrum σ(T ) of a bounded linear operator can be decomposed into parts based
on the more precise properties of the operator λI − T .

Definition 4.3 (Parts of The Spectrum). Let X be a Banach space and let T ∈
B(X). The spectrum σ(T ) consists of three distinct parts:

(a) The point spectrum σp(T ) is defined as

σp(T ) = {λ ∈ C | λI − T is not injective }.

The values λ ∈ σp(T ) are called eigenvalues of T , and x ∈ Ker(λI − T ) such
that x ̸= 0 are eigenvectors of T (corresponding to λ).

(b) The residual spectrum σr(T ) is defined as

σr(T ) = {λ ∈ C | λI − T is injective and Ran(λI − T ) ̸= X }.

(c) The continuous spectrum σc(T ) is defined as

σc(T ) = {λ ∈ C | λI − T is injective, Ran(λI − T ) = X, but Ran(λI − T ) ̸= X }.



78 Chapter 4. Spectral Theory

The motivation for calling λ ∈ σp(T ) and x ∈ Ker(λI − T ) with x ̸= 0 eigenvalues
and eigenvectors is quite easy to see, since these elements satisfy

(λI − T )x = 0 ⇔ Tx = λx.

The three parts of the spectrum are indeed pairwise disjoint and they cover the whole
spectrum, meaning that every λ ∈ σ(T ) belongs to precisely one of the sets σp(T ),
σr(T ), and σc(T ). We leave the verification of this property as an exercise.

Exercise 4.4. Show that σ(T ) = σp(T ) ∪ σr(T ) ∪ σc(T ) and that every λ ∈ σ(T )
belongs to precisely one of the sets σp(T ), σr(T ), and σc(T ).

To show that the union of σp(T ), σr(T ), and σc(T ) is precisely the spectrum of T ,
you can recall that by the Bounded Inverse Theorem (Theorem 2.32) λI − T ∈ B(X)
has a bounded inverse if it is injective and surjective. Conversely, the existence of a
bounded inverse implies that λI − T must be both injective and surjective. ⋄

To determine if a given complex number λ ∈ C belongs to the resolvent set ρ(T ) or
to one of the parts σp(T ), σr(T ), and σc(T ) of the spectrum, we can take the following
steps:

Step 1: If λI − T is not injective, then λ ∈ σp(T ).

Step 2: If λI − T is injective, but Ran(λI − T ) is not dense in X, then λ ∈ σr(T ).

Step 3: If λI − T is injective and Ran(λI − T ) is dense in X, but Ran(λI − T ) ̸= X,
then λ ∈ σc(T ).

Step 4: If λI − T is injective and Ran(λI − T ) = X, then λI − T is boundedly
invertible by Theorem 2.32, and thus λ ∈ ρ(T ).

This process is also illustrated in Figure 4.1 from [NS82, Fig. 6.5.1].
The following result shows that the continuous spectrum of T ∈ B(X) can alter-

natively be defined as the set of λ ∈ C for which λI − T is injective and has dense
range, but the inverse operator (λI − T )−1 : Ran(λI − T ) ⊂ X → X is not bounded.

Theorem 4.5. Let X be a Banach space and let T ∈ B(X). Then λ ∈ σc(T ) if
and only if λI − T is injective, Ran(λI − T ) = X, and the operator (λI − T )−1 :
Ran(λI − T ) ⊂ X → X is unbounded.

Proof. Assume first that λI − T is injective, Ran(λI − T ) = X and the operator
(λI − T )−1 : Ran(λI − T ) ⊂ X → X is unbounded. Then the definitions imply that
we cannot have λ ∈ σp(T ) (λI − T is injective), λ ∈ σr(T ) (Ran(λI − T ) = X), or
λ ∈ ρ(T ) (the inverse (λI − T )−1 is not a bounded operator). Because of this, we
necessarily have λ ∈ σc(T ).

On the other hand, assume λ ∈ σc(T ). Then by definition the operator λI − T is
injective, Ran(λI − T ) = X, and Ran(λI−T ) ̸= X. The injectivity implies that λI−T
has a well-defined algebraic inverse (λI − T )−1 : Ran(λI − T ) ⊂ X → X. Assume
on the contrary that this inverse is a bounded operator, i.e., there exists M > 0 such
that ∥(λI − T )−1y∥ ≤ M∥y∥ for all y ∈ Ran(λI − T ). Our aim is to show that
Ran(λI − T ) = X, which will contradict our assumption that λ ∈ σc(T ). Let y ∈ X
be arbitrary. Since Ran(λI − T ) = X, there exists a sequence (yk)∞

k=1 ⊂ Ran(λI − T )
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Start with
λ ∈ C

Is λI − T
injective?

Is Ran(λI − T )
dense in X?

Is Ran(λI − T )
equal to X?

λ ∈ σp(T )
Point spectrum

λ ∈ σr(T )
Residual spectrum

λ ∈ σc(T )
Continuous spectrum

λ ∈ ρ(T )
Resolvent set

No

No

No

Yes

Yes

Yes

Figure 4.1: Parts of the spectrum [NS82, Fig. 6.5.1].

such that yk → y as k → ∞ (in X). By definition of Ran(λI − T ), there exist
(xk)∞

k=1 ⊂ X such that yk = (λI − T )xk for all k ∈ N. Using the boundedness of the
inverse (λI − T )−1 : Ran(λI − T ) ⊂ X → X we have

∥xk − xm∥ = ∥(λI − T )−1(λI − T )(xk − xm)∥
= ∥(λI − T )−1(yk − ym)∥
≤M∥yk − ym∥ → 0, as k,m→∞

since (yk)∞
k=1 is a Cauchy sequence (as a convergent sequence), and thus (xk)∞

k=1 ⊂ X
is a Cauchy sequence as well. Since X is a Banach space, the sequence (xk)∞

k=1 ⊂ X
converges to a limit x ∈ X. Using yk = (λI − T )xk we then have that

∥y − (λI − T )x∥ = ∥y − yk + yk − (λI − T )x∥
= ∥(y − yk) + [(λI − T )xk − (λI − T )x]∥
≤ ∥y − yk∥+ ∥(λI − T )(xk − x)∥
≤ ∥y − yk∥+ ∥λI − T∥∥xk − x∥ −→ 0, as k →∞

since yk → y as k →∞ and xk → x as k →∞. Since ∥y− (λI − T )x∥ is independent
of k, we must have y = (λI−T )x ∈ Ran(λI−T ). Since y ∈ X was arbitrary, we have
shown that Ran(λI − T ) = X, which contradicts our assumption λ ∈ σc(T ). Because
of this our original claim holds.

The following lemma provides a useful sufficient condition for proving the un-
boundedness of the inverse (λI − T )−1 : Ran(λI − T ) ⊂ X → X in Theorem 4.5.
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In the literature the sequence (xk)∞
k=1 appearing in Lemma 4.6 is referred to as an

approximate eigenvector of T (corresponding to λ). Combining Theorem 4.5 and
Lemma 4.6 we can see that λ ∈ C is in the continuous spectrum of T if and only if
λI − T is injective, Ran(λI − T ) = X and T has an approximate eigenvector (xk)∞

k=1
corresponding to λ.

Lemma 4.6. Let X be a Banach space and let T ∈ B(X) and λ /∈ σp(T ). The
inverse (λI − T )−1 : Ran(λI − T ) ⊂ X → X is unbounded if and only if there exists
(xk)∞

k=1 ⊂ X such that ∥xk∥ = 1 for all k ∈ N and

∥(λI − T )xk∥ → 0, as k →∞.

Proof. Since λ /∈ σp(T ) by assumption, the inverse (λI−T )−1 : Ran(λI−T ) ⊂ X → X
is well-defined and (λI − T )−1(λI − T )x = x for all x ∈ X.

Assume first that (xk)∞
k=1 ⊂ X is as in the statement of the lemma. Then (λI −

T )xk ̸= 0 for all k ∈ N since λI − T is injective. If we define

yk = 1
∥(λI − T )xk∥

(λI − T )xk ∈ Ran(λI − T ), ∀k ∈ N,

then ∥yk∥ = 1 for all k ∈ N, but

∥(λI − T )−1yk∥ = ∥(λI − T )−1 (λI − T )xk

∥(λI − T )xk∥
∥ = ∥xk∥
∥(λI − T )xk∥

= 1
∥(λI − T )xk∥

→ ∞

as k →∞. Thus the operator (λI − T )−1 : Ran(λI − T ) ⊂ X → X is not bounded.
Conversely, if (λI − T )−1 : Ran(λI − T ) ⊂ X → X is unbounded we can find

(yk)∞
k=1 ⊂ Ran(λI − T ) such that ∥yk∥ = 1 for all k ∈ N and ∥(λI − T )−1yk∥ ≥ k.

Defining xk = ∥(λI − T )−1yk∥−1(λI − T )−1yk, we have ∥xk∥ = 1 for all k ∈ N, and

∥(λI − T )xk∥ = ∥(λI − T ) (λI − T )−1yk

∥(λI − T )−1yk∥
∥ = ∥yk∥
∥(λI − T )−1yk∥

≤ 1
k
→ 0

as k →∞.

Example 4.7 (The operators I ∈ B(X) and O ∈ B(X)). As our first example, we
will study the spectrum of the identity operator I ∈ B(X) and the zero operator
O ∈ B(X) on a Banach space X. For any λ ∈ C we have

λI − I = (λ− 1)I,

and this operator is boundedly invertible if and only if λ−1 ̸= 0. Thus ρ(I) = C\{1}.
On the other hand, if λ = 1, then the operator λI − I = O is not injective, and
thus 1 ∈ σp(I). In fact, every nonzero element x ∈ X, x ̸= 0, is an eigenvector of I
corresponding to the eigenvalue λ = 1, since Ker(1I − I) = Ker(O) = X.

Similarly, that fact that for all λ ∈ C we have

λI −O = λI

implies that ρ(O) = C\{0}, and since 0I−O = O is not injective, we have 0 ∈ σp(O).
⋄



4.1. The Parts of the Spectrum 81

Example 4.8 (Multiplication Operator on ℓp(C) for 1 ≤ p ≤ ∞). In this example
we study the spectrum of an multiplication operator on X = ℓp(C) with 1 ≤ p < ∞.
We already considered such a “infinite diagonal matrix” in Example 2.30. We let
(λk)∞

k=1 ∈ ℓ∞(C) and define T ∈ B(X) such that

Tx = (λkxk)∞
k=1 ∈ X, ∀x = (xk)∞

k=1 ∈ X.

We will show that the spectrum of the operator satisfies σ(T ) = {λk | k ∈ N }, i.e.,
the closure of the set of points {λk | k ∈ N } ⊂ C. More precisely, each of the points
λk ∈ C for k ∈ N turns out to be an eigenvalue of the operator T (similarly as in the
case of diagonal matrices), and those accumulation points of the set {λk | k ∈ N }
which do not belong to the set are in the continuous spectrum σc(T ) (which does
not appear in the case of matrices). In this example we will focus on these limit
points, and leave the study of the eigenvalues and the resolvent set of T as an exercise
(Exercise 4.9).

