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Abstract

Over the past few years, the internal model principle has been extended to some systems described by one-dimensional partial
differential equations (PDEs) from the PDE perspective. However, robustness has remained limited to specific cases, primarily
due to the challenges in formulating it within the PDE framework. In this paper, we explore output regulation for a multi-
dimensional heat equation under boundary control, where the output space is infinite-dimensional. We not only derive an
analytic tracking error feedback control but also demonstrate robustness. This is achieved by leveraging abstract results and
PDE design techniques.
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1 Introduction

The output regulation is a pivotal concern in con-
trol systems. The well-known internal model principle,
initially developed in Francis and Wonham (1976) and
Davison (1976) for lumped parameter systems, has e-
volved to encompass infinite-dimensional systems (Re-
barber and Weiss, 2003; Paunonen, 2016, 2017). By the
internal model principle, a controller aiming for robust
output regulation in a control system must incorporate
copies of the exosystem that generates references and
disturbances. The number of these copies should be e-
qual to or exceed the dimensionality of the system’s out-
put. When applying the abstract Paunonen (2016, 2017)
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to specific PDEs, it necessitates the verification of nu-
merous abstract conditions, which can be arduous. Con-
versely, employing a PDE approach for output regula-
tion in certain partial differential equations (PDEs) can
yield analytical forms of tracking error feedback con-
trol, akin to those achieved for 1-D parabolic system-
s (Deutscher, 2015; Guo and Meng, 2020), first-order
hyperbolic systems (Deutscher, 2017a), wave systems
(Feng, Guo, and Wu, 2020a), and Euler-Bernoulli beam
systems (Guo and Meng, 2021b). However, the PDE ap-
proach encounters difficulties in addressing robustness,
which is more straightforward to address through an
abstract setup. This challenge arises as it is practical-
ly infeasible to formulate all potential system variations
within the PDE framework.

In this paper, we examine the output regulation for
a multi-dimensional heat equation controlled at its
boundary. The uniqueness of this problem arises from
the distributed nature of the output, making it inher-
ently infinite-dimensional. According to the internal
model principle, the controller must contain infinitely
many copies of the exosystem. This aspect distinguishes
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our work significantly from previous research on output
regulation for 1-D PDEs with finite-dimensional output
spaces. By leveraging the abstract theory of the inter-
nal model principle, as elaborated in Paunonen (2017),
and adopting a PDE-based methodology, we are able to
derive not just the analytic expression for the feedback
control but also attain robustness. Our exosystem can
include nontrivial Jordan blocks. In the case of diagonal
exosystems, robust regulation can also be achieved us-
ing the low-gain robust controller described in theorem
1.1 of Rebarber and Weiss (2003); see also Humaloja
and Paunonen (2019). Additionally, the design of the
low-gain robust controller has been extended to accom-
modate exosystems featuring Jordan blocks, but with
a finite-dimensional output space (Hämäläinen and
Pohjolainen, 2002).

We proceed as follows. In the next section, Section 2,
we precisely define the output regulation problem for a
multi-dimensional heat system. In Section 3, we design
an error feedback regulator and demonstrate its efficacy
in solving the robust output regulation challenge. Sec-
tion 4 focuses on robustness, integrating our proposed
error feedback regulator with abstract findings on the in-
ternal model principle. Finally, conclusions are present-
ed in Section 5.
Notations. For a linear operator A from Hilbert

space X to Y , we denote the domain, kernel, and range
ofA byD(A),N (A) andR(A) respectively. The space of
all bounded linear operators from X to Y is represented
by L(X,Y ). If X = Y , then σ(A) and ρ(A) represent
the spectrum and resolvent set of A respectively. The
resolvent operator is defined as R(λ,A) = (λ−A)−1. If
A : D(A) ⊂ X → X generates a C0-semigroup T (t) on
X, we define X1 = D(A) equipped with the graph norm
of A. Furthermore, we define X−1 as the completion of
X with respect to the norm ‖x‖−1 := ‖(λ0 − A)−1x‖X
for a fixed λ0 ∈ ρ(A). Subsequently, A can be extended
to be an operator from X to X−1 (also denoted by A).

2 Problem statement

The system that we consider is governed by the fol-
lowing multi-dimensional heat equation:

wt(x, t) = ∆w(x, t) + F1(x)>p(t), x ∈ Ω, t > 0,

w(x, t)|Γ0 = F2(x)>p(t), t ≥ 0,
∂w(x, t)

∂ν
|Γ1

= u(x, t) + F3(x)>p(t), t ≥ 0,

w(x, 0) = w0(x), x ∈ Ω,

yo(x, t) = w(x, t)|Γ1
, t ≥ 0,

(1)
where w0(x) denotes the initial state; The domain Ω ⊂
Rd(d ≥ 2) is an open and bounded domain with a smooth
C2-boundary denoted by Γ = Γ0∪Γ1. The open subsets
Γ0 and Γ1 satisfy the conditions Γ0 6= ∅, Γ1 6= ∅, Γ0 ∩
Γ1 = ∅; The symbol ν refers to the unit normal vector
of Γ pointing towards the exterior of Ω; u(x, t) is the
control input, while yo(x, t) represents the performance

output signal that needs regulation; F1(·) ∈ L2(Ω;Cn)
and F2(·) ∈ H1/2(Γ0;Cn) and F3(·) ∈ L2(Γ1;Cn) are
unknown disturbance coefficients affecting both the in-
domain and the boundary.

