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List of Notation (to be expanded)

A−1 – (algebraic) inverse of an operator
A∗ – adjoint of an operator
∥x∥ – norm of an element x

⟨x, y⟩ – inner product on an inner product space
L(X, Y ) – The space of bounded linear operators A : X → Y

L(X) – The space of bounded linear operators A : X → X
R(A) – range of an operator
N (A) – kernel (or null-space) of an operator
G(A) – The graph of an operator

Lp(a, b) – the Lebesgue space of functions f : (a, b) → C
Lp(a, b;X) – the Lebesgue space of functions f : (a, b) → X
C([a, b]) – space of continuous functions f : [a, b] → C

C([a, b];X) – space of continuous functions f : [a, b] → X
C(Ω;X) – space of continuous functions f : Ω ⊂ Rn → X
Cb(Ω;X) – continuous functions f : Ω ⊂ Rn → X with ∥f∥∞ := supξ∈Ω∥f∥X <∞

σ(A) – spectrum of an operator
ρ(A) – the resolvent set of an operator
Ff – Fourier transform of a function f

F−1g – Inverse Fourier transform of a function g
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1. Closed Operators

In this chapter we focus on an important class of unbounded linear operators A : D(A) ⊂
X → Y , namely closed operators. We begin by studying the characteristic and fundamental
properties of this class, and study the spectrum of unbounded operators on Banach spaces.

Later on the course these results are applied in the study of linear ordinary and partial
differential equations. Such equations can often be written in an abstract form

Af = g

where A is a closed operator on a suitable function space. The questions of existence,
uniqueness and other properties of the solution f can then be studied using the properties
of the operator A.

1.1 Closed Linear Operators

Closed linear operators A : D(A) ⊂ X → Y form a strictly larger class than bounded
operators between two Banach spaces X and Y .

Definition 1.1.1. An operator A : D(A) ⊂ X → Y between two Banach spaces X and Y
is closed if it has the following property:

If (xn)n ⊂ D(A) is a sequence such that xn → x and Axn → y as n→ ∞ for
some x ∈ X and y ∈ Y , then we have x ∈ D(A) and Ax = y.

An operator A : D(A) ⊂ X → Y is closed if and only if the so-called graph of A defined
as

G(A) := { (x, y) ∈ X × Y | x ∈ D(A) and y = Ax }

is a closed subspace of X × Y . (Here the norm on X × Y is defined as ∥(x, y)∥X×Y =
∥x∥X + ∥y∥Y ).

Exercise 1.1.1. Show that the above claim holds. ⋄

Exercise 1.1.2. Assume that the operator A : D(A) ⊂ X → Y has an algebraic inverse
A−1 : D(A−1) ⊂ Y → X with D(A−1) = R(A). Show that A is closed if and only if A−1 is
closed. ⋄

Often the closedness of an operator A : D(A) ⊂ X → Y can be shown indirectly, by
showing that it has a bounded inverse.
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2 Chapter 1. Closed Operators

Lemma 1.1.2. Let X and Y be Banach spaces. If A : D(A) ⊂ X → Y has a bounded inverse
A−1 ∈ L(Y,X), then A is a closed operator.

Exercise 1.1.3. Prove Lemma 1.1.2. ⋄

Theorem 1.1.3 (Closed Graph Theorem). Let X and Y be Banach spaces and let A :
D(A) ⊂ X → Y be a closed operator. If D(A) is a closed subset of X, then A is a bounded
operator, i.e., there exists M > 0 such that

∥Ax∥Y ≤M∥x∥X , ∀x ∈ D(A).

One of the important consequences of the Closed Graph Theorem is that closed and
bijective operators between two Banach spaces are “boundedly invertible”.

Theorem 1.1.4. Let X and Y be Banach spaces and let A : D(A) ⊂ X → Y be a closed
operator. If A is bijective (injective and surjective), then A has a bounded inverse A−1 ∈
L(Y,X).

Exercise 1.1.4. Prove that Theorem 1.1.4 follows from the Closed Graph Theorem. ⋄

Example 1.1.5. Consider an interval [a, b] ⊂ R and let X = C[a, b] with norm ∥·∥∞. We can
define a first order differential operator on X by

(Af)(ξ) = f ′(ξ), f ∈ C1[a, b] := { f ∈ C[a, b] | f ′ ∈ C[a, b] }.

If we restrict the domain of the operator in such a way that it f ∈ D(A) satisfy a boundary
condition f(a) = 0, i.e.,

f ∈ D(A) := { f ∈ C[a, b] | f ′ ∈ C[a, b], f(a) = 0 },

then A has a bounded inverse A−1 ∈ L(X). Indeed, we can find a formula for A−1 by letting
g ∈ X be arbitrary and looking for an element f ∈ D(A) such that Af = g. Taking into
account the boundary condition, this operator equation is equivalent to the boundary value
problem

f ′(ξ) = g(ξ), ξ ∈ [a, b],

f(a) = 0.

The differential equation on the first line has the general solution f(ξ) = c0 +
∫ ξ

a
g(s)ds,

where c0 ∈ C is a constant, and the the boundary condition f(a) = 0 implies c0 = 0.
Because of this, the equation Af = g has a unique solution which clearly satisfies f ∈ D(A).
Thus A has an algebraic inverse and R(A) = X. Finally, to show that A−1f is bounded, we
can let g ∈ X be arbitrary and estimate

∥A−1g∥∞ = max
ξ∈[a,b]

|(A−1g)(ξ)| ≤ max
ξ∈[a,b]

∫ ξ

a

|g(s)|ds =
∫ b

a

|g(s)|ds ≤ (b− a)∥g∥∞.

The fact that A−1 ∈ L(X) implies that A : D(A) ⊂ X → X is a closed operator.
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Also the operator A1 : D(A1) ⊂ X → X defined as A1f = f ′ with the larger domain
D(A1) = C1[a, b] is a closed operator on X. This can be seen directly using the definition.
Indeed, if (fn)n∈N ⊂ C1[a, b] is such that ∥fn − f∥∞ → 0 and ∥f ′

n − g∥∞ = ∥A1fn − g∥X → 0
as n → ∞, then the sequences of functions (fn)n and (f ′

n)n are uniformly convergent, and it
follows that f ∈ C1[a, b] and A1f = f ′ = g. Thus A1 is a closed operator. Note that A1 is an
extension of A, since D(A) ⊂ D(A1) and A1f = Af for all f ∈ D(A). ⋄

1.2 Spectral Theory for Closed Operators

The spectrum of a linear operator A : D(A) ⊂ X → X is an important concept in functional
analysis. In the following we define the parts of the spectrum σ(A) and the resolvent set
ρ(A) = C \ σ(A) are defined for unbounded operators A : D(A) ⊂ X → X.

Definition 1.2.1. Let X be a Banach space and let A : D(A) ⊂ X → X.

The resolvent set ρ(A) of A is defined as

ρ(A) = {λ ∈ C | The operator λ− A has a bounded inverse (λ− A)−1 ∈ L(X) }.

The set σ(A) = C \ ρ(A) is called the spectrum of A, and can be divided into the disjoint
parts — the point spectrum σp(A), the continuous spectrum σc(A), and the residual spectrum
σr(A) — defined as

σp(A) = {λ ∈ C | The operator λ− A is not injective, i.e., N (λ− A) ̸= {0} }

σc(A) = {λ ∈ C | λ− A injective, but R(λ− A) = X but R(λ− A) ̸= X }

σr(A) = {λ ∈ C | λ− A injective, but R(λ− A) ̸= X }.

In the definitions of σc(A) and σr(A) the notation R(λ− A) denotes the closure of the
subspace R(λ−A) in X. The points λ ∈ σp(A) are called eigenvalues of A, and by definition
there exists an eigenvector x ∈ D(A) such that x ̸= 0 satisfying Ax = λx. This corresponds
exactly to the case of matrices, whose spectra consist entirely of eigenvalues, i.e., σ(A) =
σp(A) for all matrices A ∈ Cn×n or A ∈ Rn×n.

It should be noted that while σ(A), σp(A) and ρ(A) always defined in the same way,
the division of the other parts of the spectrum σ(A) may be done in a different way in
different references. Especially it is imporant to be careful with the definition of the residual
spectrum σr(A)!

Exercise 1.2.1. Show that C = ρ(A)∪ σp(A)∪ σc(A)∪ σr(A) and the sets σp(A), σc(A), and
σr(A) are mutually disjoint (i.e., their pairwise intersections are empty sets). ⋄

Definition 1.2.2. Let X be a Banach space and let A : D(A) ⊂ X → X. The resolvent
operator of A is defined as (λ− A)−1 for λ ∈ ρ(A)

For a scalar λ ∈ C, the notation “λ − A” is a short-hand expression for “λI − A”, i.e.,
(λ− A)x = λx− Ax for x ∈ D(A).
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Many of the familiar properties of the spectrum and the resolvent of a bounded operator
continue to hold for closed operators. In particular, ρ(A) is always an open subset of C, and
therefore σ(A) = C \ ρ(A) is closed. However, there are differences as well: If the operator
is bounded, i.e., A ∈ L(X), then both σ(A) and ρ(A) are non-empty subsets of C, and σ(A)
is contained in a circle centered at 0 ∈ C with radius ∥A∥. If A is unbounded, either one of
σ(A) or ρ(A) can in general be empty sets.

Exercise 1.2.2. Show that if A : D(A) ⊂ X → X and λ ∈ ρ(A), then R((λ− A)−1) ⊂ D(A)
and A(λ− A)−1x = (λ− A)−1Ax for all x ∈ D(A). Thus (λ− A)−1 commutes with A. ⋄

Exercise 1.2.3. Let X be a Banach space and A : D(A) ⊂ X → X. Show that the resolvent
operator satisfies the resolvent identity

(λ− A)−1 − (µ− A)−1 = (µ− λ)(λ− A)−1(µ− A)−1, λ, µ ∈ ρ(A).

Deduce that (λ− A)−1 and (µ− A)−1 commute for all λ, µ ∈ ρ(A). ⋄

Exercise 1.2.4. Show that if λ ∈ ρ(A) and µ ∈ C is such that |λ− µ|∥(λ− A)−1∥ < 1, then
µ ∈ ρ(A) and the resolvent operator (µ− A)−1 is given by the Neumann series

(µ− A)−1 =
∞∑
n=0

(λ− µ)n(λ− A)−n−1.

Deduce that ρ(A) is an open subset of C and that ρ 7→ (λ − A)−1 ∈ L(X) is continuous on
ρ(A). ⋄

Exercise 1.2.5. Let X = Cb(R2) := { f ∈ C2(R) | ∥f∥∞ < ∞} and consider the operator
A : D(A) ⊂ X → X defined as

(Af)(x, y) = (x+ iy)f(x, y), (x, y) ∈ R2,

D(A) = { f ∈ Cb(R2) | sup
(z,y)∈R2

|(x+ iy)f(x, y)| <∞}.

Show that σ(A) = C (and thus ρ(A) = ∅). ⋄

Exercise 1.2.6. Let X = L2(R2) and consider the operator A : D(A) ⊂ X → X defined as

(Af)(x, y) = (x+ iy)f(x, y), (x, y) ∈ R2,

D(A) = { f : R2 → C |
∫
R2

|(x+ iy)f(x, y)|2dxdy <∞}.

Show that σ(A) = C (and thus ρ(A) = ∅). ⋄

Theorem 1.2.3. LetX be a Banach space assumeA : D(A) ⊂ X → X is such that ρ(A) ̸= ∅.
The mapping λ 7→ (λ− A)−1 ∈ L(X) is an analytic function on ρ(A) and for all n ∈ N

dn

dλn
(λ− A)−1 = (−1)nn!(λ− A)−(n+1), n ∈ N.
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Here the property that a function f : Ω ⊂ C → X for a Banach space X and Ω ⊂ C open
is said to be locally analytic if for every point λ0 ∈ Ω there exists an neighbourhood of λ0
such that the function has a derivative f ′(λ0) defined by∥∥∥∥f(λ)− f(λ0)

λ− λ0
− f ′(λ0)

∥∥∥∥ → 0, as |λ− λ0| → 0.

The term “locally” analytic takes into account that the resolvent ρ(A) takes into account
that the resolvent ρ(A) does not need to be a connected subset of C, and therefore also
the derivative of a locally analytic function can be different in the different “connected
components” of the domain.

Exercise 1.2.7. Prove Theorem 1.2.3. ⋄

1.3 Adjoints of Closed Operators on Hilbert Spaces

On Hilbert spaces we can define the concept of an adjoint also for unbounded operators.
Throughout this section X is a Hilbert space.

Definition 1.3.1. Let A : D(A) ⊂ X → Y with Hilbert spaces X and Y and assume D(A)
is dense in X. The adjoint of A is an operator A∗ : D(A∗) ⊂ Y → X defined so that
y ∈ D(A∗) if and only if there exists z ∈ X satisfying

⟨Ax, y⟩Y = ⟨x, z⟩X ∀x ∈ D(A).

In this case we define A∗y = z.

The assumption that D(A) is dense in X is required in order for A∗ to be well-defined
as an operator A∗ : D(A) ⊂ Y → X (otherwise there may be several z ∈ Z which satisfy
A∗y = z). We say that such operators A : D(A) ⊂ X → Y are densely defined.

Exercise 1.3.1. Show that the adjoint A∗ of A : D(A) ⊂ X → Y is a closed operator. ⋄

Lemma 1.3.2. Assume X and Y are Hilbert spaces and A : D(A) ⊂ X → Y is densely
defined. The adjoint operator has the following fundamental properties.

(a) If B ∈ L(X, Y ), then (A+B)∗ = A∗+B∗, which means that D((A+B)∗) = D(A∗) and

(A+B)∗y = A∗y +B∗y ∀y ∈ D(A∗).

(b) If A has a bounded inverse A−1 ∈ L(Y,X), then also A∗ : D(A∗) ⊂ Y → X has a
bounded inverse and (A∗)−1 = (A−1)∗ ∈ L(X, Y ).

Exercise 1.3.2. Prove Lemma 1.3.2. ⋄
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Definition 1.3.3. Let X be a Hilbert space. The operator A : D(A) ⊂ X → X is symmetric
if

⟨Ax, y⟩X = ⟨x,Ay⟩X ∀x, y ∈ D(A).

It is self-adjoint if D(A∗) = D(A) and A∗x = Ax for all x ∈ D(A).

In a more compact form, the self-adjointess of A : D(A) ⊂ X → X be expressed as a
condition that A∗ = A.

Exercise 1.3.3. Describe the relation between A∗ and A for a symmetric operator. Show
that every self-adjoint operator is symmetric. Is the converse true? ⋄

Self-adjoint operators have the following very special spectral properties.

Theorem 1.3.4. Let A : D(A) ⊂ X → X with a Hilbert space X. If A is self-adjoint, then
σ(A) is not empty and σ(A) ⊂ R. Moreover, the norm of the resolvent operator satisfies

∥(λ− A)−1∥ ≤ 1

|Imλ|
, λ /∈ R. (1.1)

Exercise 1.3.4. Let A : D(A) ⊂ X → X be symmetric. Show that for every λ ∈ C and
x ∈ D(A) we have

∥(λ− A)x∥2 = ∥(Reλ− A)x∥2 + (Imλ)2∥x∥2.

Deduce that ∥(λ− A)x∥ ≥ |Imλ|∥x∥ for all λ ∈ C and x ∈ D(A). ⋄

Exercise 1.3.5. Let A : D(A) ⊂ X → X be self-adjoint. Show that

(a) λ /∈ σp(A) for all λ /∈ R. This part is also true under the weaker assumption that A is
symmetric.
Hint: Use Exercise 1.3.4.

(b) λ /∈ σr(A) for all λ /∈ R.
Hint: Show the equivalent property R(λ − A)⊥ = {0} if λ /∈ R. Here you can employ
self-adjointness and part (a).

(c) λ /∈ σc(A) for all λ /∈ R. This part is also true under the weaker assumption that A is
closed and symmetric.
Hint: Begin by showing that if λ /∈ R, then R(λ − A) is necessarily a closed subset of X
because of the estimate ∥(λ−A)x∥ ≥ |Imλ|∥x∥. Here you in particular need the fact that
A is a closed operator. Combined with part (b), the closedness of R(λ − A) implies the
claim.

(d) Prove that (1.1) is satisfied. Hint: Use the inequality in Exercise 1.3.4.

⋄
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Theorem 1.3.5. Assume X is a Hilbert space and A : D(A) ⊂ X → X is a closed and
symmetric operator. If both R(i− A) and R(−i− A) are dense in X, then A is self-adjoint.

Exercise 1.3.6. Prove Theorem 1.3.5. Hint: This proof is not long, but it’s not at all easy
to figure out where to start! You should find this proof in the literature, and use that as a
reference (repeat the proof with details here). Since A is symmetric, it’s self-adjointness can be
proved by showing that D(A∗) ⊂ D(A). What is typically done is that the proof is begun by
justifying that for any y ∈ D(A∗) it is possible (based on one of the assumptions and part (c)
of Exercise 1.3.5) to find x ∈ D(A) such that (i − A)x = (i − A∗)y. After this, the symmetry,
the other assumption, and part (a) of Exercise 1.3.5 it is possible to finally conclude that
y = x ∈ D(A). If you find another proof, or if you are able to find some kind of an intuitive
justification for how this proof is begun, let me know! I’m interested to see it! ⋄

Lemma 1.3.6. If A : D(A) ⊂ X → X is symmetric and ρ(A)∩R ̸= ∅, then A is self-adjoint.

Exercise 1.3.7. Prove Lemma 1.3.6. Hint: Use Theorem 1.3.5 for an operator B = 1
ε
(A−λ0)

with D(B) = D(A) for suitable choices of λ0 ∈ R and ε > 0. Begin by showing that B is
symmetric whenever A is symmetric. ⋄

Lemma 1.3.7. Let X be a Hilbert space. If A : D(A) ⊂ X → X satisfies

⟨Ax, x⟩ ∈ R, ∀x ∈ D(A),

then A is symmetric.

Exercise 1.3.8. Prove Lemma 1.3.7. Hint: Study the condition ⟨Ax, x⟩ ∈ R in the case where
x = y + αz with arbitrary fixed elements y, z ∈ D(A) and for two different suitable choices
of scalars α ∈ C, for example α = 1 and α = i, to show that Re⟨Az, y⟩ = Re⟨z, Ay⟩ and
Im⟨Az, y⟩ = Im⟨z, Ay⟩. Some of you already proved this as part of the second preliminary
exercise problems. ⋄

In the following two examples we show two cases where the self-adjointness can be
shown in a “direct” manner by showing that D(A∗) ⊂ D(A). These examples are in no way
meant to be easy, but their purpose is only to illustrate that these types of arguments are
also sometimes possible.