Let λ ∈ C be such that λ ∈ {λk | k ∈ N } but λ /∈ {λk | k ∈ N } (i.e., λ is a limit
point of the set). Our aim is to prove that λ ∈ σc(T ) by showing that Ran(λI − T ) =
X but Ran(λI−T ) ̸= X. To prove that Ran(λI−T ) is dense in X, we will show that
the space

ℓfin(C) =
{

(xk)∞
k=1 ∈ ℓ(C)

∣∣∣ ∃N ∈ N : k ≥ N ⇒ xk = 0
}

of sequences with at most finite number of nonzero elements is contained in Ran(λI −
T ). Since ℓfin(C) is dense in ℓp(C) (verifying this is a straightforward exercise), this
will prove that Ran(λI − T ) = X. To this end, let y = (yk)∞

k=1 ∈ ℓfin(C) be arbitrary.
By definition there exists N ∈ N such that yk = 0 for all k ≥ N . Since we assumed
that λ /∈ {λk | k ∈ N }, we have λ− λk ̸= 0 for all k ∈ N. Thus we can write

y = (yk)k =
(
λ− λk

λ− λk

yk

)
k

= (λI − T )
(

yk

λ− λk

)
k

= (λI − T )(xk)k

where we have defined xk = yk/(λ − λk) for all k ∈ N. We have xk = 0 for all
k ≥ N , and thus (xk)∞

k=1 ∈ ℓfin(C) ⊂ ℓp(C). Thus the above computation shows
that y ∈ Ran(λI − T ). Since y ∈ ℓfin(C) was arbitrary, we indeed have ℓfin(C) ⊂
Ran(λI −T ) ⊂ X. The denseness of ℓfin(C) in X now implies that Ran(λI − T ) = X
(and in particular λ /∈ σr(T )).

Finally, in showing λ ∈ σc(T ) we can use Theorem 4.5 and Lemma 4.6. These
results show that since λ /∈ σp(T ) and Ran(λI − T ) is dense in X, we have λ ∈ σc(T )
if (and only if) there exists (xn)∞

n=1 ⊂ X such that ∥xn∥ = 1 for all n ∈ N and
∥(λI − T )xn∥ → 0 as n → ∞. Since λ is by assumption a limit point of the set
{λk | k ∈ N }, there exist a sequence (λkn)∞

n=1 ⊂ {λk | k ∈ N } such that λkn → λ as
n → ∞. If we now define xn = ekn ∈ ℓp(C) (where ekn is the sequence whose knth
element is 1 and the other elements are zero), then clearly ∥xn∥ = ∥ekn∥ = 1 for all
n ∈ N. Moreover, (λI − T )xn is a sequence whose knth element is equal to λ − λkn ,
and the other elements are zero. Thus we have

∥(λI − T )xn∥p = |λ− λkn| → 0, as n→∞.

By Theorem 4.5 and Lemma 4.6 we deduce that λ ∈ σc(T ). Since we let λ ∈
{λk | k ∈ N }\{λk | k ∈ N } be arbitrary, {λk | k ∈ N }\{λk | k ∈ N } ⊂ σc(T ). How-
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ever, by Exercise 4.9 below all other points of C belong to either σp(T ) = {λk | k ∈ N }
or ρ(T ) = C \ {λk | k ∈ N }. Therefore the complete description of the spectrum is

σp(T ) = {λk | k ∈ N }
σc(T ) = {λk | k ∈ N } \ {λk | k ∈ N }
σr(T ) = ∅
ρ(T ) = C \ {λk | k ∈ N }.

⋄

Exercise 4.9. Prove that the spectrum of the operator T ∈ B(X) in Example 4.8
satisfies σp(T ) = {λk | k ∈ N } and C \ {λk | k ∈ N } ⊂ ρ(T ). ⋄

Exercise 4.10 (Rank One Operators). Let X be a Banach space. If T ∈ B(X) is
such that dim(Ran(T )) = 1, then Ran(T ) = {αy | α ∈ C } for some fixed y ̸= 0. Thus
every T ∈ B(X) with dim(Ran(T )) = 1 has the has the form

Tx = ϕ(x)y, ∀x ∈ X,

where y ∈ X and ϕ ∈ X ′ are such that y ̸= 0 and ϕ ̸= 0. Describe the parts of the
spectrum and the resolvent set of such operators T . (You can begin by considering
the point spectrum and treat the cases λ = 0 and λ ̸= 0 separately). ⋄

4.2 Properties of the Spectrum
For λ ∈ ρ(T ) the bounded inverse (λI − T )−1 ∈ B(X) has a special name. This
resolvent operator R(λ, T ) appears often in various proofs related to spectral theory
of linear operators.

Definition 4.11. Let X be a Banach space and let T ∈ B(X). For λ ∈ ρ(T ) the
resolvent operator R(λ, T ) is defined as

R(λ, T ) = (λI − T )−1 ∈ B(X).

In this section we will investigate selected general properties of the spectrum and
the resolvent set of a bounded operator T ∈ B(X). In particular, we will learn that
the spectrum σ(T ) is always a compact (closed and bounded) subset of the complex
plane, and correspondingly the resolvent set ρ(T ) is an open set. Moreover, both
σ(T ) and ρ(T ) are nonempty sets (we will only prove the latter property, see [TL80,
Thm. V.3.2] for the proof of σ(T ) ̸= ∅).2 The proofs of these results utilise the
Neumann Series, which tells us that the operator I − T is boundedly invertible
whenever T ∈ B(X) satisfies ∥T∥ < 1. This result generalises the familiar geometric
series (1− z)−1 = ∑∞

n=0 z
n for real or complex number z with |z| < 1.

2These properties and the fact that σ(T ) is a bounded subset of C are true for all bounded
operators T ∈ B(X). The concept of spectrum can also be generalised to the case of possibly
unbounded operators T : D(T ) ⊂ X → X (this topic is studied on “MATH.MA.830 Advanced
Functional Analysis”). For unbounded operators it is possible that either σ(T ) = ∅ or ρ(T ) = ∅, or
that both σ(T ) and ρ(T ) are unbounded subsets of C.
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Theorem 4.12. Assume that X is a Banach space and that T ∈ B(X) satisfies
∥T∥ < 1. Then the operator I − T is boundedly invertible and its inverse is given by
the Neumann Series

(I − T )−1 =
∞∑

n=0
T n

(the series converges in the operator norm ∥·∥B(X)). The norm of the inverse satisfies

∥(I − T )−1∥ ≤ 1
1− ∥T∥ .

Proof. Since ∥T∥ < 1, we have
∞∑

n=0
∥T n∥ ≤

∞∑
n=0
∥T∥n = 1

1− ∥T∥ (4.2)

(the sum of a geometric series of real numbers) and thus the series∑∞
n=0 T

n is absolutely
convergent. Since B(X) is a Banach space, this implies that the series converges in
B(X) (see Exercise 3.41), and thus ∑∞

n=0 T
n = S for some S ∈ B(X).

To prove that S = (I−T )−1 we need to show that S(I−T ) = I and (I−T )S = I.
We can do this by studying the partial sums of the series S, i.e., SN = ∑N

n=0 T
n for

N ∈ N. We have

(I − T )SN =
N∑

n=0
(I − T )T n =

N∑
n=0

(T n − T n+1) = I − TN+1

SN(I − T ) =
N∑

n=0
T n(I − T ) =

N∑
n=0

(T n − T n+1) = I − TN+1

(all but the first and last terms in the sums cancel out). Since ∥T∥ < 1, we have
∥TN+1∥ ≤ ∥T∥N+1 → 0 as N →∞, and therefore

∥SN(I − T )− I∥ = ∥TN+1∥ → 0
∥(I − T )SN − I∥ = ∥TN+1∥ → 0

as N →∞. On the other hand, since SN → S as N →∞, we also have

∥SN(I − T )− S(I − T )∥ = ∥(SN − S)(I − T )∥ ≤ ∥SN − S∥∥I − T∥ → 0
∥(I − T )SN − (I − T )S∥ = ∥(I − T )(SN − S)∥ ≤ ∥I − T∥∥SN − S∥ → 0

as N →∞. Thus (using the uniqueness of the limit of a convergent series)

S(I − T ) = lim
N→∞

SN(I − T ) = I and (I − T )S = lim
N→∞

(I − T )SN = I,

and we indeed have (I − T )−1 = S = ∑∞
n=0 T

n ∈ B(X).
It remains to show that ∥(I − T )−1∥ ≤ (1 − ∥T∥)−1 The continuity of the norm,

the triangle inequality, and the estimate (4.2) imply that

∥(I − T )−1∥ =
∥∥∥∥∥ lim

N→∞

N∑
n=0

T n

∥∥∥∥∥ = lim
N→∞

∥∥∥∥∥
N∑

n=0
T n

∥∥∥∥∥ ≤ lim
N→∞

N∑
n=0
∥T n∥ =

∞∑
n=0
∥T n∥ ≤ 1

1− ∥T∥ .
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Even though the Neumann series “only” concerns the inverse of a very specific type
of operator, I − T with ∥T∥ < 1, and the series itself is typically not even useful in
computing this inverse, the Neumann series can be used as quite a versatile theoretical
tool. Indeed, Theorem 4.12 becomes very useful through the following identities:

λI − T = λ
(
I − 1

λ
T
)
, (Proof of Theorem 4.13)

λI − (T + S) = (λI − T ) (I −R(λ, T )S) , (Theorems 4.13 and 4.18)

The following result shows that the spectrum σ(T ) is a compact (closed and
bounded) subset of C and the resolvent set ρ(T ) is open.

Theorem 4.13. Let X be a Banach space and let T ∈ B(X). The spectrum σ(T ) is
closed (as a subset of C) and the resolvent set ρ(T ) is open. The spectrum σ(T ) is
a bounded set contained in the closed disk {λ ∈ C | |λ| ≤ ∥T∥ } (with center 0 ∈ C
and radius ∥T∥), and ρ(T ) ̸= ∅.

Proof. We begin by showing that the resolvent set ρ(T ) is open (which will also imply
that σ(T ) = C \ ρ(T ) is closed). To this end, let λ ∈ ρ(T ) be fixed. We will show that
λ+µ ∈ ρ(T ) if µ ∈ C is such that |µ| is sufficiently small. We can use (λI−T )R(λ, T ) =
I to write

(λ+ µ)I − T = (λI − T ) + µI = (λI − T ) (I + µR(λ, T )) .

Here λI − T is boundedly invertible, and Theorem 4.12 implies that also the operator
I + µR(λ, T ) = I − (−µR(λ, T )) has a bounded inverse whenever

∥−µR(λ, T )∥ < 1 ⇔ |µ| < 1
∥R(λ, T )∥ .

Thus by Exercise 2.29 the operator (λ+ µ)I − T is boundedly invertible, i.e., λ+ µ ∈
ρ(T ), whenever |µ| < 1/∥R(λ, T )∥. Since λ ∈ ρ(T ) was arbitrary, we have proved that
ρ(T ) is open and σ(T ) is closed in C.