The p(t) represents an unknown external disturbance,
which is presumed to satisfy the following differential
equation: {

ṗ(t) = Gp(t),

p(0) = p0 ∈ Cn,
(2)

where G is known, but p0 remains unknown. We assume
that

G = diag {iω1, iω2, . . . , iωn−q, Gq} ,

Gq =

[
0(q−1)×1 I(q−1)×(q−1)

0 01×(q−1)

]
+ iωn−q+1Iq×q,

where the eigenvalues {iωk}n−q+1
k=1 ⊂ iR are distinct and

assumed to be known.
Remark 2.1 The results presented in this paper can
be straightforwardly extended to the scenario where
G = diag{J1, J2, . . . , Jn}, in which J1, · · · , Jn are Jor-
dan blocks corresponding to the eigenvalues iω1, · · · , iωn,
respectively. For simplicity and clarity of exposition, we
focus on a single Jordan block in this paper, avoiding
overly complex mathematics.

Note that p(t) may physically represent the ambien-
t temperature, which influences the heat flux emanat-
ing from the boundaries Γ0,Γ1 and the domain Ω. Sys-
tem (1) will be analyzed within the conventional state
space X = L2(Ω), with the control space designated
as U = H−1/2(Γ1) and the output space defined as
Y = H1/2(Γ1).

The problem we consider can be stated as follows:
Given a reference signal

r(x, t) = F4(x)>p(t),

where F4(·) ∈ H1/2(Γ1;Cn) may also be unknown, the
task is to design a tracking error feedback control for the
uncertain system (1). The aim is to mitigate the external
disturbance and achieve output tracking as follows:

e(·, ·) = yo(·, ·)− r(·, ·) ∈ L2
α(0,∞;Y ),

whereL2
α(0,∞;Y ) = {f ∈ L2(0,∞;Y )|

∫∞
0
e2αt‖f(·, t)‖2Y dt

<∞} for α > 0.
Let A = ∆ be the usual Laplacian with

D(A) =

{
φ ∈ H2(Ω) : φ|Γ0

= 0,
∂φ

∂ν
|Γ1

= 0

}
.

Then, −A is a positive operator on L2(Ω). According to
Pazy (1983, Theorem 2.7, Chapter 7),A generates an ex-
ponentially stable analytic C0-semigroup eAt on L2(Ω).
Furthermore, it is widely known (see, e.g.,(Lasiecka and
Triggiani, 2000, pp. 668)) that

D((−A)1/2) = H1
Γ0

(Ω) :=
{
φ ∈ H1(Ω) : φ|Γ0

= 0
}
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and (−A)1/2 is an isomorphism mapping H1
Γ0

(Ω) onto

L2(Ω). We consider L2(Ω) as the pivot space and then
the following compact inclusions of Gelfand triple holds:

H1
Γ0

(Ω) = D((−A)1/2) ↪→ L2(Ω) = L2(Ω)′

↪→ D((−A)1/2)′ = H−1
Γ0

(Ω),

where H−1
Γ0

(Ω) is the dual space of H1
Γ0

(Ω) with respect

to L2(Ω). The operator A possesses an extension, denot-
ed as A ∈ L(H1

Γ0
(Ω), H−1

Γ0
(Ω)) and is defined as follows:

〈Aφ,ψ〉H−1
Γ0

(Ω),H1
Γ0

(Ω) = −〈(−A)1/2φ, (−A)1/2ψ〉X ,

applicable to all φ, ψ ∈ H1
Γ0

(Ω). Analogously, A also

allows for an extension A ∈ L(L2(Ω), [D(A)]′) signifies
the dual space of D(A) relative to L2(Ω) ((Tucsnak and
Weiss, 2009, Section 2.10)). The Neumann map, denoted
as N ∈ L(H−1/2(Γ1), H1

Γ0
(Ω)) (Lasiecka and Triggiani,

2000, pp. 668), establishes a relationship where Nu = h
if and only if ∆h = 0 in Ω,

h
∣∣
Γ0

= 0,
∂h

∂ν

∣∣
Γ1

= u.