Example 1.3.8. In this example we consider a multiplication operator. To this end, let g ∈
C((−∞,∞),R) be a fixed function, and define the multiplication operator Mg : D(Mg) ⊂
X → X on X = L2(−∞,∞;C) so that for every f ∈ D(Mg) := { f ∈ X | g(·)f(·) ∈
L2(−∞,∞;C) } we define

(Mgf)(ξ) = g(ξ)f(ξ), for almost every ξ ∈ R,

We will show that the fact that the values g(ξ) are real for every ξ ∈ R implies that Mg

is a self-adjoint operator. Before considering the main properties, we should note that the
domain D(Mg) is dense in X, since it includes the subspace C∞

0 (R;C) of smooth functions
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with compact support, which is dense in X, and thus Mg does have a well-defined adjoint.
We will begin by showing that A is symmetric using Lemma 1.3.7. If f ∈ D(Mg), then

⟨Mgf, f⟩X =

∫
R
(Mgf)(ξ)f(ξ)dξ =

∫
R
g(ξ)f(ξ)f(ξ)dξ =

∫
R
g(ξ)|f(ξ)|2dξ ∈ R,

since we assumed g(ξ) ∈ R for all ξ ∈ R, and thus Mg is symmetric by Lemma 1.3.7. It
remains to show that D(M∗

g ) ⊂ D(Mg). To this end, let h ∈ D(M∗
g ) be arbitrary. Then by

definition we have that for all f ∈ D(Mg) we must have

0 = ⟨Mgf, h⟩X − ⟨f,M∗
gh⟩X =

∫
R
g(ξ)f(ξ)h(ξ)dξ −

∫
R
f(ξ)(M∗

gh)(ξ)dξ

=

∫
R
f(ξ)

[
g(ξ)h(ξ)− (M∗

gh)(ξ)
]
dξ.

Since this holds for any f ∈ D(Mg), our aim is to make suitable choices of f to show that
in fact (M∗

gh)(ξ) = g(ξ)h(ξ) for (almost) all ξ ∈ R. Since M∗
gh ∈ X, this will immediately

imply that g(·)h(·) = M∗
gh ∈ L2(R;C), which shows that in fact h ∈ D(Mg), and thus the

proof will be complete. For any N > 0 we can choose

fN(ξ) =

{
g(ξ)h(ξ)− (M∗

gh)(ξ), for (almost) all ξ ∈ [−N,N ]

0 if |ξ| > N.

Since fN(ξ) = 0 if |ξ| > N , it is easy to see that fN ∈ D(Mg) for any N > 0. Now the above
identity implies that

0 = ⟨MgfN , h⟩X − ⟨fN ,M∗
gh⟩X =

∫
R
fN(ξ)

[
g(ξ)h(ξ)− (M∗

gh)(ξ)
]
dξ

=

∫ N

−N

|g(ξ)h(ξ)− (M∗
gh)(ξ)|2dξ.

This implies that g(ξ)h(ξ) − (M∗
gh)(ξ) = 0 for almost every ξ ∈ [−N,N ]. However, since

this holds for arbitrary N > 0, we have that g(ξ)h(ξ) = (M∗
gh)(ξ) for almost all ξ ∈ R. As

argued above, this shows that in fact h ∈ D(Mg) and the proof is complete. ⋄

Example 1.3.9. In this example we consider a second order differential operator A : D(A) ⊂
X → X on X = L2(0, 1) defined as

(Af)(ξ) = βf ′′(ξ),

f ∈ D(A) :=
{
f ∈ X

∣∣ f, f ′ absolutely continuous and f(0) = f(1) = 0
}
,

where β > 0 is a constant. The property that f is “absolutely continuous” is discussed in
greater detail in the next chapter, but for now it is sufficient to think of it as a stronger form
of continuity, which guarantess that f has a derivative f ′ ∈ L2(0, 1) which is defined “in the
L2-sense”.

In this example we will show that A is self-adjoint, i.e., A∗ = A. We begin by showing
that A is symmetric. To this end, let f ∈ D(A). We then have f(0) = f(1) = 0, and using
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integration by parts we can see that

⟨Af, f⟩L2 = β

∫ 1

0

f ′′(ξ)f(ξ)dξ = β
(
f ′(1)f(1)− f ′(0)f(0)

)
− β

∫ 1

0

f ′(ξ)f ′(ξ)dξ

= −β
∫ 1

0

|f ′(ξ)|2dξ ∈ R.

Thus A is symmetric by Lemma 1.3.7. It remains to show that D(A∗) ⊂ D(A). To this
end, let g ∈ D(A∗) be arbitrary. Then for any f ∈ D(A) we have ⟨Af, g⟩ = ⟨f, h⟩ where
h = A∗g ∈ L2(0, 1). If we choose f = ϕn := 2 sin(nπ·) ∈ D(A), then Af = Aϕn = ϕ′′

n =
−n2π2 · 2 sin(nπ·) = −n2π2ϕn and

ĝ(n) := ⟨g, ϕn⟩ = 2

∫ 1

0

g(ξ) sin(nπξ)dξ, ĥ(n) := ⟨h, ϕn⟩ = 2

∫ 1

0

h(ξ) sin(nπξ)dξ

are the coefficients of the Fourier sine series of g and h, respectively. The identity ⟨Af, g⟩ =
⟨f, h⟩ implies −n2π2ĝ(n) = ĥ(n). Since h ∈ L2(0, 1), the theory of Fourier series implies
(ĥ(n))n∈N ∈ ℓ2(C). Thus also (n2ĝ(n))n∈N ∈ ℓ2(C). Long story short, the Fourier theory
implies that g and g′ are absolutely continuous and g′′ ∈ L2(0, 1). To show that g(0) =
g(1) = 0, it suffices to note that since g was shown to be continuously differentiable, its
Fourier sine series

g(ξ) =
∞∑
n=1

ĝ(n)ϕn(ξ)

converges uniformly on [0, 1] (and in particular pointwise), and thus ϕn(0) = ϕn(1) = 0 for
all n ∈ N implies g(0) = g(1) = 0 as well.

In this example, we could have also used Lemma 1.3.6 to show that the symmetric
operator A is also self-adjoint by showing that 0 ∈ ρ(A). In fact, the formula for the inverse
A−1 can be derived in a similar way as in Example 1.1.5 by noting that the equation Af = g
is equivalent to the boundary value problem

βf ′′(ξ) = g(ξ), ξ ∈ [0, 1]

f(0) = f(1) = 0.

These kinds of boundary value problems will be studied in greater detail in the next chapter.
⋄



2. Analysis of Linear Differential
Equations

One of our main interests on this course is to use functional analysis and operator theory
to study differential operators and associated linear (partial) differential equations. In this
section we learn how differential equations can be formulated as abstract linear equations
with a differential operator A : D(A) ⊂ X → X, and how the properties of A can be used
to study the solvability and properties of the original equations.

Perhaps the simplest examples of linear differential equations (with only a single vari-
able ξ ∈ [a, b]) are the “boundary value problems”

f ′(ξ) = g(ξ), ∀ξ ∈ (a, b) (2.1a)
f(a) = 0 (2.1b)

and

f ′(ξ) = g(ξ), ∀ξ ∈ (a, b) (2.2a)
f(b) = 0 (2.2b)

which are both first order ordinary differential equations. In the literature (and on this
course) the derivative is sometimes alternatively denoted by f ′(ξ)‚ df

dξ
(ξ), or fξ(ξ).

A particular case of a second order differential equation is

−(βf ′)′(ξ) = g(ξ), ∀ξ ∈ (a, b) (2.3a)
f(a) = f(b) = 0. (2.3b)

Here β : (a, b) → R is a function, and if the derivatives β′(ξ) and f ′′(ξ) are well-defined
(which is not always the case!), we have (βf ′)′(ξ) = β′(ξ)f ′(ξ)+β(ξ)f ′′(ξ). In the equations
that we consider we assume that the values of β(·) are uniformly positive, i.e., there exists
a constant β0 > 0 such that β(ξ) ≥ β0 > 0 for all ξ ∈ [a, b]. On the other hand, partial
differential equations involve differentiation with respect to two or more variables. On this
course study partial differential equations of the form

−β1
∂2f

∂ξ21
(ξ1, ξ2)− β2

∂2f

∂ξ22
(ξ1, ξ2) = g(ξ1, ξ2), (ξ1, ξ2) ∈ Ω ⊂ R2 (2.4a)

f(ξ1, ξ2) = 0, for (ξ1, ξ2) ∈ ∂Ω (2.4b)

with constants β1, β2 > 0 Here Ω ⊂ R2 is the spatial domain of the equation, and f : Ω ⊂
R2 → R (or sometimes the values of f can be complex). The additional equation (2.4b)

10
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is the boundary condition of the equation, and ∂Ω denotes the boundary of the set Ω. This
type of a boundary condition is a Dirichlet boundary condition. One particularly important
special case of (2.4) is the Poisson equation, where β1 = β2 = −1, and which is typically
written in the form

−∆f = g, on Ω

f = 0, on ∂Ω,

where the Laplace operator is defined as ∆ = ∂2

∂ξ21
+ ∂2

∂ξ22
.

Even linear partial differential equations form a complex area of mathematics. We focus
here on Elliptic equations1, and even there we focus on a special class of equations with at
most two variables, and in the case of Ω ⊂ R2 (i.e., for (2.4)) we assume β1 and β2 are
constants. While studying this chapter you should also study additional material on elliptic
equations (for example from the books by Evans, Brezis, or Renardy & Rogers). Specific
things you should learn are the following.

• Elliptic equations can in general have coefficients β1 and β2 which depend on the
spatial variables. How are these expressed in the general form?

• Elliptic equations can also have terms with differentiation with respect to both vari-
ables in the same term.

• Most results require the spatial domain Ω ⊂ R2 to be “sufficiently nice”. You can
find out what kind of things are typically used. Throughout this course we assume in
particular that Ω ⊂ R2 is open, bounded, convex, it has a smooth boundary, and Ω is
located “on one side of its boundary ∂Ω”. One particular type of domain satisfying all
the requirements is a disk Ω = { (ξ1, ξ2) ∈ R2 | ξ21+ξ22 < R2 } for some R > 0. Figure 2.1
lists a few different types of domains to illustrate the different types of assumptions on
Ω and ∂Ω.

Figure 2.1: Different types of domains Ω on R2. The disk has smooth boundary, while the
rectangle does not (though it is “piecewise smooth”). In the third picture a single segment
has been removed from the disk, and the resulting Ω is not “on one side of ∂Ω”. The fourth
domain has corners, so the boundary ∂Ω is not smooth, and Ω is also not convex.

Exercise 2.0.1. Write down the general form of the elliptic partial differential equation on
Ω ⊂ R2 in the case where the coefficients are allowed to depend on the variables (ξ1, ξ2) ∈ Ω.
Also write down the condition under which the equation is called elliptic. Hint: You can
find these in the literature. Most general form is for equations on n-dimensional spaces (i.e.,
with f : Rn → R), and now you are interested in the case where n = 2. ⋄

1Other typical classes of PDEs are parabolic equations and hyperbolic equations, both of which include time
t as one variable.
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2.1 Well-Posedness of Differential Equations

The main questions related to differential equations are of the following form:

(i) Under what assumptions (on g and β(·) in (2.3) or β1, β2 in (2.4)) do the equations
have solutions f?

(ii) Are these solutions unique?

(iii) What are the properties of the solutions, for example, are they continuously differen-
tiable?

In particular, a differential equation is called well-posed (in the sense of Hadamard) if

for any g (in a suitable class of functions) the differential equation has a
unique solution f , and for another g̃ which is “close” to g the corresponding solu-
tion f̃ is “close” to f .

Well-posedness can therefore be summarised as requiring

• existence of solution,
• uniqueness of the solution, and
• continuous dependence of the solution on g.

These questions can be studied by writing the above differential equations as abstract
linear equations on a suitable function space X.

Definition 2.1.1. Let X be a linear space, A : D(A) ⊂ X → X, and g ∈ X. An abstract
linear equation has the form

Af = g, f ∈ D(A). (2.5)

For the equations (2.1)–(2.3) the operator A represents the differentiation of the function
f of the left-hand side of the equations. The choice of X is done partly based on the
properties of g, and the desired properties of the solution f . For example, if the considered
functions g are continuous on [a, b], one may choose X = C([a, b]) with the norm ∥g∥X =
maxξ∈[a,b]|g(ξ)|. In this case also the solutions f ∈ X will be continuous functions. The
domain D(A) contains the differentiability requirements on f such that Af ∈ X, and the
boundary conditions (2.1b), (2.2b), (2.3b), and (2.4b) are included in D(A) as well.

Exercise 2.1.1. Formulate the differential equation (2.3) as abstract linear equation on
X = C([a, b]) in the case where β ∈ C1([a, b]) (i.e., β(·) is continuously differentiable).
Justify your answer. Hint: This involves defining the operator A and finding an appropriate
domain D(A) in such a way that Af ∈ X whenever f ∈ D(A). ⋄

Exercise 2.1.2. Show that if A : D(A) ⊂ X → X has a bounded inverse, then the abstract
linear equation (2.5) is well-posed. In particular show that the continuous dependence of
f on g is satisfied in the sense that there exists a constant M > 0 such that if Af̃ = g̃, then
∥f − f̃∥X ≤ M∥g − g̃∥X (thus ∥f − f̃∥X converges to zero if ∥g − g̃∥X goes to zero, which
is indeed “continuity”). In what sense does the “continuous dependence” of f from g hold?
What are the more precise correspondences between the different parts of well-posedness
and the invertibility properties (i.e., injectivity, surjectivity, and boundedness of the inverse)
of A? Justify your answer. Hint: If A has an inverse, then you can easily solve f from the
equation (2.5). ⋄
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Exercise 2.1.3. Show that the differential equation

f ′(ξ) = g(ξ), ∀ξ ∈ (a, b)

f(a) = f(b) = 0

(similar to (2.2) but with two boundary conditions) is not well-posed (when considering for
example continuous functions g ∈ C[a, b]). Also show that if the boundary condition (2.2b)
is removed completely, the resulting differential equation is not well-posed either. Hint:
The differential equation f ′(ξ) = g(ξ) has an explicit solution, which you can find easily. In
the first part you can note that the solution does not exist for arbitrary functions g (only under
additional conditions). ⋄

Very often the choice X = C([a, b]) (or more X = C(Ω) in the case of (2.4)) is too
restrictive, and it is better to instead consider the above differential equations for functions
g that are not necessarily continuous, but instead satisfy2 g ∈ L2(Ω). In this case it is natural
to choose X = L2(Ω). In order to answer the question of “when do we have Af ∈ X for
some f ∈ X”, we need to take a longer detour into how derivatives are defined for functions
on Lebesgue spaces. In the next section we will see that the correct choice for the domain
D(A) in this case is an appropriate Sobolev space.

2.2 Distributional Derivatives and Sobolev Spaces

In this section we will define what we mean by a “derivative” of a function which is not
differentiable in the classical sense. In particular, we will define the concept of a weak
derivative (or a distributional derivative), which is defined using integration by parts in a
suitable way. The only downside of this approach is that the weak derivative of a function
is not necessarily a “function” at all in a typical sense. Perhaps the most classical example
of this that the weak derivative of the Heaviside step function H ∈ L2(−1, 1) defined by

H(ξ) =

{
0 −1 ≤ ξ < 0

1 0 ≤ ξ ≤ 1

is the “Dirac delta” δ0(ξ), which has the property that
∫ b

a
f(ξ)δ(ξ)dξ = f(0) if a < 0 < b.

However, δ(ξ) is not a function (since its values for ξ ∈ [−1, 1] cannot be defined) but instead
it is a generalised function or a distribution. Using weak derivatives, it indeed turns out that
every function will have well-defined (partial) derivatives of all orders in the larger class of
distributions. In addition, for any function f ∈ C1(Ω) the weak derivatives with respect to
all variables ξj coincide with ∂f

∂ξj
. Using the concepts of distributional derivatives, we can

define Sobolev spaces as spaces of functions f ∈ L2(Ω) whose distributional derivatives of
sufficiently high orders are also functions in L2(Ω) (in addition to being distributions).

Distributional derivatives and Sobolev spaces would deserve a chapter or two by them-
selves, but here we will focus on covering the minimal required properties of these concept
that we will use in defining studying differential equations of the form (2.3) and (2.4).
For additional properties of these mathematical objects and for concrete examples on dis-
tributional derivatives you should study, for example Chapter 5 of Evans, Chapters 5–6 of
Renardy & Rogers, and Chapters 8–9 of Brezis.

2More generally, g ∈ Lp(Ω) can be studied, but on this course we mostly restrict our attention to p = 2.
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Definition 2.2.1. Let Ω ⊂ Rn be open and bounded. The set of smooth functions ϕ ∈
C∞(Ω) whose support suppϕ := { ξ ∈ Ω | ϕ(ξ) ̸= 0 } satisfies suppϕ ⊂ Ω and is compact
(as a subset of Rn) is denoted C∞

c (Ω). The functions ϕ ∈ C∞
c (Ω) are called test functions.

Note that since Ω is assumed to be an open set in Rn and since the support of a function
is by definition a closed set, the condition suppϕ ⊂ Ω causes the function ϕ ∈ C∞

c (Ω) to
have identically zero values near the boundary of the set Ω. It’s also worth noting that
since Ω is assumed to be a bounded set, the compactness of suppϕ as a subset of Rn follows
automatically from the condition suppϕ ⊂ Ω and the fact that suppϕ is closed by definition.
Nevertheless, we state this requirement explicitly, since in the more general case where Ω
may be unbounded, the compactness requirement is an important part of the definition of
test functions.

In the following we use a “multi-index notation” Dαf for the partial derivatives of a
function f : Rn → R. More precisely, for a n-tuple α := (α1, . . . , αn) where αj ∈ N ∪ {0} we
define |α| = α1 + α2 + · · ·+ αn and denote

Dαf =
∂|α|f

∂α1ξ1 · · · ∂αnξn
(ξ1, . . . , ξn)

(i.e., αj ∈ N signifies how many times the function f is differentiated with respect to ξj in
Dαf , and αj = 0 means that Dαf does not contain differentiation with respect to ξj). For
brevity we also denote f(ξ1, . . . , ξn) by f(ξ) with ξ = (ξ1, . . . , ξn) ∈ Rn.

Exercise 2.2.1. Write the expressions on the left-hand sides of the differential equations (2.3)
and (2.4) using the multi-index notation, for example using D(k,l)f with k, l ∈ N ∪ {0}. (In
the one-dimensional case you can simply denote Df in place of D1f .) ⋄

Definition 2.2.2. Let Ω ⊂ Rn be open and bounded and let α = (α1, . . . , αn). The function
f ∈ L2(Ω) is said to have an αth-weak derivative if there exists g ∈ L2(Ω) such that∫

Ω

f(ξ)(Dαϕ)(ξ)dξ = (−1)|α|
∫
Ω

g(ξ)ϕ(ξ)dξ, ∀ϕ ∈ C∞
c (Ω).

If such g ∈ L2(Ω) exists, we denote Dαf = g.

In addition to the notation Dαf , we will also continue to use the other notations for
derivatives, for example f ′(ξ), f (k)(ξ), and ∂kf

∂ξkj
(ξ), which will also be interpreted as weak

derivatives whenever the function f is not differentiable in the classical sense. We also note
that in a more general version of Definition 2.2.2, f and g could be allowed to be in L1

loc(Ω).
The definition of the weak derivative is motivated by integration by parts. Indeed, if

f ∈ C(Ω) and if ∂f
∂ξj

exists and is continuous for some 1 ≤ j ≤ n, then ϕ ∈ C∞
c (Ω) implies

that ϕ(j)(ξ) = 0 for all j ∈ N ∪ {0} and for ξ near the boundary ∂Ω. The usual integration
by parts therefore implies that for every ϕ ∈ C∞

c (Ω) we have∫
Ω

f(ξ)
∂ϕ

∂ξj
(ξ)dξ = −

∫
Ω

∂f

∂ξj
(ξ)ϕ(ξ)dξ.
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Repeating this procedure with respect to the different variables also shows that if f ∈ C(Ω)
is such that the defivative Dαf exists in the classical sense, then we indeed have∫

Ω

f(ξ)(Dαϕ)(ξ)dξ = (−1)|α|
∫
Ω

(Dαf)(ξ)ϕ(ξ)dξ, ∀ϕ ∈ C∞
c (Ω).