In the second part of the proof we will show that |λ| ≤ ∥T∥ for all λ ∈ σ(T ). To
this end, let λ ∈ C be such that |λ| > ∥T∥. If we write

λI − T = λ
(
I − 1

λ
T
)
,

then ∥ 1
λ
T∥ = ∥T∥/|λ| < 1 together with Theorem 4.12 and Exercise 2.29 imply that

λI − T is boundedly invertible, and thus λ ∈ ρ(T ). Since λ ∈ C with |λ| > ∥T∥ was
arbitrary, we have that |λ| ≤ ∥T∥ for all λ ∈ σ(T ). Since ∥T∥ < ∞, this also implies
that σ(T ) ̸= C, and therefore ρ(T ) = C \ σ(T ) ̸= ∅.

Exercise 4.14. Let X be a Banach space and let T ∈ B(X). Use Theorem 4.12 to
derive an expression for the resolvent R(λ, T ) when |λ| > ∥T∥, and prove that

∥R(λ, T )∥ ≤ 1
|λ| − ∥T∥

, whenever |λ| > ∥T∥.

Further deduce that ∥R(λ, T )∥ → 0 as |λ| → ∞. ⋄
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Example 4.15 (The Left Shift Operator Sl on ℓp(C)). In this example we will study
the spectrum of the left shift operator in Example 2.4 and on the space X = ℓp(C)
with 1 ≤ p <∞. The operator Sl ∈ B(X) was defined as

Slx = (x2, x3, x4 . . .), x = (xk)∞
k=1.

The boundedness of Sl was considered in Exercise 2.20, and we in fact have ∥Sl∥ = 1.
By Theorem 4.13 the spectrum σ(Sl) is contained in the closed disk centered at 0 ∈ C
and with radius 1. In particular, {λ ∈ C | |λ| > 1 } ⊂ ρ(Sl). Our aim is to show
that σ(Sl) is precisely this closed disk, i.e., σ(Sl) = {λ ∈ C | |λ| ≤ 1 }, and that every
λ ∈ C with |λ| < 1 is an eigenvalue of Sl.

By definition, λ ∈ C is an eigenvalue of Sl if there exists a nonzero sequence
x = (xk)∞

k=1 ∈ X, x ̸= 0, such that (λI − Sl)x = 0, or Slx = λx. Using the definition
of Sl we have

(x2, x3, x4, . . .) = (λx1, λx2, λx3, . . .),

and thus the elements xk of the eigenvector x must satisfy

x2 = λx1

x3 = λx2 = λ2x1

x4 = λx3 = λ3x1
...

i.e., xk = λk−1x1 for all k ∈ N. Thus every eigenvector x ∈ X corresponding to
λ ∈ C has the form x = x1(1, λ, λ2, λ3, . . .) with some x1 ∈ C \ {0}. Correspondingly,
every vector of the form x = x1(1, λ, λ2, λ3, . . .) with x1 ̸= 0 is an eigenvector of Sl

corresponding to λ ∈ C provided that x belongs to the space X. We can already see
that the sizes of the elements |λk| = |λ|k of x decay very rapidly if |λ| < 1. Indeed, if
|λ| < 1, we have |λ|p < 1, and

∞∑
k=1
|λk−1x1|p = |x1|p

∞∑
k=1
|λ|p(k−1) = |x1|p

∞∑
k=1

(|λ|p)k−1 = |x1|p
1

1− |λ|p <∞

(the sum of the geometric series). Thus for every λ ∈ C with |λ| < 1 the vector
x = (1, λ, λ2, . . .) ∈ X, x ̸= 0, satisfies (λI − Sl)x = 0, and thus {λ ∈ C | |λ| < 1 } ⊂
σp(Sl).

On the other hand, if λ ∈ C is such that |λ| = 1, then the absolute value of
every element of the sequence x = x1(1, λ, λ2, λ3, . . .) with x1 ̸= 0 is equal to |x1|,
and therefore x /∈ X = ℓp(C). Because every eigenvector of Sl is required to have
this particular form, we can deduce that λ /∈ σp(Sl) if |λ| = 1. Because of this,
we have σp(Sl) = {λ ∈ C | |λ| < 1 }. More detailed analysis in Exercise 4.16 will
reveal that the boundary of the disk belongs to the continuous spectrum of Sl, i.e.,
σp(Sl) = {λ ∈ C | |λ| = 1 }. ⋄

Exercise 4.16. Prove that σc(Sl) = {λ ∈ C | |λ| = 1 } and σr(Sl) = ∅ for the left
shift operator in Example 4.15. (Show that the λI − Sl has dense range when |λ| = 1
and use the other spectral properties of Sl). ⋄
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Example 4.17. Even though we only defined the spectrum σ(T ) and ρ(T ) for a
bounded operator T ∈ B(X), we will now take a quick look at the spectrum of
an unbounded operator T : D(T ) ⊂ X → X. We will do this to illustrate how
Theorem 4.13 depends on the assumption of boundedness of the operator. To this
end, we consider the differential operator T : D(T ) ⊂ C([0, 1]) → C([0, 1]) with
domain D(T ) = C1([0, 1]) defined by Tf = f ′ for all f ∈ D(T ). If we want to find the
eigenvalues λ ∈ C and corresponding eigenvectors (or eigenfunctions) f ∈ D(T ), we
arrive at the differential equation

(λI − T )f = 0 ⇔ f ′(t) = λf(t), t ∈ [0, 1].

For any λ ∈ C this differential equation has a solution f(t) = ceλt with c ∈ C satisfying
f ∈ D(T ) = C1([0, 1]) and f ̸= 0 (when c ̸= 0). Thus every λ ∈ C is an eigenvalue of
T , which implies that σ(T ) = σp(T ) = C and ρ(T ) = ∅. Differential operators can
have various different kinds of spectral properties, and these properties are studied in
greater detail on the course “MATH.MA.830 Advanced Functional Analysis”. ⋄

The following theorem is a “perturbation result” which concerns the change of
the spectrum of the operator T when this operator is “perturbed” to T + S.

Theorem 4.18. Let X be a Banach space and let T ∈ B(X) and λ ∈ ρ(T ). If
S ∈ B(X) is such that ∥S∥ < 1/∥R(λ, T )∥, then λ ∈ ρ(T + S). Morover, the
difference between the resolvents of T and S + T satisfies

∥R(λ, T + S)−R(λ, T )∥ ≤ ∥S∥∥R(λ, T )∥2

1− ∥R(λ, T )∥∥S∥ .

Proof. Let λ ∈ ρ(T ) be fixed and let S ∈ B(X) be such that ∥S∥ < 1/∥R(λ, T )∥.
Using (λI − T )R(λ, T ) = I we can write

λI − (T + S) = (λI − T ) (I −R(λ, T )S) .

Theorem 4.12 and Exercise 2.29 imply that λI − (T +S) is boundedly invertible since
λ ∈ ρ(T ) and ∥R(λ, T )S∥ ≤ ∥R(λ, T )∥∥S∥ < 1 By Exercise 2.29 and Theorem 4.12,
the resolvent operator R(λ, T + S) can be written in the form

R(λ, T + S) = (I −R(λ, T )S)−1 R(λ, T ) =
( ∞∑

n=0
(R(λ, T )S)n

)
R(λ, T )

Using this expression to prove the bound for the norm ∥R(λ, T +S)−R(λ, T )∥ is left
as an exercise.

Exercise 4.19. Complete the proof of Theorem 4.18 by showing that

∥R(λ, T + S)−R(λ, T )∥ ≤ ∥S∥∥R(λ, T )∥2

1− ∥R(λ, T )∥∥S∥

whenever ∥S∥ < 1/∥R(λ, T )∥. ⋄
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4.2.1 Further Properties of the Resolvent Operator
[Optional]

Sometimes it is very useful to consider the resolvent operator R(λ, T ) = (λI − T )−1 ∈
B(X) as a function of the complex parameter λ ∈ ρ(T ). According to this
interpretation, the mapping R(·, T ) : ρ(T ) ⊂ C → B(X) is a (nonlinear) “operator-
valued function of a complex parameter λ”. The following theorem shows that the
resolvent operator is a continuous function of λ ∈ ρ(T )3.

Theorem 4.20. Let X be a Banach space and let T ∈ B(X). The function λ 7→
R(λ, T ) ∈ B(X) is continuous on ρ(T ).

Proof. Let µ ∈ ρ(T ) be fixed. We will show that ∥R(λ, T )− R(µ, T )∥ → 0 as λ→ µ.
For this we can use the perturbation result in Theorem 4.18. Indeed, for λ ∈ C we
can write

λ− T = λ− µ+ µ− T = µ− (T + (µ− λ)I) = µ− (T + S) (4.3)

where we have defined S = (µ−λ)I ∈ B(X). Since ∥S∥ = |λ−µ|, Theorem 4.18 implies
that if λ ∈ C is such that |λ− µ| < 1/∥R(µ, T )∥, then λ ∈ ρ(T ) and (using (4.3))

∥R(λ, T )−R(µ, T )∥ = ∥R(µ, T + S)−R(µ, T )∥ ≤ ∥S∥∥R(µ, T )∥2

1− ∥R(µ, T )∥∥S∥

= |λ− µ|∥R(µ, T )∥2

1− ∥R(µ, T )∥|λ− µ| → 0

as λ→ µ. Thus λ 7→ R(λ, T ) is continuous at µ ∈ ρ(T ). Since µ ∈ ρ(T ) was arbitrary,
the proof is complete.

Note that the perturbation result in Theorem 4.18 also implies continuity of the
resolvent R(λ, T ) “with respect to the operator T”. To see this, we can let T ∈ B(X)
and λ ∈ ρ(T ) be fixed and consider a sequence (Tk)∞

k=1 ⊂ B(X) such that ∥Tk−T∥ → 0
as k →∞. Theorem 4.18 then implies that λ ∈ ρ(Tk) for all sufficiently large k ∈ N,
and we have

∥R(λ, Tk)−R(λ, T )∥ ≤ ∥Tk − T∥∥R(λ, T )∥2

1− ∥R(λ, T )∥∥Tk − T∥
→ 0

as k →∞.

Exercise 4.21 (The Resolvent Identity). Let X be a Banach space and let T ∈ B(X).
Prove that for all λ, µ ∈ ρ(T ) the resolvent operators of T satisfy

R(λ, T )−R(µ, T ) = (µ− λ)R(λ, T )R(µ, T ) (Resolvent Identity)
and

R(λ, T )R(µ, T ) = R(µ, T )R(λ, T ).

⋄
3In fact, much more is true! The mapping λ 7→ R(λ, T ) is in fact analytic on ρ(T ), meaning that

it has well-defined complex derivatives of all orders. But in order to establish this property, it is also
necessary to define precisely what analyticity means for an operator-valued function.
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4.3 Spectral Properties of Self-Adjoint Operators
In the remaining sections of the chapter we will take a closer look at some special
properties of operators on a Hilbert space X. We begin by investigating self-adjoint
operators (i.e., T ∈ B(X) satisfying T ∗ = T ) in this section, and move on to studying
the spectra of compact operators in the next section. Our ultimate goal is the
spectral theorem for compact self-adjoint operators which is presented in Section 4.5.
Both special classes of self-adjoint operators and compact operators have very strong
spectral theories, and on this course we only have time to study a fraction of the results
which are available for these types of operators. However, we will keep our main goal in
mind, and focus on those results which are required in proving the spectral theorem at
the end of this chapter. Additional results on the nice spectral properties of compact
and self-adjoint operators can be found, for example, in [NS82, Ch. 6], [TL80, Ch. V],
and [Kre89, Ch. 8]. Throughout the rest of this chapter we will rely heavily on the
Hilbert space results which we studied in Chapter 3.