Weak derivatives have the same typical properties as the classical derivatives, for example
the operation is linear, differentiation of products is done in the same way, see for example
Section 5.2.3 in Evans.

The Sobolev spaces Hk(Ω) are defined in the following3.

Definition 2.2.3. Let Ω ⊂ Rn be open and bounded set. For k ∈ N ∪ {0} we define the
Sobolev space of order k as

Hk(Ω) = { f ∈ L2(Ω) | Dαf ∈ L2(Ω) whenever |α| ≤ k }.

The norm on Hk(Ω) is defined so that

∥f∥2Hk =
∑

0≤|α|≤k

∥Dαf∥2L2 , f ∈ Hk(Ω).

Note that the norm also includes the term ∥Dαf∥2L2 with α = (0, . . . , 0) (corresponding to
|α| = 0), which is exactly ∥Dαf∥2L2 = ∥f∥2L2. Because of this we always have ∥f∥L2 ≤ ∥f∥Hk .
We also have by definition that H0(Ω) = L2(Ω).

Theorem 2.2.4. The space Hk(Ω) with the norm ∥·∥Hk is a Hilbert space.

The proof of the above result can be found for example in the books by Evans or Renardy
& Rogers.

Exercise 2.2.2. Write down the expression for the inner product ⟨f, g⟩Hk corresponding to
the norm ∥·∥Hk . ⋄

Note that the space of test functions C∞
c (Ω) is a subspace of Hk(Ω) for every k ∈ N∪{0}.

The space C∞
c (Ω) is dense in L2(Ω), but it is not dense in Hk(Ω) for any k ≥ 1. This is

actually of a sign of the property that an arbitrary function f ∈ L2(Ω) does not need to
have any meaningful “values” at the boundary ∂Ω. Even in the one-dimensional case, for
example the function f(ξ) = sin(π/ξ) plotted in Figure 2.2, which satisfies f ∈ L2(0, 1),
but clearly does not have any sensible value at ξ = 0. The following theorem regarding
the trace operator shows on the contrary all functions f ∈ H1(Ω) on the other hand have a
well-defined behaviour on the boundary.

3In this section we have restricted our attention in several ways. For example, we always assume Ω is
bounded, while considering unbounded domains, most notably Ω = Rn, would be possible as well. Moreover,
we only define weak derivatives and Sobolev spaces for functions on f ∈ L2(Ω), even though analogous
definitions are possible for f ∈ Lp(Ω) for all 1 ≤ p ≤ ∞. For 1 ≤ p ≤ ∞ with p ̸= 2 the Sobolev spaces are
Banach spaces and they are typically denoted by W 1,p(Ω).
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Figure 2.2: Plot of the function f(ξ) = sin(π/ξ).

Theorem 2.2.5 (Trace Theorem). Assume Ω ⊂ Rn is open and bounded and has smooth
boundary ∂Ω. There exists a bounded linear operator T ∈ L(H1(Ω), L2(∂Ω)) such that

Tf = f |∂Ω, for all f ∈ H1(Ω) ∩ C(Ω). (2.6)

Then Tf ∈ L2(∂Ω) is called the trace of f ∈ H1(Ω) on ∂Ω.

Here f |∂Ω : ∂Ω → C denotes the restriction of the function f ∈ C(Ω) to ∂Ω, i.e. f |∂Ω(ξ) =
f(ξ) for all ξ ∈ ∂Ω. In the condition (2.6) the considered functions f are assumed to be
continuous also on the boundary of Ω due to the assumption f ∈ C(Ω). For other functions
f ∈ H1(Ω) we have Tf ∈ L2(∂Ω), and therefore the values of the trace Tf do not need to be
defined at each point ξ ∈ ∂Ω, but nevertheless the trace Tf can be interpreted to describe
the behaviour of f on the boundary ∂Ω in a “generalised sense”. The theorem in particular
means that there exists a constant C > 0 (depending only on Ω) such that

∥Tf∥L2(∂Ω) ≤ C∥f∥H1(Ω). (2.7)

for any f ∈ H1(Ω).
Traces are very important in our study of partial differential equations, because we

can use them to describe the boundary conditions. In particular, the Dirichlet boundary
conditions (2.3b) and (2.4b) can be compactly written as “Tf = 0” for the solutions f of
the differential equations. Because the functions f ∈ H1(Ω) satisfying Tf = 0, we make the
following definition.

Definition 2.2.6. Assume Ω ⊂ Rn is open and bounded and has smooth boundary ∂Ω. We
define

H1
0 (Ω) = { f ∈ H1(Ω) | Tf = 0 }.

As mentioned before, the space C∞
c (Ω) of test functions is not dense in H1(Ω). In fact,

the space H1
0 (Ω) (which is a smaller space than H1(Ω)) is the closure of C∞

c (Ω) with respect
to the norm ∥·∥H1. This is the way the space is H1

0 (Ω) usually defined (it is simpler, since it
does not require the concept of the trace). Note that H1

0 (Ω) is a closed subspace of H1(Ω),
since it is the kernel of the bounded operator T ∈ L(H1(Ω), L2(∂Ω)).

Finally, in addition to derivatives, it is useful for us to define the idea or “integral func-
tions”, or primitives, of functions in L2(Ω). We will do this only in the case Ω = (a, b) ⊂ R,
where the proofs are quite simple.



2.3. Abstract Formulations of Elliptic Differential Equations 17

Lemma 2.2.7. Let Ω = (a, b) ⊂ R. If f ∈ L2(Ω) and c0 ∈ C, then the function g : [a, b] → C
defined by

g(ξ) = c0 +

∫ ξ

a

f(t)dt

is (uniformly) continuous on [a, b], g ∈ H1(Ω), and Dg = f .

The above lemma in particular implies that with the above notation we have

g(ξ) = c0 +

∫ ξ

a

(Dg)(t)dt, ξ ∈ [a, b].

The function g(·) is indeed uniformly continuous (since it is continuous on a closed in-
terval), but it has an even better continuity property, called absolute continuity. Absolute
continuity has alternative equivalent definitions, but this definition is the most intuitive for
our purposes.

Definition 2.2.8. A function f ∈ L2(a, b) is defined to be absolutely continuous if there
exists g ∈ L2(a, b) such that

f(ξ) = f(a) +

∫ ξ

a

g(t)dt, ∀ξ ∈ [a, b].

In the one-dimensional case Ω = (a, b), the space H1(Ω) is in fact exactly the set of
absolutely continuous functions (the fact that every absolutely continuous function is in
H1(Ω) can be proved using the same argument that is also used to prove Lemma 2.2.7).

2.3 Abstract Formulations of Elliptic Differential
Equations

Using the above definitions of weak derivatives and Sobolev space, we are finally a posi-
tion to formulate the differential equations (2.3) and (2.4), and the associated differential
operators on the space X = L2(Ω).

Exercise 2.3.1. Assume g ∈ L2(a, b) and β ∈ C[a, b]. Formulate the boundary value prob-
lem (2.3) as an abstract linear equation of the form Af = g on the space X = L2(Ω) with
Ω = (a, b) ⊂ R. Hint: The operator A and its domain are similar to those in Example 1.3.9
but require some modifications due to the fact that β(·) is now a function. You can define the
domain D(A) using the Sobolev spaces H1(Ω) and the trace operator (or directly the space
H1

0 (Ω)). ⋄

Exercise 2.3.2. Let Ω ⊂ R2 be bounded and open with smooth boundary. Assume g ∈ L2(Ω)
and β1, β2 > 0. Formulate the boundary value problem (2.4) as an abstract linear equation
of the form Af = g on the space X = L2(Ω). Hint: This can be done similarly as in
the previous exercise, and D(A) can be defined using the Sobolev spaces H2(Ω) and the trace
operator (or directly the space H1

0 (Ω)). If you would like more hints, you can first read the
next couple of pages as well. ⋄
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We can also rewrite the differential equations (2.3) and (2.4) in a common “general
form”. This can be done conveniently by using the weak derivatives to define the gradient
∇f : Ω → Cn and divergence ∇ · g in the usual way. In particular, for Ω ⊂ Rn and for
f ∈ H1(Ω) and g ∈ H1(Ω;Cn) (i.e. g = [g1, . . . , gn]

T : Ω → Cn with gk ∈ H1(Ω) for all
k ∈ {1, . . . , n}) we define

∇f =


df
dξ1
...
df
dξn

 and ∇ · g = ∇ ·

g1...
gn

 =
dg1
dξ1

+ · · ·+ dgn
dξn

.

In particular, for the domains Ω = (a, b) ⊂ R and Ω ⊂ R2 we then have

(∇f)(ξ) = f ′(ξ), for ξ ∈ Ω = (a, b) ⊂ R

(∇f)(ξ1, ξ2) =

[
df
dξ1

(ξ1, ξ2)

df
dξ1

(ξ1, ξ2)

]
, for (ξ1, ξ2) ∈ Ω ⊂ R2.

Using the divergence and gradient the differential equations (2.3) and (2.4) can be written
in the forms

−∇ · (β∇f) = g, equation (2.3)

−∇ ·
([
β1 0
0 β2

]
∇f

)
= g, equation (2.4).

Exercise 2.3.3. Expand the derivatives on the left-hand sides of the above equations (us-
ing the definitions of the divergence and gradient) to verify that the equations indeed
match (2.3) and (2.4). ⋄

Exercise 2.3.4. Show that if Ω ⊂ Rn and f ∈ H1(Ω), then

∥f∥2H1 = ∥f∥2L2 + ∥∇f∥2L2(Ω;Cn)

(in particular ∥∇f∥L2(Ω;Cn) ≤ ∥f∥H1). ⋄

We originally assumed that in the partial differential equation (2.4) the coefficients
β1, β2 > 0 were constants, but motivated by the above expressions we can consider a larger
class of second order partial differential equations also in the case of Ω ⊂ R2, and at the
same time consider similar equations on higher-dimensional spatial domains Ω ⊂ Rn with
n ≥ 1. Indeed, the above forms for (2.3) and (2.4) show that the common “general form”
is the following.

Definition 2.3.1. Assume Ω ⊂ Rn with n ∈ N is open and bounded with smooth boundary
∂Ω. For β ∈ C(Ω;Rn×n) and g : Ω → C, consider the (partial) differential equation

−
[
∇ ·

(
β∇f

)]
(ξ) = g(ξ), ∀ξ ∈ Ω, (2.8a)
f(ξ) = 0, ∀ξ ∈ ∂Ω. (2.8b)

The equation (2.8) is called elliptic (partial) differential equation if β(ξ) ∈ Rn×n is positive
definite for every ξ ∈ Ω.
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The concept of “elliptic partial differential equations” is even more general than stated
in Definition 2.3.1. In particular, elliptic equations include differential equations of higher
order, and the left-hand side of (2.8a) can in general include additional terms. Equations
of this type are used, for example, in describing the distribution of electric potentials, and
steady states of temperature distributions. Finally, different types of boundary conditions
are possible as well, and our case is in particular called the Dirichlet problem due to the
Dirichlet-type boundary condition (2.8b).

Since we assume that the function β : Ω → Rn×n is continuous on the bounded and
closed set Ω, the ellipticity also implies that β in fact also satisfies a stronger condition
called uniform ellipticity. In particular, there exists a constant β0 > 0 such that

vTβ(ξ)v ≥ β0∥v∥2 > 0, ∀v ∈ Rn, ξ ∈ Ω. (2.9)

This means that the matrix β(ξ)− β0I ∈ Rn×n is positive semidefinite for every ξ ∈ Ω. This
also agrees with our original assumption for the equation (2.3), where we assumed that
β ∈ C([a, b];R) is such that for some β0 > 0 we have β(ξ) ≥ β0 > 0 for all ξ ∈ [a, b] (which
is precisely condition (2.9) in the case n = 1).

Exercise 2.3.5. If β ∈ C1(Ω;Rn×n), then (2.8a) can be written in the form∑
0≤|α|≤2

β̃α(ξ)(D
αf)(ξ) = g(ξ)

(where α are multi-indices) for suitable functions β̃α ∈ C(Ω;R). Prove this result in the
special case where n = 2. Hint: Write

β(·) =
[
β11(·) β12(·)
β21(·) β22(·)

]
with functions βkj ∈ C1(Ω;R) and expand the left-hand side of (2.8a) using the product rule.
⋄

If g ∈ L2(Ω), then the well-posedness and properties of solutions of the elliptic equa-
tion (2.8) can be studied by formulating the equation as an abstract linear equation on
X = L2(Ω). In particular, if β ∈ C1(Ω;Rn×n), then Exercise 2.3.5 shows that the correct
condition on f such that the left-hand side belongs to X = L2(Ω) seems to be4 f ∈ H2(Ω).
Because of this, under these assumptions the equation (2.8) can be written in the abstract
form Af = g on X = L2(Ω) in terms of the operator A : D(A) ⊂ X → X defined by

Af = −∇ ·
(
β∇f

)
, f ∈ D(A) (2.10)

and the suitable choice of the domain D(A) (including the boundary condition (2.8b)) is

f ∈ D(A) := { f ∈ H2(Ω) | f(ξ) = 0 for (almost) all ξ ∈ ∂Ω }
= H2(Ω) ∩H1

0 (Ω).

Note that since H1(Ω) ⊂ H2(Ω), the intersection H2(Ω) ∩H1
0 (Ω) consists of precisely those

functions f ∈ H2(Ω) which have the boundary trace Tf = 0. The operator A in (2.10) is
likewise called an elliptic differential operator if β(ξ) is positive definite for each ξ ∈ Ω.

4This choice is intuitive, and it is in fact exactly correct if the geometry properties of Ω and its boundary
∂Ω are sufficiently “nice” (in particular if ∂Ω is smooth, or alternatively if Ω is convex and bounded). In this
case ∇ · (β∇f) ∈ L2(Ω) if and only if f ∈ H2(Ω).
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Exercise 2.3.6. Show that the elliptic differential operator A in (2.10) with domain D(A) =
H2(Ω) ∩H1

0 (Ω) is symmetric. Hint: You can use Lemma 1.3.7. In verifying the condition on
⟨Af, f⟩, you can use the multidimensional integration by parts formula∫

Ω

u(ξ)(∇ · v)(ξ)dξ =
∫
∂Ω

u(ξ)v(ξ) · ν(ξ)dξ −
∫
Ω

(∇u)(ξ) · v(ξ)dξ

for u ∈ H1(Ω) and v ∈ H1(Ω;Rn), where ν(·) is the unit outward normal of Ω at ξ ∈ ∂Ω. The
computation is similar as the integration by parts argument in the next section. ⋄

2.3.1 Different Types of Solutions

In this section we define in which different types of functions can be considered to be
“solutions” of the elliptic differential equation (2.8). Throughout the section and the rest
of this chapter (if not otherwise mentioned) we assume Ω ⊂ Rn with n ∈ N to be open
and bounded with smooth boundary ∂Ω. The strongest (and the most conservative) form
of solutions are classical solutions, where the differential equation (2.8a) holds pointwise.

Definition 2.3.2. Assume β ∈ C1(Ω;Rn×n) and g ∈ Cb(Ω) (continuous and bounded). A
function

f ∈ C2(Ω) ∩ C1(Ω)

is a classical solution of (2.8) if (2.8a) holds pointwise for all ξ ∈ Ω and f(ξ) = 0 for all
ξ ∈ ∂Ω.

In the case where g ∈ L2(Ω) it is appropriate to consider the following concept of strong
solutions. Note that in the definition the boundary condition f |∂Ω = 0 is satisfied in the
sense of boundary traces.

Definition 2.3.3. Assume β ∈ C1(Ω;Rn×n) and g ∈ L2(Ω). A function

f ∈ H2(Ω) ∩H1
0 (Ω)

is a strong solution of (2.8) if

−∇ · (β∇f) = g (2.11)

(equality in the sense of L2(Ω)-functions).

Finally, we can define weak solutions of the elliptic equation (2.8). This concept is based
on the observation that we can relax the sense in which the equality “−∇·(β∇f) = g” holds
even further. Indeed, we can first note that f ∈ H2(Ω) ∩ H1

0 (Ω) is a strong solution of the
elliptic equation if and only if5

−⟨h,∇ · (β∇f)⟩L2 = ⟨h, g⟩L2 , for all h ∈ H1
0 (Ω). (2.12)

5This is due to the fact that H1
0 (Ω) is dense in L2(Ω). This property, on the other hand, follows from the

fact that Cc(Ω) is dense in L2(Ω) and Cc(Ω) ⊂ H1
0 (Ω) ⊂ L2(Ω).
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We can rewrite the inner product ⟨h,∇·(β∇f)⟩L2 on the left-hand side of the equation using
the multi-dimensional integration by parts formula∫

Ω

u(ξ)(∇ · v)(ξ)dξ =
∫
∂Ω

u(ξ)v(ξ) · ν(ξ)dξ −
∫
Ω

(∇u)(ξ) · v(ξ)dξ

which is valid for u ∈ H1(Ω) and v ∈ H1(Ω;Cn) on Ω ⊂ Rn. More precisely, we have

−⟨h,∇ · (β∇f)⟩L2 = −
∫
Ω

h(ξ)[∇ · (β∇f)] (ξ)dξ

= −
∫
∂Ω

h(ξ)β(ξ)(∇f)(ξ) · ν(ξ)dξ +
∫
Ω

(∇h)(ξ) · β(ξ)(∇f)(ξ)dξ

=

∫
Ω

⟨(∇h)(ξ), β(ξ)(∇f)(ξ)⟩Cndξ

=: B[h, f ].

The integral over the boundary ∂Ω is zero due to the property that h|∂Ω = 0 in the sense
of traces. The last integral expression defines a sesquilinear form6 B[h, f ]. Because of the
above computation and (2.12), a function f ∈ H2(Ω) ∩H1

0 (Ω) is a strong solution of (2.8)
if and only if B[h, f ] = ⟨h, g⟩L2 for all h ∈ H1

0 (Ω). However, we should note that the
integral expression which determines B[h, f ] is well-defined also for any f ∈ H1(Ω) and
h ∈ H1

0 (Ω). In this way, we can consider the equation (2.8) also for functions which are
not assumed to have well-defined or square integrable second order derivatives, i.e., f /∈
H2(Ω). Functions satisfying the differential equation in this generalised sense are called
weak solutions of (2.8). Note that the requirement f ∈ H1

0 (Ω) again guarantees that the
boundary condition (2.8b) is satisfied in the sense of boundary traces. In the definition we
on purpose also drop the assumption of the smoothness of the boundary ∂Ω.