Theorem 4.22. Let X be a Hilbert space and let T ∈ B(X) be self-adjoint. The
spectrum of T is a subset of the real line, σ(T ) ⊂ [−∥T∥, ∥T∥] ⊂ R, and σr(T ) = ∅.

Proof. We begin by showing that the residual spectrum of T is empty. We can do this
by showing that for every λ ∈ C the injectivity of λI − T implies that Ran(λI − T ) is
dense in X. To this end, let λ ∈ C and assume Ker(λI − T ) = {0}. Exercise 3.19(c)
tells us that Ran(λI − T ) = X if and only if Ran(λI − T )⊥ = {0}. Because of this,
we let y ∈ Ran(λI − T )⊥ be arbitrary and aim to show that y = 0. By definition, we
have (using T ∗ = T )

⟨(λI − T )x, y⟩ = 0 ∀x ∈ X ⇔ ⟨x, (λI − T )y⟩ = 0 ∀x ∈ X
⇔ (λI − T )y = 0.

However, the self-adjointness of T also implies

0 = ∥(λI − T )y∥2 = ⟨(λI − T )y, (λI − T )y⟩ = ⟨(λI − T )(λI − T )y, y⟩
= ⟨(λI − T )(λI − T )y, y⟩ = ⟨(λI − T )y, (λI − T )y⟩ = ∥(λI − T )y∥2.

This immediately implies that y = 0, since λI − T was assumed to be injective. Since
y ∈ Ran(λI−T )⊥ was arbitrary, we have Ran(λI−T )⊥ = {0}, and thus Ran(λI−T )
is dense in X. This completes the proof that σr(T ) = ∅.

The property σr(T ) = ∅ implies that any spectral point of T must either be
an eigenvalue or be in the continuous spectrum of T . Because of this, for proving
σ(T ) ⊂ R it is sufficient to show that if λ /∈ R, then λ /∈ σp(T ) and λ /∈ σc(T ). This
part of the proof is left as an exercise (Exercise 4.23). Finally, the property σ(T ) ⊂ R
combined with Theorem 4.13 implies that σ(T ) ⊂ [−∥T∥, ∥T∥].

Exercise 4.23. Let X be a Hilbert space and let T ∈ B(X) be self-adjoint. In this
exercise we will complete the proof of Theorem 4.22 by showing that σ(T ) ⊂ R. We
can assume to already know that σr(T ) = ∅.

(a) Show that λ ∈ C satisfies λ ∈ σ(T ) if and only if there exists (xk)∞
k=1 ⊂ X such

that ∥xk∥ = 1 for all k ∈ N and ∥(λI − T )xk∥ → 0 as k →∞. (Hint: Results in
Section 4.1).
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(b) Show that λ ∈ ρ(T ) for all λ ∈ C with Im λ ̸= 0. (Hint: For b ̸= 0, expand
∥((a+ ib)I − T )x∥2 to show that the sequence in part (a) cannot exist).

⋄

The following theorem shows that the spectrum of a self-adjoint operator T is not
only contained in the interval [−∥T∥, ∥T∥], but at least one of the endpoints of the
interval is in the spectrum σ(T ). This immediately implies that if σ(T ) = {0}, then
also ∥T∥ = 0 and therefore T = O. This latter property really requires the assumption
of self-adjointness, since for example the matrix A = [ 0 1

0 0 ] satisfies σ(A) = σp(A) =
{0}, but of course A ̸= 0.

Theorem 4.24. Let X be a Hilbert space and let T ∈ B(X) be self-adjoint. Then
λ ∈ σ(T ) where λ = ∥T∥ or λ = −∥T∥ (or both). In particular, if σ(T ) = {0}, then
T = O.

Proof. The second claim follows immediately from the first one. We have from The-
orem 3.38 that ∥T∥ = sup∥x∥=1|⟨Tx, x⟩|. By definition of the supremum, there exists
a sequence (xk)∞

k=1 ⊂ X such that ∥xk∥ = 1 for all k ∈ N and |⟨Txk, xk⟩| → ∥T∥
as k → ∞. Since T is self-adjoint, ⟨Txk, xk⟩ ∈ R (by Exercise 3.36), and thus there
necessarily exists a subsequence (xkn)∞

n=1 such that ⟨Txkn , xkn⟩ → λ where λ = ∥T∥
or λ = −∥T∥. We then have (using ⟨xkn , Txkn⟩ = ⟨Txkn , xkn⟩ and ∥xkn∥ = 1)

∥(λI − T )xkn∥2 = ⟨(λI − T )xkn , (λI − T )xkn⟩
= λ2∥xkn∥2 − 2λ⟨Txxn , xkn⟩+ ∥Txkn∥2

≤ λ2 − 2λ⟨Txxn , xkn⟩+ ∥T∥2

= 2λ2 − 2λ⟨Txxn , xkn⟩ −→ 2λ2 − 2λ2 = 0

as n → ∞. Thus (xkn)∞
n=1 is a sequence such that ∥xkn∥ = 1 for all n ∈ N and

∥(λI − T )xkn∥ → 0 as n→∞. Because of this, either λI − T is not injective, or the
inverse (λI − T )−1 : Ran(λI − T ) ⊂ X → X is unbounded by Lemma 4.6. In both
cases we have λ ∈ σ(T ).

Lemma 4.25. Let X be a Hilbert space and let T ∈ B(X) be self-adjoint. If λ, µ ∈
σp(T ) are such that λ ̸= µ, then Ker(λI − T ) ⊥ Ker(µI − T ).

Proof. Assume λ, µ ∈ σp(T ) are such that λ ̸= µ and let x ∈ Ker(λI − T ) and
y ∈ Ker(µI − T ). By Theorem 4.22 we have λ, µ ∈ R. Thus

⟨Tx, y⟩ = ⟨λx, y⟩ = λ⟨x, y⟩.

However, we can alternatively use T ∗ = T to compute

⟨Tx, y⟩ = ⟨x, Ty⟩ = ⟨x, µy⟩ = µ⟨x, y⟩,

and thus λ⟨x, y⟩ = µ⟨x, y⟩. But since λ ̸= µ by assumption, we must have ⟨x, y⟩ =
0. Since x ∈ Ker(λI − T ) and y ∈ Ker(µI − T ) were arbitrary, we indeed have
Ker(λI − T ) ⊥ Ker(µI − T ).
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Example 4.26. In this example we continue the study of the integral operator in
Examples 2.21 and 3.39 on the space X = L2(a, b). We assume the kernel satisfies
(t, s) 7→ k(t, s) ∈ C(Ω) where Ω = [a, b]× [a, b] ⊂ R2 and define T ∈ B(X) by

(Tf)(t) =
∫ b

a
k(t, s)f(s) ds, ∀t ∈ [a, b].

In the previous examples we already saw that T satisfies ∥T∥ ≤ ∥k(·, ·)∥L2(Ω) and that
T is self-adjoint if k(t, s) = k(s, t) for all t, s ∈ [a, b].

In this example we describe a process for computing the nonzero eigenvalues of T
in the case where the kernel k(·, ·) is separable in the sense that it has the structure

k(t, s) =
n∑

j=1
kj(t)hj(s)

for some n ∈ N and for some functions (kj)n
j=1 ⊂ C([a, b]) and (hj)n

j=1 ⊂ C([a, b]) where
(kj)n

j=1 and (hj)n
j=1 are both linearly independent sets. In this example we focus on

the situation with n = 2 where k(t, s) = k1(t)h1(s) + k2(t)h2(s) and the generalisation
of the method is completed in Exercise 4.28.

If λ ∈ C \ {0} is an eigenvalue of T , then there exists f ∈ X with f ̸= 0 such that
(λI − T )f = 0, i.e., for all t ∈ [a, b] we have

λf(t) = (Tf)(t) =
∫ b

a
k(t, s)f(s) ds =

∫ b

a
(k1(t)h1(s) + k2(t)h2(s))f(s) ds

= k1(t)
∫ b

a
h1(s)f(s) ds+ k2(t)

∫ b

a
h2(s)f(s) ds

= k1(t)⟨h1, f⟩L2 + k2(t)⟨h2, f⟩L2

(where we denote f for the function with values f(t)) Since λ ̸= 0 and since the
integrals in the last expression are scalars, the above identity implies that f is a linear
combination of the (linearly independent) functions k1 and k2, i.e., f = α1k1 + α2k2
for some α1, α2 ∈ C. If we substitute this form of f to the above equation, we see that

λf = ⟨h1, f⟩k1 + ⟨h2, f⟩k2

⇔ λ(α1k1 + α2k2) = ⟨h1, α1k1 + α2k2⟩k1 + ⟨h2, α1k1 + α2k2⟩k2

⇔ λα1k1 + λα2k2 = (α1⟨h1, k1⟩+ α2⟨h1, k2⟩)k1 + (α1⟨h2, k1⟩+ α2⟨h2, k2⟩)k2.

Since k1 and k2 were assumed to be linearly independent, this last identity holds
precisely if the coefficients of the functions k1 and k2 are identical on both sides of the
equation. This condition leads to the pair of equationsλα1 = α1⟨h1, k1⟩+ α2⟨h1, k2⟩

λα2 = α1⟨h2, k1⟩+ α2⟨h2, k2⟩
⇔

[
⟨h1, k1⟩ ⟨h1, k2⟩
⟨h2, k1⟩ ⟨h2, k2⟩

] [
α1
α2

]
= λ

[
α1
α2

]
.

Thus λ ∈ C \ {0} and [α1, α2]T ∈ C2 are eigenvalues and corresponding eigenvectors
of the matrix with elements

⟨hj, km⟩ =
∫ b

a
hj(s)km(s) ds, for j,m ∈ {1, 2}.
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The above arguments now show that every solution λ ̸= 0 of this eigenvalue problem
is an eigenvalue of T as well, and the corresponding eigenvector is given by f =
α1k1 + α2k2.

Note that in the general case the eigenvalue problem for λ and [α1, α2]T ∈ C2 can
have either 2, 1, or even 0 nonzero eigenvalues λ ̸= 0. Indeed, it is quite possible that
the coefficient matrix is the zero matrix even for nonzero functions kj and hm (if kj

and hm are orthogonal for j,m ∈ {1, 2}).
Finally, we note that T is in particular self-adjoint if k1, k2, h1, h2 ∈ C([a, b]) are

such that h1(t) = β1k1(t) and h2(t) = β2k2(t) for some β1, β2 ∈ R \ {0}. In this case
we have k(t, s) = β1k1(t)k1(s) + β2k2(t)k2(s) and the eigenvalue problem has the form

A =
[
⟨h1, k1⟩ ⟨h1, k2⟩
⟨h2, k1⟩ ⟨h2, k2⟩

]
=
[
β1⟨k1, k1⟩ β1⟨k1, k2⟩
β2⟨k2, k1⟩ β2⟨k2, k2⟩

]
=
[
β1∥k1∥2 β1⟨k2, k1⟩
β2⟨k1, k2⟩ β2∥k2∥2

]
.

It turns out that this matrix has the full number of linearly independent eigenvectors,
and it does not have a zero eigenvalue. To see that the latter claim holds, it is
sufficient to note that if A is singular, then its determinant det(A) = β1β2(∥k1∥2∥k2∥2−
|⟨k1, k2⟩|2) is zero. But this means that the Cauchy–Schwarz Inequality is “satisfied
as an equality”, and by Exercise 3.5 this would imply that k1 = βk2 for some β ∈ C,
which contradicts the assumption that k1 and k2 are linearly independent. ⋄

Exercise 4.27. Apply the method in Example 4.26 to find the eigenvalues and nor-
malised eigenvectors of the intergral operator on X = L2(0, 1) with k(t, s) = 1 − 3ts
for t, s ∈ [0, 1]. Verify that the eigenfunctions are orthogonal. You can compute the
necessary integrals and find the eigenvalues and eigenvectors using Matlab, Wolfram
Alpha, or some other software (after all, this is not a course on linear algebra!). ⋄

Exercise 4.28. Generalise the process of finding eigenvalues of an integral operator
in Example 4.26 to the case k(t, s) = ∑n

j=1 kj(t)hj(s) with n ∈ N. ⋄

4.4 Spectral Properties of Compact Operators
In this section we study the spectrum of another special class of operators, namely,
compact operators.

Definition 4.29. Let X and Y be Banach spaces. An operator T ∈ B(X, Y ) is
compact if every bounded sequence (xk)∞

k=1 ⊂ X has a subsequence (xkn)∞
n=1 such

that (Txkn)∞
n=1 ⊂ Y converges in Y .

Compact operators can also be defined in a more general situation where X and
Y are not necessarily complete spaces4.

4Our definition also already utilises a characterisation of compactness of a set on a normed space
in terms of bounded sequences containing convergent subsequences (what is known as sequential
compactness). In the literature, the definition of a compact operator is often presented in another
form which states that T ∈ B(X, Y ) (with Y Banach) is a compact operator if for every bounded set
A ⊂ X the closure T (A) := {Tx | x ∈ A } is a compact set in Y .
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Lemma 4.30. Let X, Y , and Z be Banach spaces.

(a) If T, S ∈ B(X, Y ) are compact and α ∈ C, then αT ∈ B(X, Y ) and T + S ∈
B(X, Y ) are compact operators.

(b) If T ∈ B(X, Y ) and S ∈ B(Y, Z), then ST ∈ B(X,Z) is compact if either T
or S is compact.

(c) If (Tk)∞
k=1 ⊂ B(X, Y ) and T ∈ B(X, Y ) are such that Tk are compact for all

k ∈ N and ∥Tk − T∥ → 0 as k →∞, then T is compact.

Proof. Left as an exercise.

Exercise 4.31. Complete the proof of Lemma 4.30. ⋄

Exercise 4.32. Let X be a Banach space, let T ∈ B(X) be compact, and assume there
exists a closed subspace Z of X such that Tx ∈ Z for all x ∈ Z. Define S : Z → Z
as the restriction of T to Z, i.e., Sx = Tx for all x ∈ Z. Prove that S ∈ B(Z) is
compact5. ⋄

Example 4.33 (Finite Rank Operators). Let X be a Hilbert space. An operator
T ∈ B(X) is said to have finite rank if there exists a linearly independent set
{yk}∞

k=1 ⊂ X and {zk}∞
k=1 ⊂ X such that T has the structure

Tx =
n∑

k=1
⟨x, zk⟩yk, ∀x ∈ X. (4.4)

Since every y ∈ Ran(T ) is a linear combination of the fixed vectors {yk}n
k=1 ⊂ X, and

therefore dim(Ran(T )) ≤ n <∞. In fact, any operator T ∈ B(X) with Ran(T ) <∞
can be written in the form (4.4) for some n ∈ N, {yk}n

k=1 ⊂ X and {zk}n
k=1 ⊂ X. Our

aim is to show that T is compact. By Lemma 4.30(a) the sums of compact operators
is compact. Therefore it is sufficient to prove that if y, z ∈ X are fixed and if we define
T0 ∈ B(X) so that T0x = ⟨x, z⟩y for all x ∈ X, then T0 ∈ B(X) is compact (T0 is a
“rank one operator” such as the one we already considered in Exercise 4.10).

If (xk)∞
k=1 ⊂ X is an arbitrary bounded sequence, then (⟨xk, z⟩)∞

k=1 ⊂ C is a
bounded sequence in C. But in the space of complex numbers, every bounded sequence
has a convergent subsequence, and therefore there exist a subsequence (xkn)∞

n=1 and
α ∈ C such that ⟨xkn , z⟩ → α as n→∞. Because of this, we also have

∥T0xkn − αy∥ = ∥⟨xkn , z⟩y − αy∥ = |⟨xkn , z⟩ − α|∥y∥ → 0, as n→∞.

Thus the sequence (T0xkn)∞
n=1 ⊂ X converges to αy ∈ X, and T0 is compact. ⋄

Lemma 4.34. Let X be a Banach space. The identity operator I ∈ B(X) is compact
if and only if dimX <∞.

Proof. We will only present the proof in a simplified case where X is a Hilbert space
(the proof for the result in a normed space X case can be found for example in [TL80,

5In the case where Tx ∈ Z for all x ∈ Z, the subspace Z is said to be invariant under T . In
this case the restriction S of T to Z is typically called the part of T in Z.
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Thm. II.3.6]). If dimX < ∞, then I ∈ B(X) is a “finite rank operator” such as the
ones studied in Example 4.33 and thus compact. On the other hand, if dimX = ∞,
we can let (xk)∞

k=1 ⊂ X be an orthonormal sequence, meaning that ∥xk∥ = 1 and
⟨xk, xm⟩ = 0 for all k,m ∈ N such that k ̸= m (such a sequence can be constructed
for example by applying the finite-dimensional Gram–Schmidt process to finite but
increasingly large sets of linearly independent vectors). For all k ̸= m we then have

∥xk − xm∥2 = ∥xk∥2 − ⟨xk, xm⟩ − ⟨xm, xk⟩+ ∥xm∥2 = ∥xk∥2 + ∥xm∥2 = 2.

This implies that even though (xk)∞
k=1 is a bounded sequence, the sequence (Ixk)∞

k=1
cannot contain any convergent subsequence. Thus I ∈ B(X) is not compact.

The following theorem shows that a compact operator can have at most finite
number of linearly independent eigenvectors associated to any nonzero eigenvalue.
This result concerns only nonzero eigenvalues, since for example the zero operator
T = O ∈ B(X) on an infinite-dimensional space X is clearly compact, but it has an
infinite number of eigenvectors associated to its only eigenvalue λ = 0.

Theorem 4.35. Let X be a Banach space and let T be a compact operator. Then
for every λ ̸= 0 the space Ker(λI − T ) is finite-dimensional.

Proof. For every x ∈ Ker(λI − T ) we have (λI − T )x = 0, and λ ̸= 0 implies
that λ−1Tx = x ∈ Ker(λI − T ). Since λ−1T ∈ B(X) is a compact operator (by
Lemma 4.30(a)) and since Ker(λI−T ) is a closed subspace of X (see Exercise 2.25), the
restriction of λ−1T to Ker(λI − T ) is compact by Exercise 4.32. However, λ−1Tx = x
for all x ∈ Ker(λI − T ) implies that this restriction is in fact the identity operator on
Ker(λI − T ). Therefore Lemma 4.34 implies that dim(Ker(λI − T )) <∞.

The following lemma shows that a compact operator on an infinite-dimensional
space cannot have a bounded inverse. This in particular implies that if dimX = ∞
and T ∈ B(X) is a compact operator, then 0 is always in the spectrum of T !

Lemma 4.36. Assume X is a Banach space with dimX =∞ and let T ∈ B(X) be
a compact operator. If T is injective, then T−1 : Ran(T ) ⊂ X → X is unbounded.

Proof. Let dimX = ∞ and assume on the contrary that T−1 : Ran(T ) ⊂ X → X is
bounded, i.e., there exists M > 0 such that ∥T−1x∥ ≤ M∥x∥ for all x ∈ Ran(T ). Let
(xk)∞

k=1 ⊂ X be an arbitrary bounded sequence. Since T is compact, this sequence has
a subsequence (xkn)∞

n=1 such that (Txkn)∞
n=1 ⊂ X converges in X. For all n,m ∈ N we

have

∥xkn − xkm∥ = ∥T−1T (xkn − xkm)∥ ≤M∥Txkn − Txkm∥ → 0, as n,m→∞

since (Txkn)∞
n=1 is a Cauchy sequence. Therefore (xkn)∞

n=1 is a Cauchy sequence as well,
and since X is complete, the sequence (xkn)∞

n=1 converges in X. But since (xk)∞
k=1 ⊂ X

was an arbitrary bounded sequence on X, we have shown that every bounded sequence
has a convergent subsequence. However, this property is equivalent to the identity
operator of X being compact. By Lemma 4.34 this can only happen if dimX < ∞,
which is a contradiction.
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There are no restrictions on the type of the spectral point 0 ∈ σ(T ) of a compact
operator T , meaning that 0 can be either be an eigenvalue, in the residual spectrum
or in the continuous spectrum. In the next exercise we will see an interesting example
of a compact operator whose spectrum consists of the single point 0 ∈ C which is not
an eigenvalue.

Exercise 4.37. Let X = ℓ2(C) and consider the operator T ∈ B(X) defined by

Tx =
(

0, x1

1 ,
x2

2 ,
x3

3 , . . .
)
, ∀x = (xk)∞

k=1 ∈ X.

Prove T is a compact operator and that σ(T ) = σr(T ) = 0. ⋄

Example 4.38 (Integral Operator). The integral operators studied in Examples 2.21,
3.39 and 4.26 are imporant examples of compact operator. Indeed, if we assume the
kernel of T satisfies (t, s) 7→ k(t, s) ∈ C([a, b]× [a, b]) and define T ∈ B(X) by

(Tf)(t) =
∫ b

a
k(t, s)f(s) ds, ∀t ∈ [a, b],

then T is a compact operator. The proof of the compactness of T is fairly challenging,
and because of this it is presented separately later in Example 4.44 (and this proof is
optional material on the course). ⋄

Example 4.39 (Multiplication Operator on ℓp(C)). In this example we consider the
multiplication operator on X = ℓp(C) with 1 ≤ p <∞ which we have already studied
in Examples 2.30 and 4.8. We let (λk)∞

k=1 ∈ ℓ∞(C) and define T ∈ B(X) such that
Tx = (λkxk)∞

k=1 ∈ X, ∀x = (xk)∞
k=1 ∈ X.

We will show that T is compact if λk → 0 as k →∞. We can do this by showing that
T is a limit of a sequence of finite rank operators (TN)N∈N. Indeed, if we can define
TN ∈ B(X) such that limN→∞∥TN − T∥ = 0 and dim Ran(TN) < ∞ for all N ∈ N,
then each TN is compact by Example 4.33, and Lemma 4.30(c) implies that T must
be compact.

For any fixed N ∈ N, we can define TN so that
TNx =

(
λ1x1, λ2x2, . . . , λNxN , 0, 0, . . .