Definition 2.3.4. Assume Ω ⊂ Rn with n ∈ N is open and bounded, β ∈ C(Ω;Rn×n), and
g ∈ L2(Ω). A function f ∈ H1

0 (Ω) is a weak solution of (2.8) if

B[h, f ] = ⟨h, g⟩L2 ∀h ∈ H1
0 (Ω), (2.13)

where B[·, ·] : H1
0 (Ω)×H1

0 (Ω) → C is defined by

B[h, f ] =

∫
Ω

⟨(∇h)(ξ), β(ξ)(∇f)(ξ)⟩Cndξ, f, h ∈ H1
0 (Ω). (2.14)

In the next section we will use the fundamental properties of the sesquilinear form B[·, ·]
to establish the existence of a unique weak solution of the elliptic equation. The following
exercises begin the verification of these properties.

Exercise 2.3.7. Assume β ∈ C(Ω;Rn×n). Show that the sesquilinear form B[·, ·] : H1
0 (Ω) ×

H1
0 (Ω) → C defined in (2.14) is bounded, i.e., there exists M > 0 such that

|B[h, f ]| ≤M∥h∥H1∥f∥H1 .

6Meaning B[c1h1 + c2h2, f ] = c1B[h1, f ] + c2B[h2, f ] and B[h, c1f1 + c2f2] = c1B[h, f1] + c2B[h, f2]. The
form is bilinear if we consider real-valued functions and constants, in which case the complex conjugates are
not needed.
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Hint: Since β is continuous on Ω, it is also bounded in the sense that max∥β(ξ)∥Cn×n < ∞.
You can use Cauchy–Schwarz inequalities for the inner product on Cn and for the integral, and
also employ the estimate in Exercise 2.3.4. ⋄

Exercise 2.3.8. Assume β ∈ C(Ω;Rn×n) and assume the differential equation (2.8) is el-
liptic. Show that the sesquilinear form B[·, ·] : H1

0 (Ω) × H1
0 (Ω) → C in (2.14) satisfies

B[h, f ] = B[f, h]. Show that there exists c̃0 > 0 such that

B[f, f ] ≥ c̃0∥∇f∥2L2 , f ∈ H1
0 (Ω). (2.15)

Hint: These properties follow fairly easily from the basic assumptions and ellipticity. ⋄

2.4 Existence of Weak Solutions

In this section we show that under suitable (and very reasonable) assumptions the elliptic
equation has a unique weak solution f ∈ H1

0 (Ω) for every g ∈ L2(Ω). Our first main result,
the Lax–Milgram Theorem, introduces a general condition on a sesquilinear form B[·, ·] such
that the abstract equation (2.13) has a solution f ∈ H1

0 (Ω). After this, we show that under
suitable conditions the particular form in (2.14) associated to the elliptic equation satisfies
these conditions.

Theorem 2.4.1. Let X be a (real or complex) Hilbert space. Assume the sesquilinear form
B[·, ·] : X×X → C is bounded and coercive in the sense that there exist constants c1, c0 > 0
such that

|B[x, y]| ≤ c1∥x∥X∥y∥X , x, y ∈ X (boundedness)
and

B[x, x] ≥ c0∥x∥2X x ∈ X (coercivity).

Then for any φ ∈ X∗ := L(X,C) (the dual space of X) there exists a unique yφ ∈ X such
that

B[x, yφ] = φ(x), ∀x ∈ X. (2.16)

Moreover, there exists M > 0 (independent of φ) such that ∥yφ∥X ≤M∥φ∥X∗ .

One thing to observe is that the conclusion of the Lax–Milgram Theorem is almost iden-
tical to the familiar Riesz Representation Theorem, namely (2.16) means that

“every linear functional φ ∈ X∗ has the form φ(x) = B[x, y] for all x ∈ X for
some unique element y ∈ X.”

Indeed, the Lax–Milgram Theorem is a generalisation of the Riesz Representation Theorem
due to the fact that bounded and coercive forms B[·, ·] are a strictly more general concept
than inner products. However, if a bounded and coercive form has the additional property
that it is symmetric in the sense that B[x, y] = B[y, x] for every x, y ∈ X, then the mapping
(x, y) 7→ B[x, y] in fact does define a new inner product on the space X, and the Lax–
Milgram Theorem follows fairly directly from the Riesz Representation Theorem. On this
course we will prove Theorem 2.4.1 only in this situation by showing that B[·, ·] is indeed an
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inner product on X. The proof of the more general version can be found in the literature,
and the Riesz Representation Theorem plays a key role in the proof also in the case of non-
symmetric forms. The proof of Theorem 2.4.1 in the case B[x, y] = B[y, x] is covered in the
homework problems.

In exercise 2.3.7 we already saw that B[·, ·] : H1
0 (Ω) × H1

0 (Ω) → C defined in (2.14)
is bounded, and by Exercise 2.3.8 B[·, ·] is also symmetric and non-negative, meaning that
B[f, f ] ≥ 0 and for all f ∈ H1

0 (Ω). The estimate in Exercise 2.3.8 is not yet as strong as
coercivity required in the Lax–Milgram Theorem, but (2.15) can be combined with the very
useful Poincarè’s Inequality to show the coercivity. We can proceed this way because we
consider a special class of elliptic equations with derivatives of order 2 and no “lower order
terms”. In a more general situation the coercivity of B[·, ·] in (2.14) is established by the
so-called Gårding’s Inequality.

Theorem 2.4.2 (Poincarè’s Inequality). Let Ω ⊂ Rn be open and bounded. Then there exists
c > 0 such that

∥f∥L2 ≤ c∥∇f∥L2 ∀f ∈ H1
0 (Ω).

In particular, ∥f∥H1 ≤
√
c2 + 1∥∇f∥L2 for all f ∈ H1

0 (Ω).

Proof. Since Ω ⊂ Rn is bounded, there exists d > 0 such that if ξ = (ξ1, . . . , ξn)
T ∈ Ω, then

|ξ1| ≤ d. If f ∈ C∞
c (Ω), then we note that

∂

∂ξ1
|f(ξ)|2 = ∂f

∂ξ1
(ξ)f(ξ) + f(ξ)

∂f

∂ξ1
(ξ) = 2Re

[
∂f

∂ξ1
(ξ)f(ξ)

]
and thus ∣∣∣∣ ∂∂ξ1 |f(ξ)|2

∣∣∣∣ ≤ 2

∣∣∣∣ ∂f∂ξ1 (ξ)
∣∣∣∣ |f(ξ)|.

Using integration by parts (and the fact that supp f is compact in Ω) we get that

∥f∥2L2 =

∫
Ω

1 · |f(ξ)|2dξ =
∣∣∣∣∫

Ω

ξ1 ·
∂

∂ξ1
|f(ξ)|2dξ

∣∣∣∣ ≤ 2

∫
Ω

|ξ1| ·
∣∣∣∣ ∂f∂ξ1 (ξ)

∣∣∣∣ |f(ξ)|dξ
≤ 2d

∫
Ω

∣∣∣∣ ∂f∂ξ1 (ξ)
∣∣∣∣ |f(ξ)|dξ ≤ 2d

∥∥∥∥ ∂f∂ξ1
∥∥∥∥
L2

∥f∥L2

≤ 2d∥∇f∥L2(Ω;Cn)∥f∥L2 ,

which implies the claim for c = 2d. The second estimate follows directly from ∥f∥2H1 =
∥f∥2L2 + ∥∇f∥2L2 ≤ (c2 + 1)∥∇f∥2L2 (Exercise 2.3.4).

Exercise 2.4.1. Let Ω ⊂ Rn be open and bounded. Show that the B[·, ·] : H1
0 (Ω)×H1

0 (Ω) →
C in (2.14) is coercive, i.e., there exists c0 > 0 such that

B[f, f ] ≥ c0∥f∥2H1 , f ∈ H1
0 (Ω).

Hint: Combine the estimate in Exercise 2.3.8 and Poincarè’s Inequality. ⋄

Exercise 2.4.2. Show that the form in (2.14) is not coercive on X = H1(Ω). Hint: It is very
easy to find a nonzero function f ∈ H1(Ω) such that B[f, f ] = 0. ⋄
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With the help of the Lax–Milgram Theorem and the properties of B[·, ·] proved in the
previous exercises we can prove the following theorem on the existence of weak solutions
for the elliptic partial differential equation.

Theorem 2.4.3. Let Ω ⊂ Rn be open and bounded and assume β ∈ C(Ω;Rn×n). Then for
every g ∈ L2(Ω) the elliptic differential equation (2.8) has a unique weak solution f ∈ H1

0 (Ω).
Moreover, there exists a constant M > 0 such that the solutions satisfy

∥f∥H1 ≤M∥g∥L2 .

Exercise 2.4.3. Prove Theorem 2.4.3. Hint: Apply the Lax–Milgram Theorem on the Hilbert
space X = H1

0 (Ω). The boundedness and coercivity of B[·, ·] on X follow from the above
exercises. What you simply need to prove is that for every g ∈ L2(Ω) the mapping h 7→ ⟨h, g⟩L2

belongs to the dual space X∗ and the corresponding functional φ satisfies ∥φ∥X∗ ≤ ∥g∥L2. ⋄

In the proof of Theorem 2.4.3 we showed that if X = H1
0 (Ω), then every g ∈ L2(Ω)

defines a functional φ ∈ X∗. However, the space (H1
0 (Ω))

∗ is strictly larger than L2(Ω)7. In
particular, the point evaluation at ξ0 ∈ Ω defined by

φ(f) = f(ξ0)

is a bounded linear functional on H1
0 (Ω). The Lax–Milgram Theorem gives us the existence

of f also for φ ∈ X∗, and indeed in the literature the “weak solutions” of (2.8) are usually
defined as functions f ∈ H1

0 (Ω) satisfying

B[h, f ] = φ(h), h ∈ H1
0 (Ω)

for a fixed φ ∈ (H1
0 (Ω))

∗. The dual space (H1
0 (Ω))

∗ has a special name and notation as well.

Definition 2.4.4. For Ω ⊂ Rn the Sobolev space of order −1 is defined as H−1(Ω) =
(H1

0 (Ω))
∗.

Sobolev spaces of negative orders have several uses in analysis of partial differential
equations, and the spaces H−k(Ω) can be defined similarly.

2.5 Regularity of Solutions – From Weak to Strong
Solutions

In the previous section we saw that under very mild assumptions the elliptic equation has
a unique weak solution f ∈ H1

0 (Ω) for every g ∈ L2(Ω). In this section we are interested in
the question of when this unique weak solution turns out to be a strong solution as well.
The definitions imply that a weak solution f ∈ H1

0 (Ω) is also a strong solution if we in
addition have f ∈ H2(Ω). This property (existence and square integrability of additional
derivatives) is called regularity of the solution. For example in the case where β(ξ) ≡ I, the
form

−∆f = g

7In the sense that the functionals which have the form φg = ⟨·, g⟩L2 for some g ∈ L2(Ω) are a proper
subspace of (H1

0 (Ω))
∗.
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of the elliptic differential equation (which in this case is the Poisson problem) would seem to
give a strong indication that if g ∈ L2(Ω), we could expect the solution f to be in the space
H2(Ω). However, this is in general not true, and especially spatial domains Ω ⊂ Rn with
corners can cause the weak solution (which does exist whenever Ω is open and bounded)
not to have the additional square integrable second derivatives and thus f /∈ H2(Ω) (see for
example Renardy & Rogers, Example 8.52 for a counter-example).

The results in this section on global regularity show that if the domain Ω has a smooth
boundary8 and β ∈ C1(Ω;Rn×n), then every weak solution of the elliptic equation is also a
strong solution. The proof of this result is quite long and technical, and its details do not
really fit into the main theme of the course. Because of this, we simply state this result.

Theorem 2.5.1 (Global Regularity). Assume Ω ⊂ Rn is open and bounded with smooth
boundary ∂Ω and assume β ∈ C1(Ω;Rn×n) is such that β(ξ) is positive definite for all ξ ∈ Ω.
If g ∈ L2(Ω) and if f ∈ H1

0 (Ω) is the unique weak solution of the elliptic equation (2.8), then
f ∈ H2(Ω) and there exists M > 0 (independent of g ∈ L2(Ω)) such that

∥f∥H2 ≤M∥g∥L2 .

Theorem 2.5.1 allows us to finally prove that under the stated additional assumptions
the elliptic equation has a unique strong solution.

Theorem 2.5.2. Let Ω ⊂ Rn be open and bounded with smooth boundary ∂Ω and β ∈
C1(Ω;Rn×n). For every g ∈ L2(Ω) the elliptic equation

−∇ · (β∇f) = g in Ω

f = 0 on ∂Ω

has a unique strong solution f ∈ H2(Ω) ∩H1
0 (Ω), and there exists M > 0 (independent of g)

such that

∥f∥H2 ≤M∥g∥L2 .

Exercise 2.5.1. Prove Theorem 2.5.2. Hint: Use Theorem 2.5.1 to show that the mild solu-
tion of the elliptic equation is also a strong solution. ⋄

The existence of strong solutions of the elliptic equation gives us valuable information
about the elliptic differential operator

Af = −∇ · (β∇f), (2.17)

as shown in the following Exercise.

Exercise 2.5.2. Let the assumptions of Theorem 2.5.1 be satisfied. Show that the elliptic
differential operator A : D(A) ⊂ X → X in (2.17) on X = L2(Ω) with domain D(A) =
H2(Ω) ∩ H1

0 (Ω) is boundedly invertible. Conclude that A is also self-adjoint. Finally, show
that the inverse A−1 has the property

A−1 ∈ L(L2(Ω), H2(Ω)).

8The literature offers much sharper results, for example a “C2-boundary” more than enough, but for
simplicity we only consider smooth boundaries on this course.
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Hint: The symmetry of A was already shown in Exercise 2.3.6. You can use the Theo-
rem 2.5.2 to show that 0 ∈ ρ(A), and then use results in Section 1.3. The claims regarding the
inverse A−1 follow quite directly from Theorem 2.5.2. ⋄

The property A−1 ∈ L(L2(Ω), H2(Ω)) shown in Exercise 2.5.2 is a strictly stronger prop-
erty than A−1 ∈ L(X), since the norm on H2(Ω) is “stronger” than the norm on X = L2(Ω).
This boundedness property of the inverse plays an important role in our investigation of the
spectrum of the operator A in the next chapter.



3. Spectral Properties of Elliptic
Differential Operators

In this section we focus on the study of the spectral properties of the elliptic differential
operator A : D(A) ⊂ X → X defined by

Af = −∇ ·
(
β∇f

)
, f ∈ D(A) (3.1a)

with domain
D(A) = H2(Ω) ∩H1

0 (Ω) (3.1b)

on the space X = L2(Ω). Throughout the section (unless otherwise stated) we assume
that Ω ⊂ Rn is open and bounded with smooth boundary ∂Ω, β ∈ C1(Ω;Rn×n) and there
exists β0 > 0 such that the matrix β(ξ) − β0I is positive semidefinite for every ξ ∈ Ω. We
already saw in Exercise 2.3.6 that A is a symmetric operator even with weaker assumptions
on Ω, and in Exercise 2.5.2 we also saw that under the above assumptions A is a self-
adjoint operator. In this chapter we will see that we can say a lot about the spectrum of the
operator A even without any other assumptions on n, Ω or β. Indeed, we will learn that
under the above assumptions the whole spectrum of A consists of eigenvalues, each with
at most finite number of independent eigenfunctions, and the eigenvalues do not have any
accumulation points. All of these properties are based on the fact that the operator A has
compact resolvents. As we saw in the homework problems, the operator A with this property
has a spectral representation (or eigenfunction expansion)

Af =
∞∑
k=1

λk⟨f, ϕk⟩Xϕk,

D(A) =
{
f ∈ X

∣∣ ∞∑
k=1

|λk|2|⟨f, ϕk⟩X |2 <∞
}

where λk ∈ R are the eigenvalues of A and ϕk ∈ H2(Ω) ∩ H1
0 (Ω) are the corresponding

orthonormal eigenfunctions. This representation can be used in the analysis of the elliptic
differential equation and also in the numerical approximation of the solution f = A−1g of
the elliptic equation. Moreover, the eigenfunctions ϕk describe the characteristic features
of the elliptic equation and because of this they are often of independent interest. For
example in time-dependent evolution equations the eigenvalues can often correspond to
some natural frequencies of a vibrating system, and the corresponding eigenfunctions are
the system’s (normal) modes. On the other hand, the eigenvalues of the elliptic operator
in the Schrödinger equation describe the natural energy levels of a quantum mechanical
system.

27
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Since the eigenvalue λ ∈ R and the corresponding eigenfunction ϕ ∈ D(A) satisfy
Aϕ = λϕ, the function ϕ ∈ H2(Ω)∩H1

0 (Ω) is the (strong) solution of the differential equation

−
[
∇ ·

(
β∇ϕ

)]
(ξ) = λϕ(ξ), ∀ξ ∈ Ω, (3.2a)
ϕ(ξ) = 0, ∀ξ ∈ ∂Ω. (3.2b)

This is called the eigenvalue problem corresponding to the elliptic equation. It is easy to see
that λ ∈ R is an eigenvalue of A if and only if the equation (3.2) has a nonzero solution ϕ,
and in this case ϕ is an eigenfunction of A corresponding to the eigenvalue λ.

Before moving on to more challenging parts of the spectral analysis, we can prove a few
basic properties of the spectrum of the elliptic operator. We first note that besides being
symmetric and self-adjoint, the operator A is also positive, meaning that ⟨Af, f⟩ > 0 for
all f ∈ D(A) with f ̸= 0. In fact, this follows from the integration by parts argument in
Section 2.3.1, and Exercise 2.4.1, which together imply that

⟨Af, f⟩X = B[f, f ] ≥ c0∥f∥2H1 > 0

for some constant c0 > 0 and for all f ∈ D(A) with f ̸= 0.

Exercise 3.0.1. In this problem we show that σ(A) ⊂ (0,∞). This property is a consequence
of the following parts (recall that we have already shown 0 ∈ ρ(A) in Exercise 2.5.2).

(a) Show that σp(A) ⊂ (0,∞). Hint: This is easy to do using the property that A is a positive
operator.

(b) Show that σr(A) ∩ R = ∅. Hint: This property holds for all self-adjoint operators. Use
self-adjointness to show that if R(λ − A) is not dense for some λ ∈ R, then necessarily
λ ∈ σp(A).

(c) Show that if λ < 0, then ∥(λ−A)f∥ ≥ |λ|∥f∥ for all f ∈ D(A). Hint: This is analogous
to Exercise 1.3.4.

(d) Use part (c) to show that λ /∈ σc(A) for all λ < 0. Hint: This can be completed similarly
as part (d) of Exercise 1.3.5. If you cannot figure out the complete proof, you could justify
in detail why the same arguments should be applicable.

⋄

3.1 Embedding Theorems for Sobolev Spaces

The compactness of the resolvents of the elliptic operator A are based on fundamental
properties of Sobolev spaces. For convenience, we begin by recalling the definition of a
compact operator.

Definition 3.1.1. Let X and Y be normed linear spaces. An operator K ∈ L(X, Y ) is
compact if for every bounded sequence (xn)n∈N ⊂ X the sequence (Kxn)n∈N ⊂ Y has a
convergent subsequence.a

aIn brief form the condition for K ∈ L(X,Y ) to be compact can be characterised as the property that
“the image of the unit ball of X under K is precompact in Y ”.

In the following we define the concept of embeddings of spaces (suom. upotus).
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Definition 3.1.2. Let X be a normed linear space. A subspace Y (with norm ∥·∥Y ) is said
to be continuously embedded in X if the identity map J : Y → X defined by Jx = x ∈ X
for all x ∈ Y satisfies J ∈ L(Y,X). Equivalently, Y is continuously embedded in X if there
exists M > 0 such that

∥x∥X ≤M∥x∥Y , ∀x ∈ Y. (3.3)

The subspace Y ofX is said to be compactly embedded inX if the identity map J ∈ L(Y,X)
is a compact operator.

Embeddings take place especially in situations where the subspace Y of X is defined
using a norm ∥·∥Y as Y = {x ∈ X | ∥x∥Y < ∞}. Here it is essential that the norm ∥·∥Y
is “stronger” than the natural norm ∥·∥X on X in the sense that condition (3.3) is satisfied
for some constant M > 0, but a corresponding inequality in the reverse direction does not
hold1.

Exercise 3.1.1. Assume Ω ⊂ Rn is open and bounded. Hint: The required estimates are very
straightforward, so do not make your answers too long!

(a) Show that C(Ω) is continuously embedded in Lp(Ω) whenever 1 ≤ p ≤ ∞. Hint: Use
the definition directly. Consider the case p = ∞ separately.

(b) Show that Hk(Ω) is continuously embedded in Hj(Ω) whenever k, j ∈ N∪{0} are such
that k ≥ j ≥ 0.

(c) Show that Lp(Ω) is continuously embedded in Lq(Ω) whenever 1 ≤ q ≤ p ≤ ∞. Hint:
Use Hölder’s inequality with suitable exponents for the product |f(ξ)|q = 1 · |f(ξ)|q (this is
a standard technique in analysis of Lebesgue spaces). Consider the case p = ∞ separately.

⋄

For our purposes the most important use of embeddings between spaces lies in showing
compactness of operators. In particular, we will later use the following lemma in showing
that the elliptic operator A has compact resolvents.

Lemma 3.1.3. Let X and Y be normed linear spaces and assume Y is compactly embedded
in X. If an operator B ∈ L(X) in addition satisfies B ∈ L(X, Y ), then B is compact (as an
operator B : X → X).

In the above lemma the property B ∈ L(X, Y ) means that R(B) ⊂ Y and there exists
M1 > 0 such that ∥Bx∥Y ≤M1∥x∥X for all x ∈ X.

Exercise 3.1.2.

(a) Prove Lemma 3.1.3. Hint: Since the identity mapping J : Y → X is compact, you can
express the operator B : X → X as a composition of a bounded operator and a compact
operator, and use the general properties of compact operators to complete the proof.

1Otherwise the norms ∥·∥X and ∥·∥Y would be equivalent, and the situation would be trivial from the
point of view of the embeddings.
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(b) Prove that if Y is compactly embedded in X and X is continuously embedded in Z,
then Y is compactly embedded in Z. Also prove that if Y is continuously embedded
in X and X is compactly embedded in Z, then Y is compactly embedded in Z. Hint:
Write the identity map J : Y → Z as a composition of a continuous and compact operator.
Both of the properties can be proved quite conveniently at the same time.

⋄

In order to show that the elliptic operator A has compact resolvents, we need results on
embeddings between Sobolev spaces. For more general versions, you can see the books by
Brezis (Section 9.3) and Evans (Section 5.6).

Theorem 3.1.4 (Rellich–Kondrachov). Assume Ω ⊂ Rn is open and bounded with smooth
boundary ∂Ω. Then the following hold.

• If n < 2, then H1(Ω) is compactly embedded in C(Ω).

• If n = 2, then H1(Ω) is compactly embedded in Lq(Ω) for all q ≥ 2.

• If n > 2, then H1(Ω) is compactly embedded in Lq(Ω) for all 1 ≤ q < 2n
n−2

.

We omit the full proof of the Rellich–Kondrachov theorem for now (we will come back
to it at the end of the course). It can be proved using using direct arguments (see Evans or
Brezis) or the Fourier transform (see Rogers–Renardy).

Corollary 3.1.5. Assume Ω ⊂ Rn is open and bounded with smooth boundary ∂Ω. Then
H1(Ω) is compactly embedded in L2(Ω).

Exercise 3.1.3.

(a) Prove Corollary 3.1.5. Hint: Go through the different cases for n ∈ N in the Rellich–
Kondrachov Theorem. In the case n = 1 you will also need earlier exercises.

(b) Prove that if Ω ⊂ Rn is open and bounded with smooth boundary ∂Ω, then H2(Ω) is
compactly embedded in L2(Ω). Hint: Use earlier exercises.

⋄

We will only prove the Rellich–Kondrachov Theorem in the special case where n = 1
and Ω = (a, b) ⊂ R, and it is covered in the homework problems. In this case the proof
is a fairly direct consequence of the Arzela–Ascoli Theorem presented below (the proof of
Theorem 3.1.7 can be found for example in Renardy–Rogers, or Rudin – “Real and Complex
Analysis”). For stating this result, we need the concept of “equicontinuity” of a sequence,
which means that the parameters ε > 0 and δ > 0 in the definition of continuity can be
chosen to be independent of n ∈ N (and ξ0 ∈ Ω).

Definition 3.1.6. Let Ω ⊂ Rn. A sequence (fn)n∈N ⊂ C(Ω) is called equicontinuous if for
any ε > 0 there exists δ > 0 such that for all ξ0, ξ ∈ Ω and for all n ∈ N we have

|fn(ξ0)− fn(ξ)| < ε whenever ∥ξ0 − ξ∥ < δ.

Note that in particular, every function fn in an equicontinuous sequence is uniformly
continuous.
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Theorem 3.1.7 (Arzela–Ascoli Theorem). Assume Ω ⊂ Rn is open and bounded. Let
(fn)n∈N ⊂ C(Ω) be a bounded and equicontinuous sequence. Then there exists a subsequence
(fnk

)k∈N which converges in C(Ω).

3.2 Spectral Representation of A

Using the results in the previous subsection we can prove the following theorem character-
ising the spectral properties of the elliptic operator A. In particular, the result establishes
the eigenfunction expansion (or spectral representation) for the operator A.

Theorem 3.2.1. Assume Ω ⊂ Rn is open and bounded with smooth boundary ∂Ω, β ∈
C1(Ω;Rn×n) and there exists β0 > 0 such that the matrix β(ξ) − β0I is positive semidefinite
for every ξ ∈ Ω. The elliptic operator A = −∇ · (β∇f) on X = L2(Ω) with domain D(A) =
H2(Ω)∩H1

0 (Ω) has compact resolvents. In particular, there exist {λk}k∈N ⊂ (0,∞) satisfying
0 < λ1 ≤ λ2 ≤ · · · and an orthonormal basis {ϕk}k∈N of X such that

Af =
∞∑
k=1

λk⟨f, ϕk⟩Xϕk, (3.4a)

D(A) =
{
f ∈ X

∣∣ ∞∑
k=1

|λk|2|⟨f, ϕk⟩X |2 <∞
}
. (3.4b)

In addition A, has the following properties.

(a) σ(A) = σp(A) = {λk}k∈N ⊂ (0,∞) (in particular, σc(A) = ∅ and σr(A) = ∅).

(b) The set {λk}k∈N of eigenvalues has no finite accumulation points.

(c) The multiplicity of each eigenvalue λk is finite, i.e., for any k ∈ N there exist at most
finite number of n ∈ N such that λn = λk.

Part (a) of Theorem 3.2.1 is a direct consequence of the spectral representation of A
and part (b) of the theorem. Indeed, the eigenfunction expansion implies that there exists
an operator S ∈ L(ℓ2, X) with S−1 ∈ L(X, ℓ2) such that the operator D : D(D) ⊂ ℓ2(C) →
ℓ2(C) defined so that D(D) = S−1(D(A)) and D = S−1AS is an infinite diagonal matrix
D = diag(λ1, λ2, . . .). In this situation we say that A is boundedly similar to the operator D,
or diagonalisable. A bit similarly as in the case of matrices, the bounded similarity transform
preserves spectral properties. Using the conclusions of the first homework problems and the
fact that the parts of spectra of D and A coincide, we have that

• σp(A) = σp(D) = {λk}k∈N.

• σc(A) = σc(D) = {acc. points of {λk}k∈N} = ∅ by part (b).

• σr(A) = σr(D) = ∅.

The rest of the parts of Theorem 3.2.1 are proved in the next exercise problem.

Exercise 3.2.1. Prove that under the assumptions of Theorem 3.2.1 the operator A has
compact resolvents. In addition, prove parts (b) and (c) of the theorem.

Hint: In order to prove the first part, simply use the results presented in this and the
previous chapter to show that the operator A−1 is compact (as an operator A−1 : X → X).
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Parts (b) and (c) follow from the basic spectral properties of compact operators (note that the
eigenvalues of the operator A−1 ∈ L(X) are λ−1

k ∈ (0,∞) for k ∈ N). ⋄

Exercise 3.2.2. In the case where Ω = (0, ℓ) ⊂ R and β > 0 is constant, use Theorem 3.2.1
express the elliptic operator A in the form

(Af)(ξ) =
∞∑
k=1

λkϕk(ξ)

∫ ℓ

0

f(t)ϕk(t)dt,

D(A) =
{
f ∈ X

∣∣ ∞∑
k=1

|λk|2
∣∣∣∣∫ ℓ

0

f(t)ϕk(t)dt

∣∣∣∣2 <∞
}
.

with correct expressions for λn and ϕn. Write your formulas in the simplest possible forms.
Hint: λn and ϕn are eigenvalues and eigenfunctions of A, which were computed in the home-
work problems. You need to scale the eigenfunctions in such a way that ∥ϕn∥ = 1 (you can
use Matlab/Mathematica/WolframAlpha for computing the associated trigonometric integrals
if you like). ⋄

The eigenfunction expansion of A can also be used in solving the elliptic equation

−∇ ·
(
β∇f

)
= g, on Ω, (3.5a)

f = 0, on ∂Ω. (3.5b)

Indeed, as we saw in the homework problems on Week 2, the inverse of the operator A
in (3.4) is given by

A−1h =
∞∑
k=1

1

λk
⟨h, ϕk⟩Xϕk, h ∈ X.

Thus the knowledge of the eigenvalues {λk}k∈N and the orthonormal eigenfunctions {ϕk}k∈N
also gives us the strong solution f ∈ H2(Ω)∩H1

0 (Ω) of the elliptic equation (3.5) in the form

f(ξ) = (A−1g)(ξ) =
∞∑
k=1

1

λk
⟨g, ϕk⟩L2ϕk(ξ) (3.6)

for any function g ∈ L2(Ω). In particular, the scalar values λ−1
k ⟨g, ϕk⟩L2 are the coordinates

of the solution f in the orthonormal basis {ϕk}k∈N of L2(Ω).
The importance of the solution (3.6) of the elliptic equation (3.5) may often be purely

theoretical (of course this value is not to be taken lightly!), since the formula involves
summation over an infinite number of terms and the requirement of full knowledge of the
eigenvalues λk and eigenfunctions ϕk is typically very unrealistic, unless the considered case
is in some way simple geometrically. For example, it is possible to compute the eigenvalues
and eigenfunctions in the case where β(ξ) ≡ β0In×n (in which case the operator reduces to
a scalar multiple of the Laplacian A = −β0∆), and the domain has a particular geometry,
such as one of the following:

• n = 1 and Ω = (a, b) ⊂ R
• Ω has rectangular shape (a rectangle in the case n = 2, and a “rectangular cuboid” if
n ≥ 3)

• Ω is a disk (n = 2) or a sphere (n ≥ 3).

In other cases, the eigenvalues and eigenfunctions can be solved using computational meth-
ods.
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3.3 Approximation of The Solutions of Af = g

In this section we briefly discuss two methods for approximating the solution f of the ab-
stract linear equation Af = g, or more precisely the solution of the elliptic differential
equation.

3.3.1 Approximation Using Eigenfunctions

The property that A has compact resolvents opens up a possibility of approximating the
solution g = A−1f of the elliptic problem using truncations of the infinite series (3.6).
This leads to so-called modal approximation (the term arises from the eigenfunctions ϕk

being “modes” of the partial differential equation). This kind of an approximation obviously
requires that at least a finite number of eigenvalues λk and eigenfunctions ϕk are known.

Modal approximation is based on the fundamental property of compact operators, which
states that if (and only if!) K ∈ L(X) is compact, then there exists a sequence of operators
(KN)N∈N ⊂ L(X) each with dim(R(KN)) <∞ such that

∥KN −K∥L(X) → 0 as N → ∞.

The operators KN with the property dim(R(KN)) < ∞ are said to have finite rank, and
correspond to matrices (i.e. operators on finite-dimensional spaces).

Theorem 3.3.1. Assume Ω ⊂ Rn is open and bounded with smooth boundary ∂Ω, β ∈
C1(Ω;Rn×n) and there exists β0 > 0 such that the matrix β(ξ) − β0I is positive semidefinite
for every ξ ∈ Ω. If {λk}k∈N and {ϕk}k∈N are as in Theorem 3.2.1, then for every g ∈ L2(Ω)
and N ∈ N we have that the function

fN(ξ) =
N∑
k=1

1

λk
⟨g, ϕk⟩L2ϕk(ξ), ξ ∈ Ω

satisfies

∥fN − f∥L2 ≤ 1

λN+1

∥g∥L2 , (3.7)

where f is the strong solution of the elliptic equation (3.5). In particular, ∥fN − f∥L2 → 0 as
N → ∞.

The last conclusion of the theorem follows immediately from the estimate (3.7), since
we assumed that 0 < λ1 ≤ λ2 ≤ · · · and λk → ∞ as k → ∞.

Exercise 3.3.1. In this problem we will prove Theorem 3.3.1 in parts.

(a) For an N ∈ N, construct an operator KN ∈ L(X) such that the function fN defined in
Theorem 3.3.1 satisfies fN = KNg, and show that KN has finite rank.

(b) Show that ∥KN −A−1∥L(X) → 0 as N → ∞, and in particular ∥KN −A−1∥L(X) ≤ λ−1
N+1.

(c) Based on (a) and (b), prove Theorem 3.3.1.

Hint: The proofs of the parts are quite simple and straightforward. In the required norm
estimates you can use the property that {ϕk}k is an orthonormal basis of X. ⋄
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Exercise 3.3.2. Consider the differential equation

3f ′′(ξ) = g(ξ), ξ ∈ (0, 2)

f(0) = f(2) = 0.

In the case of two functions g ∈ L2(0, 2):

(a) g(ξ) =

{
0 0 ≤ ξ ≤ 1

1 1 < ξ ≤ 2

(b) g(ξ) =
1

4
+ ξ(ξ − 2)2.

Construct an approximate solution f̃ ∈ L2(0, 2) for the of the above differential equation
such that ∥f̃ − f∥L2 ≤ 0.01 where f denotes the exact solution of the equation. Plot these
approximate solutions f̃ .

Hint: Use Theorem 3.3.1 and Exercise 3.2.2. You can again use Matlab or WolframAlpha
in computing the required integrals (these are quite doable by hand as well, but practicing
integration is not the point of this exercise). ⋄

3.3.2 The Galerkin Method*

As we saw above, the modal approximation requires knowledge of the eigenfunctions of the
operator A : D(A) ⊂ X → X. In this section we give an overview of the so-called Galerkin
method which is much more flexible in the sense that it only requires a set of basis elements
{ψk}Nk=1 ⊂ X which can be used to approximate functions in the space X. Especially in the
case of partial differential equations where X is a function space, the elements {ψk}Nk=1 can
be chosen to be for example piecewise linear functions, polynomials, or locally supported
“hat functions”. Instead of being a specific method, the Galerkin method is much more
of a “general approach” to finding the best approximation of the solutions of Af = g in the
finite-dimensional space VN = span{ψk}Nk=1, and the different choices of basis elements lead
to a variety of different concrete approximation schemes. For example, the Finite Element
Method corresponds to the choice of {ψk}Nk=1 as “hat functions”, and different families of
polynomials (Legendre, Chebyshev, . . . ) lead to “spectral-Galerkin” methods.

The more precise idea in the Galerkin method is that the weak form of the elliptic
equation

B[h, f ] = ⟨h, g⟩L2 , ∀h ∈ V

(with V = H1
0 (Ω) in our case) is relaxed to the form

B[h, fN ] = ⟨h, g⟩L2 , ∀h ∈ VN (3.8)

where VN ⊂ V is a finite-dimensional subspace of the Hilbert space V such that VN =
span{ψ1, . . . , ψN}. At the same time, we seek a solution fN from the same finite-dimensional
space, i.e., fN ∈ VN . This way, the equation (3.8) is a finite-dimensional linear equa-
tion, which can be easily reformulated as a matrix equation. Indeed, since fN ∈ VN =
span{ψ1, . . . , ψN} by assumption, fN has the form

fN =
N∑
k=1

akψk, (ak)
N
k=1 ∈ CN (3.9)
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(the complex conjugates ak are taken for the sake of notational convenience in the following
formulas). If we choose h = ψj for j = 1, . . . , N in (3.8), then we see that

B[h, fN ] = ⟨h, g⟩L2 , ∀h ∈ VN

⇔ B[ψj, fN ] = ⟨ψj, g⟩L2 , ∀j ∈ {1, . . . , N}

⇔
N∑
k=1

akB[ψj, ψk] = ⟨ψj, g⟩L2 , ∀j ∈ {1, . . . , N}

⇔ [B[ψj, ψ1], . . . , B[ψj, ψN ]]

a1...
aN

 = ⟨ψj, g⟩L2 , ∀j ∈ {1, . . . , N}.

If we denote a = [a1, . . . , aN ]
T ∈ CN , then the last form is equivalent to the matrix equation

ANa = gN , where AN = (B[ψj, ψk])jk ∈ CN×N , gN = (⟨ψj, g⟩L2)Nj=1 ∈ CN .

Due to (3.9) the vector a ∈ Cn determines the solution fN of the finite-dimensional prob-
lem (3.8).

The following result demonstrates how functional analysis is used to derive a general er-
ror estimate for the approximation error ∥f−fN∥ in terms of the general error which results
from approximation of elements in V with those in the finite-dimensional space VN . In the
result, the existence and uniqueness of the solution of the finite-dimensional problem (3.8)
follow from the Lax–Milgram Theorem. Note that due to the above computations, this also
shows that under the assumptions the matrix equation ANa = gN has a unique solution for
all gN , i.e., the matrix AN is non-singular.

Theorem 3.3.2. Let Ω ⊂ Rn be open and bounded and assume β ∈ C(Ω;Rn×n). Further
assume that the {ψk}Nk=1 ⊂ H1

0 (Ω) are linearly independent. Then for every g ∈ L2(Ω) there
exists a unique fN ∈ VN = span{ψ1, . . . , ψN} such that (3.8) holds.

Moreover, if c0, c1 > 0 are such that

|B[h1, h2]| ≤ c1∥h1∥H1∥h2∥H1 , h1, h2 ∈ H1
0 (Ω)

B[h, h] ≥ c0∥h∥2H1 h ∈ H1
0 (Ω)

and f ∈ H1
0 (Ω) is the unique weak solution of the elliptic equation in Theorem 2.4.3, then

∥fN − f∥H1 ≤ c1
c0

inf
h∈VN

∥h− f∥H1 .

The estimate for the error ∥f − fN∥H1 shows that the solution fN of (3.8) is the best
approximation of the true solution f in the space VN up to the constant c1/c0. This part of the
theorem is known as Céa’s Lemma.