)
for all x = (xk)k ∈ X. Thus the first N components of the sequence TNx are the
same as those in Tx, and the rest are zeros. We have TN ∈ B(X) since TN is also a
multiplication operator (corresponding to the sequence (λ1, . . . , λN , 0, 0, . . .) ∈ ℓ∞(C)).
Moreover, we have

Ran(TN) = { y | y = TNx, for some x ∈ X } ⊂ { (yk)k | yk = 0 for k > N }.

Since the last set is an N -dimensional subspace of X, Lemma 1.16 implies that
dim Ran(TN) ≤ N <∞. Thus TN is indeed a finite rank operator, and thus compact.

To show that ∥TN − T∥ → 0 as N →∞, let x ∈ X. We can estimate

∥(TN − T )x∥p
X =

∥∥∥(λ1x1, . . . , λNxN , 0, . . .
)
−
(
λ1x1, . . . , λNxN , λN+1xN+1, . . .

)∥∥∥p

ℓp

=
∥∥∥(0, . . . , 0, λN+1xN+1, λN+2xN+2, . . .

)∥∥∥p

ℓp
=

∞∑
k=N+1

|λk|p|xk|p

≤
(

sup
k>N
|λk|p

) ∞∑
k=N+1

|xk|p ≤
(

sup
k>N
|λk|

)p ∞∑
k=1
|xk|p =

(
sup
k>N
|λk|

)p

∥x∥p.



4.5. The Spectral Theorem for Compact Self-Adjoint Operators 95

This inequality further implies that the operator norm ∥TN − T∥ satisfies

∥TN − T∥ = sup
∥x∥≤1

∥(TN − T )x∥X ≤ sup
∥x∥≤1

(
∥x∥ sup

k>N
|λk|

)
= sup

k>N
|λk| → 0

as N → ∞, since we assumed that limk→∞|λk| = 0. This convergence together with
Lemma 4.30(c) shows that T is compact. ⋄

4.5 The Spectral Theorem for Compact
Self-Adjoint Operators

In this final section of the chapter we will prove the “spectral theorem” for compact
self-adjoint operators. This result (presented in Theorem 4.41) shows that every com-
pact self-adjoint operator can be represented using its eigenvalues and corresponding
orthogonal eigenvectors. This is not at all a common property for operators on infinite-
dimensional spaces, since—as we have already seen—operators do not in general need
to have eigenvalues at all. The spectral theorem is a very natural culmination of our
investigation of the spectral properties of self-adjoint operators and compact opera-
tors, and the proofs of the two main results of this section utilise every main property
which we proved for these two classes of operators in Sections 4.3 and 4.4, as well as
several others results from Chapters 3 and 4.

We begin by presenting a more detailed description of spectrum (besides the point
0 ∈ C) of a compact and self-adjoint operator. This important result in Theorem 4.40
is in fact also true for all compact operators on Banach spaces (and even normed spaces
which are not complete), but requires a slightly longer proof without the assumption
that T is self-adjoint (see, for example [TL80, Thm. V.7.10] or [NS82, Thm. 6.10.2]).
Our assumption that T is self-adjoint simplifies the proof, since we especially do not
need to separately prove that λ /∈ σr(T ) for all λ ̸= 0. We also use this additional
assumption and “Hilbert space techniques” in proving that the only possible accumu-
lation point of σ(T ) is at 0 ∈ C, but there are also other ways to prove this same
property (see, e.g. [NS82, Cor. 6.10.5], [Kre89, Thm. 8.3-1], or [TL80, Thm. V.7.10]).

Theorem 4.40. Let X be a Hilbert space and let T ∈ B(X) be a compact self-adjoint
operator. For every λ ̸= 0 we have

• either λ ∈ ρ(T ), or

• λ ∈ σp(T ) and dim(Ker(λI − T )) <∞.

The only possible accumulation point of σ(T ) is 0 ∈ C.

Proof. We will first show that the continuous spectrum σc(T ) does not contain any
nonzero values λ ̸= 0. To this end, assume on the contrary that λ ∈ σc(T ) and
λ ̸= 0. By Lemma 4.6 there exists a sequence (xk)∞

k=1 ⊂ X such that ∥xk∥ = 1 for
all k ∈ N and ∥(λI − T )xk∥ → 0 as k → ∞. Our aim is to show that λ is in fact
an eigenvalue (i.e., λI −T is not injective), which will contradict our assumption that
λ ∈ σc(T ). Since T is compact and since the sequence (xk)∞

k=1 is bounded, there exists
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a subsequence (xkn)∞
n=1 and a limit x ∈ X such that Txkn → x as n → ∞. We will

show that x is an eigenvector corresponding to λ. We have
∥λxkn − x∥ = ∥λxkn − Txkn + Txkn − x∥ ≤ ∥(λ− T )xkn∥+ ∥Txkn − x∥ → 0

as n → ∞. Thus λxkn → x as n → ∞, and since λ ̸= 0, we also have xkn → λ−1x as
n→∞. A direct computation now shows that

Tx = λT
(1
λ
x
)

= λT
(

lim
n→∞

xkn

)
= λ · lim

n→∞
Txkn = λx.

Therefore we indeed have (λI − T )x = 0, and since we also have
∥x∥ = ∥ lim

n→∞
λxkn∥ = |λ| lim

n→∞
∥xkn∥ = |λ| > 0,

we conclude that λI − T is not injective. This contradicts our assumption that λ ∈
σc(T ), and thus completes the proof that λ /∈ σc(T ) for all λ ̸= 0.

Since T is self-adjoint, we have σr(T ) = ∅ by Theorem 4.22. Thus for all λ ̸= 0
we have either λ ∈ ρ(T ) or λ ∈ σp(T ), and in the latter case Ker(λI − T ) is finite-
dimensional by Theorem 4.35.

In the final part of the proof we will show that σ(T ) cannot have any accumulation
points other than λ = 0. Since σ(T ) is closed by Theorem 4.13, any accumulation
point is necessarily in σ(T ), and thus it is sufficient to show that λ ∈ σ(T ) cannot be
an accumulation point of σ(T ) if λ ̸= 0. To this end, let λ ∈ σ(T ) \ {0} be arbitrary.
We will show that λ has a neighbourhood with no other spectral points of T , i.e., that
there exists ε > 0 such that µ ∈ ρ(T ) whenever µ ∈ C and 0 < |λ − µ| < ε. Since
T is compact and λ ̸= 0, we have λ ∈ σp(T ) and Ker(λI − T ) is a finite-dimensional
(and thus closed) subspace of X by Theorem 4.35. Denote M = Ker(λI − T ). We
will split the operator T into two parts according to the decomposition X = M ⊕M⊥.
More precisely, we will show that there exist S1 ∈ B(M) and S2 ∈ B(M⊥) such that
if x = x1 + x2 ∈ X with x1 ∈M and x2 ∈M⊥, then

Tx = S1x1 + S2x2. (4.5)
We first note that if x ∈M = Ker(λI − T ), then Tx = λx ∈M . Thus if we define S1
as the restriction of T to M , then S1 ∈ B(M) and in fact S1 = λI. On the other hand,
if x ∈ M⊥ and if y ∈ M is arbitrary, the self-adjointness of T implies that ⟨Tx, y⟩ =
⟨x, Ty⟩ = 0 (since Ty ∈ M), and thus Tx ∈ M⊥ as well. Thus if we define S2 as the
restriction of T to M⊥, we have S2 ∈ B(M⊥). The property (4.5) does indeed hold,
since if x = x1 +x2 where x1 ∈M and x2 ∈M⊥, then Tx = Tx1 +Tx2 = S1x1 +S2x2.

The operator λI − S2 is injective, since if x2 ∈M⊥ is such that 0 = (λI − S2)x2 =
(λI − T )x2, then also x2 ∈ M = Ker(λI − T ), and M ∩M⊥ = {0} implies x2 = 0.
Since S2 ∈ B(M⊥) is compact by Exercise 4.32, the first part of the proof shows that
necessarily λ ∈ ρ(S2). Because the resolvent set is open (Theorem 4.13), there exists
ε > 0 such that µ ∈ ρ(S2) and µI − S2 is injective whenever µ ∈ C is such that
|λ− µ| < ε. Now let µ ∈ C be such that 0 < |λ− µ| < ε. We will show that µI − T is
injective. Indeed, if x ∈ Ker(µI−T ), then x = x1 +x2 for some x1 ∈M and x2 ∈M⊥

and we have
0 = (µI − T )x = (µI − S1)x1 + (µI − S2)x2 = (µ− λ)x1︸ ︷︷ ︸

∈M

+ (µI − S2)x2︸ ︷︷ ︸
∈M⊥

⇒

(µ− λ)x1 = 0
(µI − S2)x2 = 0

⇒

x1 = 0
x2 = 0

⇒ x = 0
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since λ ̸= µ and since µI − S2 is injective. But since T is compact, the first part of
the proof and the injectivity of µI − T imply that µ ∈ ρ(T ). Because of this, we have
proved that there exists ε > 0 such that µ ∈ ρ(T ) whenever 0 < |λ − µ| < ε, and
therefore λ cannot be an accumulation point of σ(T ).

The result in Theorem 4.40 leads to a powerful result known as the Fredholm
Alternative (and Theorem 4.40 is even called the Fredholm Alternative Theorem in
some sources). This result concerns the solvability of the linear operator equation

(λI − T )x = y, (4.6)

where T ∈ B(X) is a compact operator. The Fredholm Alternative (as an imme-
diate consequence of Theorem 4.40) states that for any λ ̸= 0, precisely one of two
“alternatives” must hold:

(a) The equation (4.6) has a unique solution x ∈ X for any vector y ∈ X, or

(b) the homogeneous equation (λI − T )z = 0 has a nonzero solution z ∈ X.

These cases obviously correspond to the cases where either λ ∈ ρ(T ) or λ ∈ σp(T ),
respectively. In the latter case, the number of linearly independent solutions z of
(λI − T )z = 0 is finite and the linear equation (4.6) has a solution if and only if
y ⊥ z for all z ∈ Ker(λI − T ) [NS82, Sec. 6.11, Ex. 2]. Finally, in the case (b) it
also is possible to show that every solution of (4.6) has the form x = x0 + z where
(λI − T )x0 = y and z ∈ Ker(λI − T ) [NS82, Sec. 6.11, Ex. 2].

The most classical application of the Fredholm Alternative is the study of the
integral equations, especially the Fredholm equation of the second kind, namely,

g(t) = f(t)− µ
∫ b

a
k(t, s)f(s) ds, t ∈ [a, b],

which correspond to the case where T is an integral operator and λ = 1/µ. These
types of integral equations were studied extensively by Fredholm himself. In addition,
the Fredholm Alternative is also a very important tool in the study of linear partial
differential equations, especially elliptic equations.

The next theorem is the main result of this section. This “spectral theorem”
shows that every compact self-adjoint operator can be represented using its eigenvalues
and corresponding orthonormal eigenvectors (i.e., the eigenvectors {ek}k are such that
ek and ej are orthogonal for all k ̸= j, and ∥ek∥ = 1 for all k). This representation
can (and should!) be compared to the spectral decomposition of a Hermitian matrix.
Indeed, the form of the operator T in Theorem 4.41 has precisely the form of an
“eigenfunction expansion”, but in the case of a compact and self-adjoint operator, the
expansion may contain an infinite number of terms.
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Theorem 4.41 (Spectral Theorem for Compact Self-Adjoint Operators). Let X be
a Hilbert space and assume T ∈ B(X) is a compact self-adjoint operator and T ̸= O.
Then there exists N ∈ N or N =∞ such that

Tx =
N∑

k=1
λk⟨x, ek⟩ek, ∀x ∈ X,

where λk ∈ R \ {0} are nonzero eigenvalues of T and the following hold:

• The values |λk| are non-increasing and the multiplicity of each λk is finite.