Proof of Theorem 3.3.2. Since the form B[·, ·] is bounded and coercive on H1
0 (Ω), it is also

bounded and coercive on VN (with the same norm ∥·∥H1). Because of this, the Lax–Milgram
Theorem shows that the equation (3.8) has a unique solution fN ∈ VN .

To derive the estimate for the norm ∥fN − f∥H1, we first note that since f is a weak
solution of the elliptic problem and fN satisfies (3.8), for every h ∈ VN ⊂ H1

0 (Ω) we have

B[f, h] = ⟨h, g⟩L2 = B[fN , h],
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which implies B[f −fN , h] = 0 for all h ∈ VN . Now the boundedness and coercivity of B[·, ·]
imply that for an arbitrary h ∈ VN we have

∥f − fN∥2H1 ≤
1

c0
B[f − fN , f − fN ] =

1

c0

(
B[f − fN , f − h] +B[f − fN ,

∈VN︷ ︸︸ ︷
h− fN ]

)
=

1

c0
B[f − fN , f − h] ≤ c1

c0
∥f − fN∥H1∥f − h∥H1 .

This implies ∥f − fN∥H1 ≤ c1
c0
∥f − h∥H1, and taking an infimum over all h ∈ VN completes

the proof.

In the case where the form B[·, ·] satisfies B[f, g] = B[g, f ] for all f, g ∈ H1
0 (Ω), the error

estimate in Theorem 3.3.2 can be improved in the following way (note that in boundedness
and coercivity we always have c1 ≥ c0).

Lemma 3.3.3. Let the assumptions of Theorem 3.3.2 be satisfied. If in addition B[f, g] =
B[g, f ] for all f, g ∈ H1

0 (Ω), then

∥fN − f∥H1 ≤
√
c1
c0

inf
h∈VN

∥h− f∥H1 .

Proof. In the homework problems for Week 4 we proved that if B[f, g] = B[g, f ] for all
f, g ∈ H1

0 (Ω), then the mapping (f, g) 7→ B[f, g] defines an inner product on H1
0 (Ω) and

c0∥h∥2H1 ≤ ∥h∥2B ≤ c1∥h∥2H1 ,

where ∥h∥B :=
√
B[h, h]. Similarly as in the proof of Theorem 3.3.2, the property B[f −

fN , h] = 0 for all h ∈ VN implies that for every fixed h ∈ VN we have

∥f − fN∥B = B[f − fN , f − fN ] = B[f − fN , f − h]
C−S

≤ ∥f − fN∥B∥f − h∥B.

Thus ∥f − fN∥B ≤ ∥f −h∥B. Using this estimate and the equivalence of the norms ∥·∥B and
∥·∥H1 shows that

∥f − fN∥H1 ≤ 1
√
c0
∥f − fN∥B ≤ 1

√
c0
∥f − h∥B ≤

√
c1
c0
∥f − h∥H1 .

Taking an infimum over h ∈ VN leads to the estimate in the claim.



4. The Fourier Transform

In this section we take a look at the Fourier transform of functions defined on the full
n-dimensional space Rn. The Fourier transform is an important tool in the analysis of
differential operators due to the fact that differentiation of a function f : Rn → C can be
alternatively represented as a multiplication operation of the Fourier transform Ff of f .

4.1 The Fourier Transform on L2(Rn)

We begin by defining the Fourier transform of a function f ∈ L1(Rn).

Definition 4.1.1. The Fourier transform of a function f ∈ L1(Rn) is a function Ff : Rn →
C defined as

(Ff)(z) = 1

(2π)n/2

∫
Rn

e−iz·ξf(ξ)dξ, z ∈ Rn (4.1)

(where z ·ξ denotes the inner product on Rn, i.e., z ·ξ = zT ξ). The inverse Fourier transform
of a function g ∈ L1(Rn) is a function F−1g : Rn → C defined as

(F−1g)(ξ) =
1

(2π)n/2

∫
Rn

eiz·ξg(z)dz, ξ ∈ Rn.

The Fourier transform is clearly a linear, i.e., F(αf1 + βf2) = αFf1 + βFf2 for all
f1, f2 ∈ L1(Rn) and α, β ∈ C.

Exercise 4.1.1. Show that the Fourier transform Ff is a well-defined and continuous func-
tion for any f ∈ L1(Rn), and that

∥Ff∥∞ ≤ 1

(2π)n/2
∥f∥L1 .

Finally, show that (Ff)(z) → 0 as ∥z∥ → ∞ (which concludes that Ff ∈ C0(Rn) := { g ∈
C(Rn) | |g(z)| → 0 as ∥z∥ → ∞}).

Hint: Your first task is to show that the value (Ff)(z) is well-defined for all z ∈ Rn.
Showing continuity is a bit more challenging: For a z ∈ Rn you can take a sequence (zk)k∈N ⊂
Rn such that zk → z as k → ∞ and use the Lebesgue’s Dominated Convergence Theorem in
analysing the difference |(Ff)(zk) − (Ff)(z)|. In the final part you can apply the “Riemann–
Lebesgue Lemma”. ⋄

As its name suggest, the purpose of the “inverse Fourier transform” is to reverse the
effect of the Fourier transform. However, we cannot immediately prove a property that

37



38 Chapter 4. The Fourier Transform

these two transforms are inverses. Indeed, for a function f ∈ L1(Rn) the transformed
function (Ff) does not necessarily belong to L1(Rn) (in the previous example we saw that
(Ff) ∈ C0(Rn)), and because of this we cannot directly apply the inverse transform to (Ff).

Moreover, in order to investigate the elliptic operator, we would like the Fourier trans-
form to be defined for functions in the space L2(Rn). Since we are considering functions
on the full Euclidean space Rn, the space L2(Rn) is not a subset of L1(Rn), and in par-
ticular the integral in (4.1) is not well-defined as a Lebesgue integral for every function
f ∈ L2(Rn). However, by first considering the Fourier transform for functions in the inter-
section L1(Rn) ∩ L2(Rn) (which is dense in L2(Rn)) we will see that the transform F can
be extended to the space L2(Rn) in such a way that Ff is given by the formula (4.1) for all
f ∈ L1(Rn) ∩ L2(Rn).

Theorem 4.1.2. For every f ∈ L1(Rn) ∩ L2(Rn) we have Ff ∈ L2(Rn) and

∥Ff∥L2 = ∥f∥L2 . (4.2)

The Fourier transform has a unique extension (also denoted by F) to an unitary operator
F ∈ L(L2(Rn)), meaning that F is bijective and

⟨Ff,Fg⟩L2 = ⟨f, g⟩L2 , f, g ∈ L2(Rn).

The property that F is unitary means that F is bijective and isometric in the sense
that (4.2) holds for all f ∈ L2(Rn). The property that Fourier transform preserves the L2-
norm is known as the Plancherel’s Theorem. Another important thing to note is that the
Fourier transform determines Ff as an L2-function, which means that the value (Ff)(z) is
defined for almost all z ∈ Rn. However, in Exercise 4.1.1 we saw that for any f ∈ L1(Rn) the
function Ff is a continuous function with well-defined values (Ff)(z) for all z ∈ Rn. This
difference is precisely due to the extension of the Fourier transform from L1(Rn) ∩ L2(Rn)
to L2(Rn).

Proof of Theorem 4.1.2. The identity (4.2) means that∫
Rn

|(Ff)(z)|2dz =
∫
Rn

|f(ξ)|2dξ, ∀f ∈ L1(Rn) ∩ L2(Rn).

We do not present a proof of this property of the Fourier transform here, a complete proof
can be found for example in Evans 2010 (Section 4.3.1) or Rudin 1987 (Theorem 9.13).

The space L1(Rn) ∩ L2(Rn) is dense in L2(Rn). By (4.2) the mapping F : L1(Rn) ∩
L2(Rn) → L2(Rn) is bounded, and thus F has an extension to a bounded operator F ∈
L(L2(Rn)). This extension is a very standard construction in linear operator theory, but since
its proof was omitted on the Introduction to Functional Analysis, we sketch it briefly here:
For a function f ∈ L2(Rn) we define Ff by taking a sequence (fk)k∈N ⊂ L1(Rn) ∩ L2(Rn)
such that ∥fk − f∥L2 → 0 as k → ∞. By (4.2) we have

∥Ffk −Ffj∥L2 = ∥F(fk − fj)∥L2 = ∥fk − fj∥L2 → 0 as k, j → ∞.

Thus (Ffk)k∈N ⊂ L2(Rn) is Cauchy, and there exists h ∈ L2(Rn) such that ∥Ffk − h∥L2 → 0
as k → ∞. If we define Ff = h, we can show that F is indeed a linear operator and the
value Ff does not depend on the sequence (fk)k∈N ⊂ L1(Rn) ∩ L2(Rn).
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The property (4.2) (together with the fact that L1(Rn)∩L2(Rn) is dense in L2(Rn)) also
imply that ∥Ff∥L2 = ∥f∥L2 holds for all f ∈ L2(Rn). Thus for all f ∈ L2(Rn) we have

⟨F∗Ff, f⟩L2 = ⟨Ff,Ff⟩L2 = ∥Ff∥2L2 = ∥f∥2L2 = ⟨f, f⟩L2 ,

and since F∗F is self-adjoint, we have that F∗F = I. This means that the Fourier transform
F is an isometry on L2(Rn).

Finally, to show that F is unitary, we need to further show that F is bijective. Injectivity
of F follows directly from (4.2), and this same identity implies that the range of F ∈
L(L2(Rn)) is closed (exactly as in Exercise 1.3.5(c)). Because of this, we only need to
show that R(F) is dense in L2(Rn). Since R(F)⊥ = N (F∗), we can equivalently show that
N (F∗) = {0}. To compute F∗, let f, g ∈ L1(Rn) ∩ L2(Rn) be arbitrary. Fubini’s theorem
implies that

⟨Ff, g⟩L2 =

∫
Rn

(
1

(2π)n/2

∫
Rn

e−iz·ξf(ξ)dξ

)
g(z)dz

=

∫
Rn

f(ξ)

(
1

(2π)n/2

∫
Rn

eiz·ξg(ξ)dz

)
dξ = ⟨f,F−1g⟩L2 ,

where F−1g is the inverse Fourier transform of g. Thus F∗g = F−1g for all g ∈ L1(Rn) ∩
L2(Rn) (note that at this point the notation F−1 is still formal, we have not yet showed that
F−1 in Definition 4.1.1 is an inverse of F). We can now note that by definition (F−1g)(z) =
(Fg)(−z) for all g ∈ L1(Rn) ∩ L2(Rn) and for all z ∈ Rn. Since this minus sign does not
change the L2-norm of the function, the identity (4.2) implies that for all g ∈ L1(Rn) ∩
L2(Rn) we also have

∥F∗g∥L2 = ∥F−1g∥L2 = ∥Fg∥L2 = ∥g∥L2 .

Since L1(Rn) ∩ L2(Rn) is dense in L2(Rn), we in particular have that F∗ is injective. Thus
R(F)⊥ = N (F∗) = {0} and F has dense range. This completes the proof that F is unitary.

The property ⟨Ff,Fg⟩L2 = ⟨f, g⟩L2 for f, g ∈ L2(Rn) follows by considering the iden-
tity (4.2) for functions f = h± ig with h, g ∈ L2(Rn).

The proof of Theorem 4.1.2 shows that the notation “F−1g” for the inverse Fourier
transform is justified. Indeed, the inverse of the operator F ∈ L(L2(Rn)) is the unique
extension of the inverse Fourier transform acting on L1(Rn) ∩ L2(Rn). Since (F−1f)(z) =
(Ff)(−z) for all f ∈ L1(Rn) and z ∈ Rn, this extension of F−1 from L1(Rn) ∩ L2(Rn) to
L2(Rn) can be constructed analogously to the corresponding extension of F .

In our study of differential operators, one of the most important properties of the Fourier
transform is that it can be used to express the differentiation of a function in an extremely
simple way. We are now considering functions on the unbounded domain Ω = Rn. A useful
result regarding Sobolev spaces is that C∞

c (Rn) is dense in Hk(Rn) for all k ∈ N (in this
case the support supp f of f ∈ C∞

c (Rn) is compact as a subset of Rn, i.e., it is a closed and
bounded set).
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Theorem 4.1.3. Let f ∈ Hk(Rn) for some k ∈ N and let α = (α1, . . . , αn) be a multi-index
with |α| ≤ k. Then

[F(Dαf)] (z) = (iz)α(Ff)(z), for almost every z ∈ Rn, (4.3)

where we denote (iz)α = (iz1)
α1(iz2)

α2 · · · (izn)αn for z = (z1, . . . , zn) ∈ Rn (and “i” is the
complex unit).

Exercise 4.1.2. Show that the formula (4.3) holds for all f ∈ C∞
c (Rn).

Hint: You can first derive a formula for [F(∂ξjf)](z) using integration by parts and then
apply it repeatedly to prove (4.3). ⋄

Proof of Theorem 4.1.3. Let f ∈ Hk(Rn) be arbitrary and let |α| ≤ k. Since C∞
c (Rn) is dense

in Hk(Rn), we can choose a sequence (fj)j∈N ⊂ C∞
c (Rn) such that ∥fj−f∥Hk → 0 as j → ∞.

If we define gj = Dαfj ∈ L2(R), then Exercise 4.1.2 shows that (Fgj)(z) = (iz)α(Ffj)(z)
almost everywhere. Plancherel’s theorem also implies

∥Fgj −Fgl∥L2 = ∥F(gj − gl)∥L2 = ∥gj − gl∥L2 = ∥Dαfj −Dαfl∥L2 ≤ ∥fj − fl∥Hk
j,l→∞−→ 0.

Thus (Fgj)j∈N ⊂ L2(Rn) is a Cauchy sequence, and since L2(Rn) is Hilbert, there exists
h ∈ L2(Rn) such that ∥Fgj − h∥L2 → 0 as j → ∞. Moreover, since F ∈ L(L2(Rn)) and since
∥gj −Dαf∥L2 → 0 as j → ∞, we have that

F(Dαf) = lim
j→∞

Fgj = h.

Thus the proof is complete once we show that h(z) = (iz)α(Ff)(z) for almost all z ∈ Rn

(this will also imply that z 7→ (iz)α(Ff)(z) ∈ L2(Rn)).

Denote mα(z) = (iz)α. We first note that for any z ∈ Rn the value mα(z) = (iz)α = i|α|zα

is real if |α| is even, and imaginary if |α| is odd. Because of this, it is always possible
to choose γ ∈ C with γ ̸= 0 such that |γ + mα(z)| ≥ |γ| > 0 for all z ∈ Rn (simply
by choosing γ to be imaginary if |α| is even, and real if |α| is odd). We will show that
Ff = (γ +mα)

−1(h + γFf). This will establish the desired property due to the following
equivalences

Ff =
1

γ +mα

(h+ γFf) ⇔ (Ff)(z) = h(z) + γ(Ff)(z)
γ + (iz)α

a.e.

⇔ (iz)α(Ff)(z) = h(z) a.e.

Using the above convergence properties, ∥(γ + mα)
−1∥∞ = supz∈Rn|γ + mα(z)|−1 ≤ |γ|−1,
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and Fgj = mαFfj, we have that

∥Ff − 1

γ +mα

(h+ γFf)∥L2 = ∥Ff −Ffj +
γ +mα

γ +mα

Ffj −
1

γ +mα

(h+ γFf)∥L2

≤ ∥Ff −Ffj∥L2 + ∥ 1

γ +mα

[γ(Ffj −Ff) +mαFfj − h]∥L2

≤ ∥Ff −Ffj∥L2 +
1

|γ|
∥γ(Ffj −Ff) +mαFfj − h∥L2

≤ 2∥Ff −Ffj∥L2 +
1

|γ|
∥mαFfj − h∥L2

= 2∥f − fj∥L2 +
1

|γ|
∥Fgj − h∥L2 → 0

as j → ∞. This implies that Ff = (γ + mα)(h + γFf) in the sense of L2-functions, and
as argued above, we have that h(z) = mα(z)(Ff)(z) for almost all z ∈ Rn, and particular
mαFf ∈ L2(Rn). This completes the proof.

Theorem 4.1.4. Let k ∈ N. The Sobolev space Hk(Rn) can be expressed in the form

Hk(Rn) = { f ∈ L2(Rn) | z 7→
√
1 + ∥z∥2k(Ff)(z) ∈ L2(Rn) }.

Exercise 4.1.3. Prove Theorem 4.1.4.
Hint: Prove the inclusions “⊂” and “⊃” separately. The argument in the first inclusion is a

fairly straightforward estimate. In the second part your aim is to show that the weak derivatives
Dαf exist and are in L2(Rn), i.e., ⟨f,Dαϕ⟩L2 = (−1)|α|⟨g, ϕ⟩L2 for some g ∈ L2(Rn) and for
all ϕ ∈ C∞

c (Rn). You can do this using Theorem 4.1.2 and the function mα in the proof of
Theorem 4.1.3. In the proofs you will benefit from the following inequalities1 (which you do
not need to prove!) for a1, . . . , an ≥ 0 and for a multi-index α with |α| ≤ k:

(a1 + a2 + · · ·+ an)
k ≤ nk−1(ak1 + ak2 + · · ·+ akn)

aα1
1 a

α2
2 · · · aαn

n ≤ (α1a1 + α2a2 + · · ·+ αnan)
|α|

|α||α|
≤ nk(a1 + a2 + · · ·+ an)

k

⋄

Another way of expressing the conclusion of Theorem 4.1.4 is using weighted L2-spaces.

Definition 4.1.5. Let w : Rn → (0,∞) be a continuous function such that infξ∈Rn w(ξ) > 0.
The weighted Lebesgue space L2

w(Rn) is defined as

L2
w(Rn) = { f ∈ L2(Rn) |

∫
Rn

|f(ξ)|2w(ξ)dξ <∞}

with norm

∥f∥L2
w
=

(∫
Rn

|f(ξ)|2w(ξ)dξ
)1/2

.

1The first inequality follows from an application of the Hölder inequality, and the second one is an inequal-
ity between the “weighted geometric mean” and the “weighted arithmetic mean” of the values a1, . . . , an.
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With the aid of the weighted L2-space the conclusion of Theorem 4.1.4 can be written
in the form

Hk(Rn) = { f ∈ L2(Rn) | Ff ∈ L2
wk
(Rn) }, where wk(z) := 1 + ∥z∥2k.

In fact, the Fourier transform defines an isomorphism (a bounded and boundedly invert-
ible mapping) between Hk(Rn) and L2

wk
(Rn). Moreover, the estimates in the solution for

Exercise 4.1.3 show that the mapping

f 7→ ∥Ff∥L2
wk
, f ∈ Hk(Rn)

defines a norm which is equivalent to the usual norm on Hk(Rn), defined by ∥f∥2
Hk =∑

|α|≤k∥Dαf∥2L2.
The fact that Sobolev spaces can be characterised in terms of the Fourier transforms

of the functions belonging to weighted L2-spaces also opens up the possibility to define
Sobolev spaces Hs(Rn) of any order s ≥ 0 simply by generalising the weight wk(z) = 1 +
∥z∥2k with k ∈ N to ws(z) = 1+∥z∥2s. This way, the condition Ff ∈ L2

ws
(Rn) corresponds to

f having differentiability properties of “intermediate order” in the sense that if k < s < k+1,
then f is “smoother” than functions in Hk(Rn), but not quite as smooth as functions in
Hk+1(Rn).

Definition 4.1.6. Let s ≥ 0. The Sobolev space of order s is defined as

Hs(Rn) = { f ∈ L2(Rn) | Ff ∈ L2
ws
(Rn) }, where ws(z) := 1 + ∥z∥2s.

The norm on Hs(Rn) is defined as

∥f∥Hs = ∥Ff∥L2
ws
.

Due to Theorem 4.1.4 the space Hs(Rn) coincides with the “classical” Sobolev space
Hk(Rn) in Definition 2.2.3 whenever s = k ∈ N, and the norms on Hs(Rn) and Hk(Rn)
are equivalent. Sobolev spaces of non-integer orders are important in the study of frac-
tional partial differential equations, and especially the spaces of orders s = k + 1/2 appear
frequently also in the analysis of partial differential equations, including elliptic equations.

Exercise 4.1.4. Show that for every 0 ≤ s ≤ r the space Hr(Rn) is continuously embedded
in Hs(Rn). Hint: You mainly only need an estimate between wr(z) and ws(z) for all z ∈ Rn.
Here it is useful to consider the cases ∥z∥ ≤ 1 and ∥z∥ > 1 separately. ⋄

4.2 The Elliptic Operator and Fourier Multipliers

Theorem 4.1.3 can be used in studying the differential operators and the associated partial
differential equations with constant coefficients (which do not depend on the variable ξ ∈
Rn) and which are defined on the full space Ω = Rn. In this section we study the class of
differential operators A : D(A) ⊂ Rn → Rn of the form

Af = −∇ · (β∇f) + γT∇f + δf, f ∈ D(A) = H2(Rn) (4.4)
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with β ∈ Rn×n, γ ∈ Rn, and δ ∈ R. In the case where β ∈ Rn×n is a positive definite matrix,
γ = 0, and δ > 0, the operator is elliptic2.

The exercise below show that the operator A can be expressed using the Fourier trans-
form as

Af = F−1(mAFf), f ∈ H2(Rn), (4.5)

where mA : Rn → C is defined as mA(z) = zTβz + iγT z + δ ∈ C.

Exercise 4.2.1. Here we use the Fourier transform for vector-valued f ∈ L2(Rn;Cm), which
are defined using the same formula as in the case m = 1. This clearly leads to Ff =
(Ff1, . . . ,Ffm)T for f = (f1, . . . , fm)

T .

(a) Derive a formula for F(∇f) for f ∈ H1(Rn).

(b) Derive a formula for F(∇ · f) for f ∈ H1(Rn;Cn).

(c) Show that for β ∈ Rn×n, γ ∈ Rn, and δ ∈ R the operator Af = −∇·(β∇f)+γT∇f+δf
for f ∈ D(A) = H2(Rn) has the representation (4.5) with mA(z) = zTβz + iγT z + δ.

Hint: Use the formulas for derivatives Dαf in parts (a) and (b). Part (c) follows from the
preceding parts, but remember to justify why you can apply the formulas in (a) and (b) (you
especially need that β∇f ∈ H1(Rn;Cn)). ⋄

The representation (4.5) shows that the application of the elliptic operator A alters the
Fourier transform of a function f by multiplying Ff pointwise with the function mA(·). The
class of such operators are called Fourier multipliers.

Definition 4.2.1. An operator T : D(T ) ⊂ L2(Rn) → L2(Rn) is a Fourier multiplier if there
exists a measurable function mT : Rn → C such that

F(Tf) = mTFf, f ∈ D(T ) (4.6)

and D(T ) = { f ∈ L2(Rn) | mTFf ∈ L2(Rn) }. The function mT is the symbol of T .

The multiplication in (4.6) is defined in the pointwise sense so that

[F(Tf)](z) = mT (z)(Ff)(z), for almost all z ∈ Rn.

In the case of the differential operator (4.4) the function z 7→ mA(z) = zTβz + iγT z + δ is
continuous, which in particular implies that mA is measurable.

Lemma 4.2.2. If β ∈ Rn is positive definite, γ ∈ Rn, and δ ∈ R, then the operator A :
D(A) ⊂ L2(Rn) → L2(Rn) in (4.4) is a Fourier multiplier with the symbol mA defined by
mA(z) = zTβz + iγT z + δ for z ∈ Rn.

Proof. We only prove one part of the claim (for which the argument is probably the most
difficult to come up with!), namely that { f ∈ L2(Rn) | mAFf ∈ L2(Rn) } ⊂ D(A). To this

2This terminology is slightly different than in Chapters 2 and 3, since we add the term “δf” with δ > 0.
The motivation for this addition comes from the fact that we study the operator on the full space Ω = Rn —
in the absence of boundary conditions the operator in Chapters 2 and 3 (which corresponds to the case δ = 0)
is not boundedly invertible.
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end, assume that f ∈ L2(Rn) satisfies mAFf ∈ L2(Rn). By Theorem 4.1.4 the function
satisfies f ∈ D(A) = H2(Rn) if Ff ∈ L2

w2
(Rn) where w2(z) = 1 + ∥z∥4. In order to use the

property mAFf ∈ L2(Rn) in proving this, we intuitively need to estimate w2(z) from above
by |mA(z)|2 (times a constant).

Since β ∈ Rn×n is positive definite, there exists β0 > 0 such that zTβz ≥ β0∥z∥2 for all
z ∈ Rn. Before estimating |mA(z)|, we note that for any ε > 0 and for all a, b ≥ 0 we have

2ab = 2(
√
εa)

(
b√
ε

)
≤ (

√
εa)2 +

(
b√
ε

)2

= εa2 +
b2

ε
⇒ ab ≤ εa2

2
+
b2

2ε

Using this (extremely convenient!) inequality with a = ∥z∥, b = ∥γ∥, and ε = β0 we can
estimate

|mA(z)| = |zTβz + iγT z + δ| ≥ |zTβz| − |γT z + δ| ≥ β0∥z∥2 − (∥γ∥∥z∥+ |δ|)

≥ β0∥z∥2 −
β0
2
∥z∥2 − 1

2β0
∥γ∥2 − |δ| = β0

2
∥z∥2 − 1

2β0
∥γ∥2 − |δ|.

Thus if ∥z∥ is so large that β0

2
∥z∥2 ≥ 2( 2

β0
∥γ∥2 + |δ|) and ∥z∥ ≥ 1, then

|mA(z)| ≥
β0
2
∥z∥2 − 1

2β0
∥γ∥2 − |δ| ≥ β0

4
∥z∥2 = β0

4

∥z∥2√
1 + ∥z∥4

√
w2(z)

≥ β0
4

∥z∥2√
∥z∥4 + ∥z∥4

√
w2(z) =

β0

4
√
2

√
w2(z).

Thus if we define R = max{1, 2
√

(2/β2
0)∥γ∥2 + (1/β0)|δ|}, we have that

w2(z) = 1 + ∥z∥4 ≤

{
16
β2
0
|mA(z)|2 if ∥z∥ ≥ R

1 +R4 if ∥x∥ < R.

Using this estimate we can conclude that∫
Rn

|(Ff)(z)|2w2(z)dz =

∫
∥z∥≤R

|(Ff)(z)|2w2(z)dz +

∫
∥z∥≥R

|(Ff)(z)|2w2(z)dz

= (1 +R4)

∫
∥z∥≤R

|(Ff)(z)|2dz + 16

β2
0

∫
∥z∥≥R

|(Ff)(z)|2|mA(z)|2dz

≤ (1 +R4)

∫
Rn

|(Ff)(z)|2dz + 16

β2
0

∫
Rn

|(Ff)(z)|2|mA(z)|2dz

<∞.

Thus Ff ∈ L2
w2
(Rn), and f ∈ H2(Rn) = D(A) by Theorem 4.1.4.

Exercise 4.2.2. Consider the operator A : D(A) ⊂ L2(Rn) → L2(Rn) in (4.4).

(a) Complete the proof of Lemma 4.2.2. Hint: The identity (4.6) follows fairly directly from
Exercise 4.2.1, but you need to complete the proof of the representation of the domain
D(A) (by proving the second inclusion). This part involves an estimate of |mA(z)| from
above by w2(z) (times a constant), and this estimate is much easier than the one presented
above.
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(b) Explain what can go wrong if β ∈ Rn×n is not positive definite or non-singular, for
example if n = 2 and β = [ 1 0

0 0 ].

⋄

Exercise 4.2.3 (Have some fun!). Let f ∈ H8(R3). Find a way to define the derivative Dαf ,
where α = (π, e1,

√
2). Check that Dαf ∈ L2(R3). ⋄

The application of the Fourier transform can be used to turn a partial differential equa-
tion on Rn to an algebraic equation involving the Fourier transforms of the solution and the
known functions. Indeed, applying the Fourier transform on both sides of Af = g and using
Lemma 4.2.2 implies that for all z ∈ Rn

[F(Af)](z) = (Fg)(z) ⇔ mA(z)(Ff)(z) = (Fg)(z).

If the parameters β ∈ Rn×n, γ ∈ Rn and δ ∈ R are such that mA(z) = zTβz + iγT z + δ
satisfies mA(z) ̸= 0 for all z ∈ Rn then this algebraic equation has a solution

(Ff)(z) = (Fg)(z)
mA(z)

, z ∈ Rn.

However, the real challenge is to compute the solution f of the original differential equa-
tion. Finding f is theoretically possible using the inverse Fourier transform, but it is very
typical that the resulting integrals cannot be computed analytically.

Exercise 4.2.4. Assume β ∈ Rn is positive definite, γ ∈ Rn, and δ ∈ R, are such that
mA(z) = zTβz+iγT z+δ satisfies mA(z) ̸= 0 for all z ∈ Rn. Let Af = −∇·(β∇f)+γT∇f+δf
with domain D(A) = H2(Rn). For g ∈ L2(Rn), consider the abstract linear equation Af = g.

(a) Show that if Af = g has a solution f ∈ D(A), then the solution is unique. Hint:
Consider two solutions.

(b) Show that the equation Af = g has a solution f ∈ D(A) if and only if g ∈ L2(Rn) is
such that

z 7→ (Fg)(z)
mA(z)

∈ L2(Rn).

Show that for such g ∈ L2(Rn) the solution f of Af = g has the form f = Tg where T
is a Fourier multiplier. Hint: From the expression Ff = m−1

A Fg and Theorem 4.1.4 you
immediately get an “easy” condition that f ∈ D(A) if and only if m−1

A Fg ∈ L2
w2
(Rn). To

show that this is further equivalent to the condition in the claim, you can use the estimate
between w2(z) and mA(z) and the estimates for the integrals in the proof of Lemma 4.2.2.

(c) Show that if there exists ε > 0 such that |mA(z)| ≥ ε > 0 for all z ∈ Rn, then Af = g
has a unique solution for any g ∈ L2(Rn) and ∥f∥L2 ≤ 1

ε
∥g∥L2. Hint: In the first part

you can simply verify that the condition of (b) holds for any g ∈ L2(Rn), and the second
part follows from the fundamental properties of Fourier transforms.

⋄
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As part (c) of the above exercise you also proved that a Fourier multiplier is a bounded
operator if its symbol is a bounded function in the sense that supz∈Rn|mT (z)| < ∞, and
in this case ∥Tf∥L2 ≤ ∥mT∥∞∥f∥L2 for all f ∈ D(T ). The boundedness of mT is also a
necessary condition for T to be bounded.

The measurable function mT defines a multiplication operator (see Example 1.3.8) MT :
D(MT ) ⊂ L2(Rn) → L2(Rn) such that for all g ∈ D(MT ) := { g ∈ L2(Rn) | mTg ∈ L2(Rn) }
we have

(MTg)(z) = mT (z)g(z), for almost every z ∈ Rn.

It follows quite directly from Definition 4.2.1 that the Fourier multiplier T : D(T ) ⊂
L2(Rn) → L2(Rn) is in fact boundedly similar to the multiplication operator MT defined
by the symbol mT in the sense that there exists S ∈ L(L2(Rn)) with S−1 ∈ L(L2(Rn)) such
that D(MT ) = S(D(T )) = {Sf | f ∈ D(T ) } and Tf = S−1MTSf for all f ∈ D(T ). In
fact, it follows from (4.6) that S = F ∈ L(L2(Rn)). By Lemma 4.2.2 this is in particular
true for the differential operator A with a positive definite β ∈ Rn×n. The significance of
the similarity transformation comes from the fact that the spectral properties of a Fourier
multiplier T are completely determined by the multiplication operator MT , as shown in the
following lemma.

Lemma 4.2.3. Let X and Y be Banach spaces. If A : D(A) ⊂ X → X and B : D(B) ⊂
Y → Y are boundedly similar so that there exists S ∈ L(X, Y ) with S−1 ∈ L(Y,X) such
that D(B) = S(D(A)) = {Sf | f ∈ D(A) } and Ax = S−1BSx for all x ∈ D(A), then the
following hold.

(a) σp(A) = σp(B).

(b) σc(A) = σc(B).

(c) σr(A) = σr(B).

(d) ρ(A) = ρ(B).

Proof. Part (a): λ ∈ C satisfies λ ∈ σ(A) if and only if

∃x ∈ D(A), x ̸= 0 : (λ− A)x = 0

⇐⇒ ∃x ∈ D(A), x ̸= 0 : S−1(λ−B)Sx = 0

y↔Sx⇐⇒ ∃y ∈ D(B), y ̸= 0 : (λ−B)y = 0,

which is equivalent to λ ∈ σp(B).
Parts (b)–(d): For any λ ∈ C we have that

R(λ− A) = { z ∈ X | ∃x ∈ D(A) : z = (λ− A)x }
= { z ∈ X | ∃x ∈ D(A) : z = S−1(λ−B)Sx }
= {S−1z̃ ∈ X | ∃y ∈ D(B) : z̃ = (λ−B)y }
= S−1(R(λ−B)).

Since S−1 is boundedly invertible, for any λ ∈ C \ σp(A) we have

• R(λ− A) = X if and only if R(λ−B) = Y (i.e., ρ(A) = ρ(B)).

• R(λ− A) ̸= X if and only if R(λ−B) ̸= Y (i.e., σr(A) = σr(B)).
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Finally, part (c) follows from parts (a), (b), and (d).

The spectra of multiplication operators on Rn are understood very well. The following
theorem summarises these properties. The proof of this result is presented in full, since at
this point our main interest is in using the properties of multiplication operators to analyse
the differential operator A.

Theorem 4.2.4. Let Mh : D(M) ⊂ L2(Rn) → L2(Rn) be a multiplication operator such that
(Mhf)(ξ) = h(ξ)f(ξ) for almost all ξ ∈ Rn where h ∈ C(Rn;C). Then σr(Mh) = ∅, and

σ(Mh) = h(Rn) := {µ ∈ C | ∃ξ ∈ Rn : µ = h(ξ) }.

Moreover, for any λ ∈ σ(Mh) = h(Rn) we have

λ ∈ σp(Mh) if and only if { ξ ∈ Rn | λ = h(ξ) } ⊂ Rn has nonzero measure.

The statement of Theorem 4.2.4 shows that λ ∈ C is in the continuous spectrum of Mh

if either λ ∈ h(Rn) but the set { ξ ∈ Rn | λ = h(ξ) }has measure zero in Rn, or λ /∈ h(Rn)
but it is an accumulation point of h(Rn) ⊂ C.

Proof of Theorem 4.2.4. We will first show that σ(Mh) ⊂ h(Rn). Let λ /∈ h(Rn) be arbitrary.
Since C \ h(Rn) is an open set, there exists ε > 0 such that |λ− h(ξ)| ≥ ε > 0 for all ξ ∈ Rn.
Thus if f ∈ D(Mh) and if (λ−Mh)f = 0, then (λ−h(ξ))f(ξ) = (λf−Mhf)(ξ) = 0 for almost
all ξ ∈ Rn, and necessarily f = 0 (in the sense of L2-functions). Thus λ −Mh is injective.
Moreover, if g ∈ L2(Rn) and we can define a measurable function f : Rn → C such that
f(ξ) = g(ξ)/(λ − h(ξ)) for almost every ξ ∈ Rn. Our aim is to show that f ∈ D(Mh) and
(λ−Mh)f = g. We have∫

Rn

|f(ξ)|2dξ =
∫
Rn

|g(ξ)|2

|λ− h(ξ)|2
dξ ≤ 1

ε2

∫
Rn

|g(ξ)|2dξ = 1

ε2
∥g∥2L2 <∞

and∫
Rn

|h(ξ)f(ξ)|2dξ =
∫
Rn

∣∣∣∣h(ξ)g(ξ)λ− h(ξ)

∣∣∣∣2 dξ = ∫
Rn

∣∣∣∣(λ− h(ξ))g(ξ)− λg(ξ)

λ− h(ξ)

∣∣∣∣2 dξ
=

∫
Rn

∣∣∣∣g(ξ)− λ
g(ξ)

λ− h(ξ)

∣∣∣∣2 dξ ≤ 2

∫
Rn

(
|g(ξ)|2 + |λ|2 |g(ξ)|2

|λ− h(ξ)|2

)
dξ

≤ 2(1 +
|λ|2

ε2
)∥g∥2L2 <∞.

Thus f ∈ L2(Rn) and hf ∈ L2(Rn), and therefore f ∈ D(Mh) by definition. Moreover,

((λ−Mh)f)(ξ) = (λ− h(ξ))
g(ξ)

λ− h(ξ)
= g(ξ), for almost all ξ ∈ Rn

shows that (λ −Mh)f = g (equality in L2(Rn)). Thus λ −Mh is surjective, and the above
estimates also show that ∥f∥L2 ≤ 1

ε
∥g∥L2, which shows that (λ−Mh)

−1 ∈ L(L2(Rn)). Since
λ /∈ h(Rn) was arbitrary, we have that σ(Mh) ⊂ h(Rn).

To describe the point spectrum σp(Mh) we note that for an arbitrary λ ∈ C and f ∈
D(Mh) we have

(λ−Mh)f = 0 ⇔ (λ− h(ξ))f(ξ) = 0 a.e. ξ ∈ Rn.
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If the set { ξ ∈ Rn | λ = h(ξ) } ⊂ Rn is either empty or has zero measure in Rn, this
condition implies that f(ξ) = 0 almost everywhere on Rn and thus f = 0. In these cases we
have λ /∈ σp(Mh). On the other hand, if { ξ ∈ Rn | λ = h(ξ) } ⊂ Rn has nonzero measure
in Rn, we can choose a nonzero function f ∈ D(Mh) which has nonzero values f(ξ) ̸= 0
only inside { ξ ∈ Rn | λ = h(ξ) } ⊂ Rn. In which case we have (λ −Mh)f = 0 and thus
λ ∈ σp(Mh). This concludes that λ ∈ σp(Mh) if and only if the set { ξ ∈ Rn | λ = h(ξ) } ⊂ Rn

has positive measure.
Assume now that { ξ ∈ Rn | λ = h(ξ) } ⊂ Rn is either empty or has zero measure.