• {ek}N
k=1 is an orthonormal set of eigenvectors so that Tek = λkek for all k.

If N =∞, then λk → 0 as k →∞.

Proof. Since T is bounded and self-adjoint, we have that σp(T ) ⊂ [−∥T∥, ∥T∥] ⊂ R
by Theorem 4.22. Moreover, since T is compact, Theorem 4.40 implies that every
λ ∈ σ(T ) with λ ̸= 0 is an eigenvalue of T and Ker(λI − T ) is a finite-dimensional
subspace of X, and that 0 ∈ C is the only (possible) accumulation point of σ(T ).
Because of this, we can organise the nonzero eigenvalues of T into a sequence (λk)N

k=1
(with N ∈ N or N = ∞) in the order of descending |λk| in such a way that each
eigenvalue λk in the sequence is repeated dim(Ker(λkI−T )) times. Since Ker(λkI−T )
is finite-dimensional for every k ∈ N, we can choose an orthonormal basis on each
of these spaces (using the standard Gram–Schmidt process). We can further define
a sequence (ek)N

k=1 ⊂ X to consists of the orthonormal basis vectors of the spaces
Ker(λkI − T ) which are listed in the same order as the eigenvalues (λk)N

k=1. More
precisely, we define (ek)N

k=1 ⊂ X so that
{ej}k0+n

j=k0 orthonormal basis of Ker(λk0I − T ) if λj = λk0 for j ∈ {k0, . . . , k0 + n}.

By construction, we have that Tek = λkek for all k. Moreover, since the subspaces
Ker(λkI − T ) and Ker(λmI − T ) are orthogonal if λk ̸= λm by Lemma 4.25, the
sequence (ek)N

k=1 is orthonormal, i.e., ⟨ek, el⟩ = δkl where δkl is the Dirac delta. Since
by Theorem 4.40 the spectrum σ(T ) cannot have any accumulation points other than
0 ∈ C, we must have λk → 0 as k →∞ if N =∞.

In the second part of the proof we will show that (ek)N
k=1 is an orthonormal basis

of Ran(T ) (in the sense of Definition 3.43). We will do this by verifying that condition
(d) of Theorem 3.49 holds, i.e., “if y ∈ Ran(T ) is such that ⟨y, ek⟩ = 0 for all k ∈
{1, . . . , N}, then necessarily y = 0”. Let y ∈ Ran(T ) be an arbitrary vector satisfying
⟨y, ek⟩ = 0 for all k. Then there exists x ∈ X such that y = Tx and the self-adjointness
of T implies (using λk ̸= 0)

⟨y, ek⟩ = 0 ∀k ⇔ ⟨Tx, ek⟩ = 0 ∀k
⇔ ⟨x, Tek⟩ = 0 ∀k
⇔ λk⟨x, ek⟩ = 0 ∀k
⇔ ⟨x, ek⟩ = 0 ∀k.

If we define M as the subspace of all finite linear combinations of {ek}N
k=1, i.e.,

M = { z =
n∑

k=1
αkek | n ∈ N, α1, . . . , αn ∈ C },
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then the equivalences above imply that x ∈M⊥. We want to show that Tz ∈M⊥ for
all z ∈M⊥. To this end, let z ∈M⊥ be arbitrary. If n ∈ N and (αk)n

k=1 ⊂ C, then

⟨Tz,
n∑

k=1
αkek⟩ = ⟨z, T

n∑
k=1

αkek⟩ = ⟨z,
n∑

k=1
αkTek⟩ = ⟨z,

n∑
k=1

αkλkek⟩ = 0

since ∑n
k=1(αkλk)ek ∈ M and since z ∈ M⊥ by assumption. Thus we indeed have

Tz ∈ M⊥ for all z ∈ M⊥ and we can therefore consider the restriction S of T to the
closed subspace M⊥ (defined by Sz = Tz for all z ∈M⊥) as an operator S ∈ B(M⊥).
We have from Exercise 4.32 that S is compact, and the self-adjointness of T implies
that also S∗ = S. We will next show that σ(S) = {0}, which will imply S = O by
Theorem 4.24. To do this, let λ ∈ σ(S) be such that λ ̸= 0. Theorem 4.40 implies that
λ is an eigenvalue of S and thus there exists z ∈M⊥, z ̸= 0, such that (λI − S)z = 0.
But since S is a restriction of T , we also have

(λI − T )z = (λI − S)z = 0,
which implies z ∈ Ker(λI − T ). But since λ ̸= 0, every eigenvector corresponding to
λ can be expressed as a linear combination of { ek | k ∈ N such that λk = λ } (the
orthonormal basis of Ker(λI−T )) and thus z ∈M . We therefore have z ∈M ∩M⊥ =
{0}, which contradicts our assumption that z ̸= 0. This means that σ(S) = {0}, and
since S is self-adjoint, we have S = O by Theorem 4.24. Since our original y ∈ Ran(T )
satisfies y = Tx with x ∈ M⊥, we finally have y = Tx = Sx = Ox = 0. Because of
this, Theorem 3.49 implies that {ek}N

k=1 is an orthonormal basis of Ran(T ).
The final part of the proof is very simple: Since {ek}N

k=1 is an orthonormal basis
of Ran(T ), Theorem 3.49(b) implies that for any x ∈ X the vector Tx ∈ Ran(T ) has
the “generalised Fourier series expansion” of the form (3.11), and thus

Tx =
N∑

k=1
⟨Tx, ek⟩ek =

N∑
k=1
⟨x, Tek⟩ek =

N∑
k=1
⟨x, λkek⟩ek =

N∑
k=1

λk⟨x, ek⟩ek.

Since x ∈ X was arbitrary, the proof is complete.

The spectral representation of T in Theorem 4.41 also gives us a way to express
the solution of the linear equation

(λI − T )x = y

for λ ̸= 0 whenever λ /∈ σp(T ). Indeed, in Exercise 4.42 you will verify that if
λ /∈ σp(T ), then the inverse of λI − T has an explicit formula in terms of {λk}N

k=1
and {ek}N

k=1, and the unique solution x of the linear equation is given by

x = (λI − T )−1y = 1
λ
y +

N∑
k=1

λk

λ(λ− λk)⟨y, ek⟩ek,

where N ∈ N or N =∞ depending on the number of nonzero eigenvalues of T .

Exercise 4.42. Prove that if T is a compact self-adjoint operator with the spectral
representation in Theorem 4.41 and if λ ∈ ρ(T ), then

(λI − T )−1y = 1
λ
y +

N∑
k=1

λk

λ(λ− λk)⟨y, ek⟩ek, ∀y ∈ X.

You do not need to prove that the operator determined by the right-hand side is
bounded, though this can be done using the Bessel’s Inequality (Exercise 3.46). ⋄
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Exercise 4.43. Consider the intergral operator on X = L2(0, 1) with k(t, s) = 1−3ts
for t, s ∈ [0, 1] (Exercise 4.27).

(a) Construct the spectral decomposition of T .

(b) Determine the values µ ̸= 0 for which the Fredholm equation of the second kind

g(t) = f(t)− µ
∫ 1

0
(1− 3ts)f(s) ds

has a unique solution for every g ∈ L2(0, 1), and write down the formula for the
solution f(t).

⋄

4.5.1 Compactness of Integral Operators [Optional]
Example 4.44 (Integral Operator). In this example we prove that the integral oper-
ator studied in Example 4.38 (and in Examples 2.21, 3.39 and 4.26) is compact. We
assume the kernel of T satisfies (t, s) 7→ k(t, s) ∈ C([a, b]× [a, b]) and define T ∈ B(X)
by

(Tf)(t) =
∫ b

a
k(t, s)f(s) ds, ∀t ∈ [a, b].

We will prove the compactness of the operator T by proving that it can be obtained
as a limit T = limN→∞ TN of compact operators. In particular, we will define TN as
finite rank operators such as the ones studied in Example 4.33. To this end, for k ∈ Z
we define

ek(t) = 1√
b− a

ei2πk
(t−a)
(b−a)

Then the sequence (ek)∞
k=−∞ ⊂ L2(a, b) (i.e., (. . . , e−2, e−1, e0, e1, e2, . . .)) consists of

the complex Fourier basis functions on the interval [a, b] and in particular it is an
orthonormal basis of L2(a, b) (this basis is otherwise exactly as in Example 3.50 but
it is scaled from the interval [0, 1] to [a, b]). In Exercise 4.45 we will see that if we
further define ekj ∈ L2([a, b] × [a, b]) such that ekj(t, s) = ek(t)ej(s) for all k, j ∈ Z,
then (ekj)(k,j)∈Z2 with index set Z2 = { (k, j) | k, j ∈ Z } is an orthonormal basis of
L2([a, b]× [a, b]). Because k(·, ·) ∈ L2([a, b]× [a, b]), we then have from Theorem 3.49
that

k(t, s) =
∑

k,j∈Z
⟨k, ekj⟩L2(Ω)ekj(t, s), (4.7)

where Ω = [a, b]× [a, b]. We will define the operators TN ∈ B(X) based on truncations
of the above infinite sum. More precisely, for N ∈ N we define

kN(t, s) =
∑

|k|,|j|≤N

⟨k, ekj⟩L2(Ω)ekj(t, s) (4.8)

and define TN ∈ B(X) such that

(TNf)(t) =
∫ b

a
kN(t, s)f(s) ds, ∀t ∈ [a, b].
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Since kN(·, ·) ∈ C([a, b] × [a, b]), our earlier analysis of integral operators in Exam-
ple 2.21 shows that TN ∈ B(X). It turns out that the definition of kN(·, ·) has the
consequence that TN are finite rank operators, and therefore compact by Example 4.33.
Indeed, using the forms of kN(t, s) and ekj(t, s) = ek(t)ej(s) we can see that

(TNf)(t) =
∫ b

a
kN(t, s)f(s) ds =

∫ b

a

∑
|k|,|j|≤N

⟨k, ekj⟩L2(Ω)ekj(t, s)f(s) ds

=
∑

|k|,|j|≤N

⟨k, ekj⟩L2(Ω)ek(t)
∫ b

a
ej(s)f(s) ds

=
∑

|k|,|j|≤N

⟨f, ej⟩L2(a,b)⟨k, ekj⟩L2(Ω)ek(t).

If we define zkj = ej ∈ L2(a, b) and ykj = ⟨k, ekj⟩L2(Ω)ek ∈ L2(a, b) for all k, j ∈
{−N, . . . , N}, then

TNf =
∑

|k|,|j|≤N

⟨f, zkj⟩ykj, ∀f ∈ L2(a, b).

Thus TN is is indeed a finite rank operator and therefore compact by Example 4.33.
Finally, we need to show that ∥T − TN∥ → 0 as N → ∞. For an arbitrary

f ∈ L2(a, b) and for all t ∈ [a, b] we have

((T − TN)f)(t) = (Tf)(t)− (TNf)(t) =
∫ b

a
(k(t, s)− kN(t, s))f(s) ds

and thus T −TN is an integral operator with kernel k(·, ·)− kN(·, ·) ∈ C([a, b]× [a, b]).
Because of this, we have from Example 2.21 that

∥T − TN∥ ≤
(∫ b

a

∫ b

a
|k(t, s)− kN(t, s)|2dtds

) 1
2

= ∥k(·, ·)− kN(·, ·)∥L2(Ω).

Comparing (4.7) and (4.8) shows that

k(t, s)− kN(t, s) =
∑

|k|>N or
|j|>N

⟨k, ekj⟩L2(Ω)ekj(t, s).

Since (ekj)(k,j)∈Z2 is an orthonormal basis of L2(Ω), Theorem 3.49(c) implies that∑
k,j∈Z|⟨k, ekj⟩|2 = ∥k(·, ·)∥2

L2 <∞ and therefore (again by Theorem 3.49(c))

∥T − TN∥ ≤ ∥k(·, ·)− kN(·, ·)∥L2(Ω) =
∑

k,j∈Z
|⟨k − kN , ekj⟩|2 =

∑
|k|>N or

|j|>N

|⟨k, ekj⟩|2 → 0

as N →∞. Since TN are compact, Lemma 4.30(c) finally implies that T is compact.
The results on the spectrum of compact operators in this section now imply that

any nonzero eigenvalue of T can have at most finite number of linearly independent
eigenfunctions, and if the inverse T−1 exists, then it is an unbounded operator. The
latter is not very surprising to us, since the natural inverse of an integral operator is
a differential operator. ⋄
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Exercise 4.45. Let ek ∈ L2(a, b) be defined as

ek(t) = 1√
b− a

ei2πk
(t−a)
(b−a) , ∀k ∈ Z,

and define ekj(t, s) = ek(t)ej(s) for all k, j ∈ Z. Prove that (ekj)(k,j)∈Z2 with index set
Z2 = { (k, j) | k, j ∈ Z } is an orthonormal basis of L2([a, b] × [a, b]). (Hint: Verify
that (ekj)(k,j)∈Z2 is orthonormal and that the property in Theorem 3.49(d) holds). ⋄



A. Additional Results

A.1 Proof of the Minkowski Inequality
In this section we show that the p-norm defined in (1.2) on C(Ω) where Ω ⊂ Rn is
a compact set (closed and bounded) satisfies the triangle inequality. This result is
known as the Minkowski Inequality. The proof is based on Lemmas A.1 (Young’s
Inequality for positive real numbers) and A.2 (Hölder’s Inequality for continuous func-
tions).

Lemma A.1 (Young’s Inequality). Let p > 1 and q > 1 be real numbers satisfying
1
p

+ 1
q

= 1. If a > 0 and b > 0, then

ab ≤ 1
p
ap + 1

q
bq.

Proof. Consider the illustration of the function y = xp−1 with ap−1 < b in Figure A.1.
The area of the rectangle with sides a and b is ab. The area of I is 1

p
ap (integrate

a x

b

y = xp−1

I

II

Figure A.1: The function y = xp−1 with ap−1 < b.

the function y = xp−1 from x = 0 to x = a) and the area of II is 1
q
bq (integrate the

function x = y1/(p−1) = yq−1 (since 1/p + 1/q = 1) from y = 0 to y = b). Thus, we
obtain Young’s inequality. If ap−1 ≥ b the proof works in the same way.

Lemma A.2 (Hölder’s Inequality). Let Ω ⊂ Rn be compact and let p > 1, q > 1 be
such that 1

p
+ 1

q
= 1. Then for every f, g ∈ C(Ω) we have

∥fg∥1 ≤ ∥f∥p∥g∥q.

103
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Proof. Note first that fg ∈ C(Ω) whenever f, g ∈ C(Ω), since Ω is compact and f and
g are uniformly continuous. The claim obviously holds if f = 0 or g = 0. We can thus
assume ∥f∥p > 0 and ∥g∥q > 0. By Young’s Inequality we have that for all z ∈ Ω

|f(z)∥g(z)|
∥f∥p∥g∥q

≤ 1
p

|f(z)|p
∥f∥p

p
+ 1
q

|g(z)|q
∥g∥q

q
,

so that ∫
Ω

|f(z)g(z)|
∥f∥p∥g∥q

dz ≤ 1
p

+ 1
q

= 1,

which implies the claim ∥fg∥1 =
∫

Ω |f(z)g(z)| dz ≤ ∥f∥p∥g∥q.

Remark A.3. If p = q = 2, Hölder’s inequality is called Cauchy–Schwarz Inequal-
ity.

Theorem A.4 (Minkowski’s Inequality). Let Ω ⊂ Rn be compact and let p ≥ 1.
Then

∥f + g∥p ≤ ∥f∥p + ∥g∥p, ∀f, g ∈ C(Ω).

Proof. The case p = 1 is straightforward to verify directly. Assume p > 1 and let
f, g ∈ C(Ω). We can assume ∥f + g∥p ̸= 0, since otherwise the claim is trivial. If we
define q = p

p−1 > 1, we have 1
q

= 1− 1
p
. We can use the Hölder’s Inequality to estimate

∥f + g∥p
p =

∫
Ω
|f(z) + g(z)|p dz =

∫
Ω
|f(z) + g(z)||f(z) + g(z)|p−1 dz

≤
∫

Ω
|f(z)||f(z) + g(z)|p−1 dz +

∫
Ω
|g(z)||f(z) + g(z)|p−1 dz

≤ ∥f∥p∥(f + g)p−1∥q + ∥g∥p∥(f + g)p−1∥q

= (∥f∥p + ∥g∥p) ∥(f + g)p−1∥q.

Because q(p−1) = p, we have p−1 = p
q
, and the right-hand side of the above inequality

is exactly

(∥f∥p + ∥g∥p)
(∫

Ω
|f(z) + g(z)|p dz

)1−1/p

= (∥f∥p + ∥g∥p) ∥f + g∥p−1
p .

Dividing both sides of the complete inequality by ∥f + g∥p−1
p (which is nonzero by

assumption) we obtain the claim

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

A.2 Normed Space Topology
In this section we will give a quick summary of the main topological concepts on a
normed space X. In particular, we will define open and closed sets and the closure of
a set, and summarise their main properties.
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Definition A.5. Let (X, ∥·∥) be a normed space.

• The open ball B(x0, r) centered at x0 ∈ X and with radius r > 0 is defined
as B(x0, r) = {x ∈ X | ∥x0 − x∥ < r }.

• A subset A ⊂ X is open if for every x ∈ A there exists ε > 0 such that
B(x, ε) ⊂ A.

• A point x0 ∈ X is an accumulation point of A if for every ε > 0 there exists
x ∈ A such that x ∈ B(x0, ε) and x ̸= x0.

• The set A ⊂ X is closed if it contains all its accumulation points.

• The closure A ⊂ X of A ⊂ X is defined as

A = {x ∈ X | x ∈ A or x is an accumulation point of A }.

• A subset A ⊂ X is said to be bounded if there exists M > 0 such that
∥x∥ ≤M for all x ∈ A.

Note that an accumulation point of A ⊂ X does not in general belong to A!
The definitions imply that a subset A of X is open if and only if its complement
X \ A = {x ∈ X | x /∈ A } is closed.

The definitions also imply that every set A ⊂ X is dense in its closure A. This
also implies that for every x ∈ A there exists a sequence (xk)∞

k=1 ⊂ A such that
∥xk − x∥ → 0 as k →∞ (see Exercise 1.40).

A.3 Decomposition of Hilbert Spaces
In this section we present the proof of the decomposition X = M ⊕⊥M⊥ of a Hilbert
space X into the sum of its closed subspace M and its orthogonal complement. The
proof is based on the following Minimum Norm Theorem, which also holds in a more
general case where the subspace M is replaced with a “closed convex set” K ⊂ X.

Theorem A.6 (Minimum Norm Theorem). Let X be a Hilbert space and let M be
a closed subspace of X. For every x0 ∈ X there exists a unique y0 ∈ X satisfying

∥x0 − y0∥ ≤ ∥x0 − y∥ ∀y ∈M.

Proof. Denote δ = inf{ ∥x0 − y∥ | y ∈M }. By definition of the infimum, there exists
a sequence (yk)∞

k=1 ⊂ M such that ∥x0 − yk∥ → 0 as k →∞. To show that (yk)k is a
Cauchy sequence, we can use the Parallelogram Law (Lemma 3.15) to estimate

∥yk − ym∥2 = ∥(yk − x0) + (x0 − ym)∥2

= 2∥yk − x0∥2 + 2∥x0 − ym∥2 − ∥yk + ym − 2x0∥2

= 2∥yk − x0∥2 + 2∥x0 − ym∥2 − 4
∥∥∥∥1

2(yk + ym)︸ ︷︷ ︸
∈M

−x0

∥∥∥∥2

≤ 2∥yk − x0∥2 + 2∥x0 − ym∥2 − 4δ2.
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The last expression converges to zero as k,m→∞, and thus (yk)k is a Cauchy sequence
on X. Since X is a Hilbert space, this sequence has a limit y0 ∈ X, and since M is a
closed subspace, we have y0 ∈M . The continuity of the norm further implies that

∥x0 − y0∥ = ∥x0 − lim
k→∞

yk∥ = lim
k→∞
∥x0 − yk∥ = δ.

To prove that y0 is unique, assume z0 ∈ M is such that that ∥x0 − z0∥ = δ. The
Parallelogram Law then implies that

∥y0 − z0∥2 = ∥(y0 − x0) + (x0 − z0)∥2

= 2∥y0 − x0∥2 + 2∥x0 − z0∥2 − 4
∥∥∥∥1

2(y0 + z0)− x0

∥∥∥∥2

≤ 2δ2 + 2δ2 − 4δ2 = 0

and thus z0 = y0.

Theorem A.7. If M is a closed subspace of a Hilbert space X, then

X = M ⊕⊥M⊥.

Proof. Let z ∈ X be arbitrary. Our aim is to show that z = x + y for some x ∈ M
and y ∈M⊥. The Minimum Norm Theorem implies that there exists a unique x ∈M
so that ∥z − x∥ ≤ ∥z − x′∥ for all x′ ∈M . Let y = z − x. We will show that y ∈M⊥.
For all λ ∈ C and x′ ∈M we have

∥y∥2 = ∥z − x∥2 ≤ ∥z − x− λx′∥2 = ∥y − λx′∥2

= ∥y∥2 − λ⟨y, x′⟩ − λ⟨x′, y⟩+ |λ|2⟨x′, x′⟩.

Choosing x′ ∈M with ∥x′∥ = 1 and λ = ⟨y, x′⟩ we obtain

∥y∥2 ≤ ∥y∥2 − |λ|2.

This implies 0 = λ = ⟨y, x′⟩ for all x′ ∈ M , and thus y ∈ M⊥. Since z ∈ X was
arbitrary and since we have that it can be represented in the form z = x + y where
x ∈M and y ∈M⊥, the proof is complete.
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