Then as shown above, λ −Mh is injective. We will first show that R(λ −Mh) is dense in
L2(Rn), which will show that σr(Mh) = ∅. The property R(λ−Mh) = L2(Rn) is equivalent
to R(λ−Mh)

⊥ = {0}. If g ∈ R(λ−Mh)
⊥ is arbitrary, then

⟨(λ−Mh)f, g⟩L2 = 0 ∀f ∈ D(Mh)

⇒
∫
Rn

(λ− h(ξ))f(ξ)g(ξ)dξ = 0 ∀f ∈ D(Mh)

⇒
∫
Rn

f(ξ)(λ− h(ξ))g(ξ)dξ = 0 ∀f ∈ D(Mh)

⇒ (λ− h(ξ))g(ξ) = 0 a.e. ξ ∈ Rn

(here we have used the fact that D(Mh) is dense in L2(Rn) in the last implication). But by
assumption we had that λ − h(ξ) ̸= 0 for almost every ξ ∈ Rn, and thus necessarily g = 0
(as an L2-function). Since g ∈ R(λ−Mh)

⊥ was arbitrary, we have that R(λ−Mh) is dense
in L2(Rn).

In the final part we will show that h(Rn) ⊂ σ(Mh), which due to the closedness of the
spectrum also imply that h(Rn) ⊂ σ(Mh). To this end, let λ ∈ h(Rn). Our aim is to construct
a sequence (fk)k∈N ∈ D(Mh) such that ∥fk∥L2 = 1 for all k ∈ N and

∥(λ−Mh)fk∥ → 0, as k → ∞.

This will in particular show that the operator λ −Mh cannot have a bounded inverse, and
thus necessarily λ ∈ σ(Mh). Since we assumed λ ∈ h(Rn), there exists ξ0 ∈ Rn such that
λ = h(ξ0). We will choose fk to be functions which are only nonzero very close to ξ0 (where
the continuous function ξ 7→ λ − h(ξ) has small values). Since h(·) is continuous, for any
k ∈ N we can choose a radius rk such that |λ− h(ξ)| ≤ 1/k for all ξ ∈ B(ξ0, rk) := { ξ ∈ Rn |
|ξ − ξ0| < rk }. We can define piecewise constant functions fk ∈ L2(Rn) by

fk(ξ) =

{
ck ξ ∈ B(ξ0, rk)

0 otherwise,

where the constant ck > 0 is given by ck =
(∫

|ξ|≤rk
1dξ

)−1/2

. We then have ∥fk∥L2 = 1 as
required, and

∥(λ−Mh)fk∥2L2 =

∫
Rn

|λ− h(ξ)|2|fk(ξ)|2dξ ≤
1

k2

∫
|ξ|≤rk

|fk(ξ)|2dξ =
c2k
k2

∫
|ξ|≤rk

1dξ =
1

k2
→ 0

as k → ∞. Thus λ−Mh does not have a bounded inverse, and consequently λ ∈ σ(Mh).
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The next exercise combines the results presented in this section to describe the spectrum
of the differential operator A in terms of the parameters β ∈ Rn, γ ∈ Rn, and δ ∈ R.

Exercise 4.2.5. Assume β ∈ Rn×n is positive definite, γ ∈ Rn, and δ ∈ R, and consider the
operator Af = −∇ · (β∇f) + γT∇f + δf with domain D(A) = H2(Rn).

(a) Characterise the spectrum of A in terms of the function mA.

(b) Provide a complete description of the spectrum of A in the case n = 1. In particular,
you should answer the following questions:

– What type of spectrum does A have? (point spectrum, continuous spectrum, resid-
ual spectrum, no spectrum at all?)

– What is the shape of the spectrum σ(A) in the complex plane, and how does this
shape depend on the parameters β, γ, and δ?

Hint: Your first task is to combine the above theorems to show that you can characterise the
spectrum of A in terms of the function mA. Note that the equation λ = h(ξ) is a quadratic
polynomial, and this will allow you to analyse the set { ξ ∈ Rn | λ = h(ξ) } in Theorem 4.2.4.
Finally, in describing the shape of the spectrum σ(A), it is useful to write λ = a + ib with
a, b ∈ R in the equation λ = h(ξ). ⋄

The answer to the above exercise shows that in this section the spectrum of the also
the elliptic operator Af = −∇ · (β∇f) + δf is very different from the case in Section 3.2,
where we saw that if Ω is open, bounded and has smooth boundary, then its spectrum only
contains eigenvalues! The reason for this difference is that in this section we consider the
differential operators on the full space Ω = Rn, which is an unbounded domain.

4.3 Embedding Theorems for Sobolev Spaces

In this final section of the chapter we use the Fourier transform to prove some results on
embeddings of Sobolev spaces. In order to study functions in the Sobolev spaces Hk(Ω)
with a domain Ω ⊂ Rn, we first need to know how these the function f can be extended
to a function on the full space Rn (since the Fourier transform is only defined on functions
on Rn). Any function f : Ω ⊂ Rn → C can be trivially extended to the full space Rn by
defining f(ξ) = 0 for all ξ ∈ Rn \ Ω, but this will in general destroy weak differentiability
of the function near the boundary ∂Ω of Ω. In the study of functions in Sobolev spaces we
would especially like the extensions to be done in such a way that the extended functions
have the same differentiability properties as the original ones. More precisely, we require
that the extension of f belongs to Hk(Rn) if f ∈ Hk(Ω).

Definition 4.3.1. Let k ∈ N. A domain Ω ⊂ Rn is said to have the k-extension property if
there exists

E ∈ L(Hk(Ω), Hk(Rn))

such that for every f ∈ Hk(Ω) we have (Ef)(ξ) = f(ξ) for almost all ξ ∈ Ω.

The behaviour of the extension of the function near the boundary ∂Ω plays a key role in
preserving the differentiability, and because of this the existence of the extension operator E
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in Definition 4.3.1 requires some assumptions on ∂Ω. On this course we focus on bounded
domains Ω ⊂ Rn with bounded and smooth boundary, and such Ω possess the k-extension
property for every k ∈ N. Similar results do also hold under much weaker conditions on
the boundary ∂Ω, but some assumptions are always necessary.

Theorem 4.3.2. Let k ∈ N. If Ω ⊂ Rn is bounded and has smooth and bounded boundary
∂Ω, then Ω has the k-extension property. The extension operator E ∈ L(Hk(Ω), Hk(Rn))
can be chosen in such a way that suppEf ⊂ V for some compact set V ⊂ Rn and for all
f ∈ Hk(Ω).

Proof. See Theorem 6.88 in Renardy & Rogers, 1993.

With the aid of the extension property, we can use the Fourier transform to analyse
properties of functions defined on domains Ω ⊂ Rn. Our first result shows that for orders
k > n/2 the functions f ∈ Hk(Ω) are continuous and bounded functions.

Theorem 4.3.3 (Sobolev Embedding Theorem). Let n ∈ N and k > n/2. The space Hk(Rn)
is continuously embedded in

Cb(Rn) := { f ∈ C(Rn) | ∃M > 0 : |f(ξ)| ≤M ∀ξ ∈ Rn }.

Moreover, if Ω ⊂ Rn has the k-extension property, then Hk(Ω) is continuously embedded in
Cb(Ω).

The norm on Cb(Rn) is ∥f∥∞ = supξ∈Rn|f(ξ)|, and Cb(Rn) is a Banach space.

Exercise 4.3.1. Prove Theorem 4.3.3.
Hint: Begin with the case Hk(Rn). A completely analogous argument as in Exercise 4.1.1

shows that if Ff ∈ L1(Rn), then f is continuous and ∥f∥∞ ≤ (2π)−n/2∥Ff∥L1 (you do not
need to prove this again). To complete the estimate required for the embedding you can write
Ff = w

1/2
k Ff · w−1/2

k with wk(z) = 1 + ∥z∥2k and use the Hölder inequality for the norm
∥Ff∥L1 . You can directly (= without proving it) use the knowledge that∫

Rn

dz

1 + ∥z∥q
<∞, if q > n.

The second claim can be proved using the extension operator E ∈ L(Hk(Ω), Hk(Rn)) and the
first part. ⋄

In particular Theorem 4.3.3 tells us that if k > n/2, then the functions in Hk(Rn) are
continuous and bounded. This condition on the order of the Sobolev space is in fact nec-
essary, and especially for k = n/2 the functions f ∈ Hk(Rn) do not need to be continuous
(see Problem 6.48 of Renardy & Rogers, 1993).

We complete this section by proving a version of the Rellich–Kondrachov Theorem.

Theorem 4.3.4. Assume Ω ⊂ Rn is bounded and has bounded and smooth boundary ∂Ω.
Then H1(Ω) is compactly embedded in L2(Ω).

A more general version of the theorem shows that Hk(Ω) is compactly embedded in
Hk−1(Ω) for every k ∈ N. Moreover, the assumptions on the domain Ω can also be weak-
ened. The proof again utilises the Fourier transform through extension of the functions
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f defined on Ω to functions Ef defined on the full space. We divide the proof of Theo-
rem 4.3.4 into parts, some of which are completed as exercise problems. In the first exercise
we study a way of “smoothing out” a function by truncating its Fourier transform using a
suitable Fourier multiplier.

Exercise 4.3.2. For R > 0 define a Fourier multiplier TR ∈ L(L2(Rn)) with the symbol
χB(0,R) : Rn → [0, 1] defined by

χB(0,R)(z) =

{
1 ∥z∥ ≤ R

0 ∥z∥ > R

(the characteristic function of the ball B(0, R) ⊂ Rn). Show that the operator TR has the
following properties:

(a) TRf ∈ C∞(Rn) for every f ∈ L2(Rn) (that is, the operator TR makes the function f
infinitely smooth).
Hint: Note first that by definition the function F(TRf) has compact support (it is zero
outside a bounded set). You can then use Theorems 4.1.4 and 4.3.3 to show that all
derivatives of TRf are continuous.

(b) Show that for every R > 0 and f ∈ H1(Rn) we have

∥TRf − f∥L2 ≤ 1

R
∥f∥H1 .

(This means that for a large R > 0 the function TRf can be used to approximate the
function f ∈ H1(Rn) very accurately in the L2-norm.
Hint: Write the norm on the left-hand side in terms of the Fourier transforms F(TRf)

and Ff and recall that ∥f∥H1 = ∥Ff∥L2
w1

= ∥w1/2
1 Ff∥L2, where w1(z) = 1 + ∥z∥2. In

your estimates you can write 1 = w1(z)
1/2w1(z)

−1/2.

(c) Show that for every R > 0 there exist constants M1
R,M

2
R > 0 (which may depend on

R > 0) such that for all f ∈ H1(Rn) we have

∥TRf∥∞ ≤M1
R∥f∥H1 and ∥∇TRf∥∞ ≤M2

R∥f∥H1 .

Hint: If g ∈ L2(Rn) is such that Fg ∈ L1(Rn), then an analogous argument as in
Exercise 4.1.1 shows that ∥g∥∞ ≤ (2π)−n/2∥Fg∥L1. You can easily show that F(TRf) ∈
L1(Rn) and F(∇TRf) ∈ L1(Rn) (see Exercise 4.2.1). In the estimating the L1-norms
you can again write 1 = w

1/2
1 (z)w

−1/2
1 (z). You do not need to find explicit values for

M1
R,M

2
R > 0.

⋄

In the proof of Theorem 4.3.4 we will also use the following lemma on equicontinuity of
sequences of continuously differentiable functions. Note that the conditions of the lemma
are more restrictive compared to those in the case n = 1, which we studied in the Homework
problems for Week 5. Indeed, in the homework problems the sequence (gk)k∈N ⊂ H1(a, b)
was shown to be equicontinuous whenever supk∈N∥gk∥H1 <∞.
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Lemma 4.3.5. Let Ω ⊂ Rn be an open and convex set. If (gk)k∈N ⊂ C1(Ω) is such that
supk∈N∥∇gk∥∞ <∞, then (gk)k∈N is equicontinuous.

Proof. Let (gk)k∈N ⊂ C1(Ω) be such that supk∈N∥∇gk∥∞ ≤M <∞ for some constant M > 0.
Let k ∈ N and ξ0, ξ1 ∈ Ω be arbitrary. Since Ω is convex, the line segment between ξ0 ∈ Rn

and ξ1 ∈ Rn belongs to Ω
Define a function hk : [0, 1] → C by hk(t) = gk(ξ0 + t(ξ1 − ξ0)). Due to the chain rule of

differentiation3 we have that

h′k(t) = (ξ1 − ξ0)
T∇gk(ξ0 + t(ξ1 − ξ0))

and thus h ∈ C1([0, 1]). The fundamental theorem of calculus implies that

|gk(ξ0)− gk(ξ1)| = |hk(0)− hk(1)| = |
∫ 1

0

h′k(t)dt| ≤
∫ 1

0

|(ξ1 − ξ0)
T∇gk(ξ0 + t(ξ1 − ξ0))|dt

≤
∫ 1

0

∥ξ1 − ξ0∥∥∇gk(ξ0 + t(ξ1 − ξ0))∥dt ≤ ∥ξ1 − ξ0∥∥∇gk∥∞
∫ 1

0

1dt

≤M∥ξ1 − ξ0∥.

Thus if ε > 0, choosing δ = ε/M > 0 we have that |gk(ξ0) − gk(ξ1)| < ε whenever ∥ξ0 −
ξ1∥ < δ. Since δ > 0 can be chosen to be independent of k ∈ N, the sequence (gk)k∈N is
equicontinuous.

Proof of Theorem 4.3.4. Our aim is to show that the identity map J : H1(Ω) → L2(Ω) is
compact. To this end, let (fk)k∈N ⊂ H1(Ω) be a bounded sequence, i.e., supk∈N∥fk∥H1 ≤
M < ∞ for some constant M > 0. We will show that (fk)k∈N has a subsequence which
converges in L2(Ω). Since Ω has the 1-extension property, there exists an extension operator
E ∈ L(H1(Ω), H1(Rn)), and E can be chosen in such a way that supp f ⊂ V for some
compact set V ⊂ Rn (obviously Ω ⊂ V ) and for all f ∈ H1(Ω).

In the next stage of the proof we approximate Efk ∈ H1(Rn) with “smoothed out”
functions defined in Exercise 4.3.2. To this end, for R > 0 we define the Fourier multiplier
TR ∈ L(L2(Rn)) with symbol χB(0,R)(z), and consider the sequence (TREfk)k∈N. We have
from Exercise 4.3.2 that (TREfk)k∈N ⊂ C∞(Rn) (by part (a)),

∥Efk − TREfk∥L2 ≤ 1

R
∥Efk∥H1 ≤ 1

R
∥E∥∥fk∥H1 ≤ M∥E∥

R
→ 0 as R → ∞, (4.7)

(by part (b)), and finally part (c) implies

∥TREfk∥∞ ≤M1
R∥Efk∥H1 ≤M1

RM∥E∥ <∞,

∥∇TREfk∥∞ ≤M2
R∥Efk∥H1 ≤M2

RM∥E∥ <∞.

Thus if we take any bounded, open and convex set U ⊂ Rn such that V ⊂ U (for example
a ball B(0, r) with a sufficiently large radius r > 0), we can consider the restrictions of the

3The same formula also holds for weak derivatives, but unfortunately we do not have the time to prove
this. Moreover, in this proof it would actually not be enough to assume gk ∈ H1(Ω) since we really need that
the derivatives of gk are continuous.
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functions TREfk to the set U . For a fixed R > 0 we have from above that (TREfk)k∈N ⊂
C∞(U), supk∈N∥TREfk∥∞ < ∞, and supk∈N∥∇TREfk∥∞ < ∞. Thus (TREfk)k∈N ⊂ C(U)
is a bounded sequence, and by Lemma 4.3.5 it is also equicontinuous. The Arzela–Ascoli
Theorem in Theorem 3.1.7 therefore implies that (TREfk)k∈N has a subsequence which
converges in C(U), i.e.,

∥TREfkj − gR∥∞ → 0, as j → ∞

for some gR ∈ C(U). But since Ω ⊂ U and since Ω is bounded, we have that also gR ∈ L2(Ω)
and

∥TREfkj − gR∥2L2 =

∫
Ω

|TREfkj(ξ)− gR(ξ)|2dξ ≤ ∥TREfkj − gR∥2∞
∫
Ω

1dξ → 0

as j → ∞. Thus the subsequence (TREfkj)j∈N convergences also in L2(Ω).
Because by (4.7) any sequence (Efkj)j∈N can be approximated with (TREfkj)j∈N where

R > 0 is sufficiently large, the convergence of the subsequence (TREfkj)j∈N is already
getting close to what we are trying to prove. However, the problem is that the choice of this
subsequence depends on the value of R > 0. In order to complete the proof, we need to
find a subsequence of (TREfk)k∈N which converges in L2(Ω) for all values of R > 0. This
can be achieved using a so-called “diagonal argument”. We begin by choosing a sequence
(Rl)l∈N ⊂ R such that 0 < R1 < R2 < · · · such that Rl → ∞ as l → ∞ (one suitable concrete
sequence would simply be Rl = l for all l ∈ N).

Step 1: The arguments above show that there exists a subsequence (fk1j)j∈N of (fk)k∈N such
that ∥TR1Efk1j − g1∥L2 → 0 as j → ∞ for some g1 ∈ L2(Ω).

Step 2: Since also (TR2Efk1j)j∈N ⊂ C(U) is bounded and equicontinuous (because it is a
subsequence of (TR2Efk)k∈N), the above arguments show that there exists a subsequence
(fk2j)j∈N of (fk1j)j∈N such that ∥TR2Efk2j − g2∥L2 → 0 as j → ∞ for some g2 ∈ L2(Ω).

Step 3: Since also (TR3Efk2j)j∈N ⊂ C(U) is bounded and equicontinuous (because it is
a subsequence of (TR3Efk)k∈N), there exists a subsequence (fk3j)j∈N of (fk2j)j∈N such that
∥TR3Efk3j − g3∥L2 → 0 as j → ∞ for some g3 ∈ L2(Ω).

This process can be continued indefinitely to obtain an infinite number of sequences of
the form (fklj)j∈N such that TRl

Efklj → gl in L2(Ω) as j → ∞ for every fixed l ∈ N. We will
now consider a “diagonal” sequence with indices l = j, i.e., the sequence (fkjj)j∈N. Due to
the above construction, this is a subsequence of (fk)k∈N. Moreover, we can now show that
(TRl

Efkjj)j∈N converges for every l ∈ N. To this end, let l ∈ N be arbitrary. By construction,
for every j ≥ l the elements fkjj are also members of the sequence (fklj)j∈N. But since
TRl

Efklj → gl in L2(Ω) as j → ∞, and since a subsequence of a convergent sequence
converges to the same limit, we also have TRl

Efkjj → gl in L2(Ω) as j → ∞.
In the final part of the proof we will show that the estimate (4.7) together with the

convergence of (TRl
Efkjj)j∈N for every l ∈ N imply that the sequence (fkjj)j∈N converges in

L2(Ω). This is completed in the following exercise.

Exercise 4.3.3. Complete the proof of Theorem 4.3.4 by showing that (fkjj)j∈N converges
in L2(Ω).

Hint: You can do this by showing that (fkjj)j∈N is a Cauchy sequence. In doing so, you need
to show that by choosing l ∈ N to be sufficiently large, you can use (4.7) to approximate any
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element fkjj with TRl
Efkjj with arbitrary accuracy in the norm on L2(Ω). Here you of course

need the property that Efkjj and fkjj agree on Ω. As shown above, the sequence (TRl
Efkjj)j∈N

converges in L2(Ω) for any fixed l ∈ N. ⋄
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