Define the Dirichlet map N1 ∈ L(L2(Γ0), H1/2(Ω))
(Lions and Magenes, 1972, pp. 188-189), which means
N1u = h if and only if∆h = 0 in Ω,

h
∣∣
Γ0

= u,
∂h

∂ν

∣∣
Γ1

= 0.

Utilizing both the Neumann and Dirichlet maps, system
(1) can be abstractly represented in [D(A)]′ as

ẇ(·, t) = Aw(·, t) + B
(
u(·, t) + F3(·)>p(t)

)
+B1

(
F2(·)>p(t)

)
+ F1(·)>p(t),

whereB ∈ L(H−1/2(Γ1), H−1
Γ0

(Ω)),B1 ∈ L(L2(Γ0), [D(A)]′)
are given by

Bu = −ANu, ∀u ∈ H−1/2(Γ1);

B1u = −AN1u, ∀u ∈ L2(Γ0).

We emphasize that that while the operator B is admissi-
ble for the semigroup eAt (Byrnes, Gilliam, Shubov, and
Weiss, 2002, Theorem 2), B1 is not (Lasiecka and Trig-
giani, 2000, Sec. 3.1, pp. 180). This crucial difference im-
plies that system (1) does not qualify as a regular linear
system. However, there is an important exception: when
F2 = 0, the system is indeed a regular linear system

(Byrnes, Gilliam, Shubov, and Weiss, 2002, Theorem 2).
This specific system can be represented as follows:

ẇ(·, t) = Aw(·, t) + Bu(·, t) +Bdp(t),

w(·, 0) = w0 ∈ X,
e(·, t) = CΛw(·, t) +Du(t) + Fp(t),

(3)

where w(·, t) ∈ L2(Ω), u(·, t) ∈ U = H−1/2(Γ1), p(t) ∈
Ud = Cn, and the output e(t) ∈ Y = H1/2(Γ1). The
operators F ∈ L(Ud, Y ), Bd ∈ L(Ud, H

−1
Γ0

(Ω)), and C ∈
L(H1

Γ0
(Ω), Y ) are defined as:

F = −F>4 (·),
Bd = BF>3 (·) + F>1 (·),
Cφ = φ

∣∣
Γ1
, ∀φ ∈ H1

Γ0
(Ω).

The input and output operators B, Bd, and C are ad-
missible with respect to eAt, and D ∈ L(U, Y ) is the
feedthrough operator. The admissibility of these oper-
ators implies that for all t > 0, u ∈ L2(0, t;U), and
p ∈ L2(0, t;Ud):∫ t

0

T (t− s)(Bu(·, s) +Bdp(s))ds ∈ L2(Ω),

and there exists a constant κt > 0 such that∫ t

0

‖CT (s)φ‖2 ds ≤ κt‖φ‖2,∀φ ∈ D(A).

We define the Λ-extension CΛ of C as the limit:
CΛφ = limλ→∞ λCR(λ,A)φ, where D(CΛ) consists of
those φ ∈ X for which this limit exists. In a regular
linear system, we have R(R(λ,A)B) ⊂ D(CΛ) for al-
l λ ∈ ρ(A). In our context, D = 0 (Byrnes, Gilliam,
Shubov, and Weiss, 2002). When the input function
u(·, ·) belongs to L2

loc([0,∞);H−1/2(Γ1)), we can imme-
diately conclude that system (3) has a unique solution
in C([0,∞);L2(Ω)), given by:

w(·, t) = eAtw(·, 0) +

∫ t

0

eA(t−s)(Bu(·, s) +Bdp(t)) ds,

with a well-defined output:

e(·, t) = CΛe
Atw(·, 0)

+CΛ

∫ t

0

eA(t−s)(Bu(·, s) +Bdp(s)) ds+ Fp(t).

3 Output feedback regulator design

In this section, we delve into the output regu-
lation for system (1), accommodating all conceiv-
able unknown coefficients such as F1(·) ∈ L2(Ω;Cn),

3



F2(·) ∈ H1/2(Γ0;Cn), F4(·) ∈ H1/2(Γ1;Cn) and
F3(·) ∈ L2(Γ1;Cn). However, we do not presume
F2(·) = 0, indicating that (1) is not a regular linear sys-
tem in general. Firstly, we introduce a transformation
tailored for systems (1) and (2):

z(x, t) = w(x, t) + g(x)>p(t), (4)

where g : Ω→ Cn fulfills the Sylvester-type equation:
∆g(x)> = g(x)>G+ F1(x)>,

g(x)>|Γ0 = −F2(x)>,
∂g(x)>

∂ν
|Γ1

= −F3(x)>.

(5)

Lemma 3.1 The boundary value problem (5) has a u-
nique solution g ∈ H1(Ω;Cn).
Proof.Denote by ek the k-th column of the n×n identity
matrix. For 1 ≤ k ≤ n − q, we right-multiply (5) by ek
to get: 

∆gk(x) = gk(x)iωk + F1(x)>ek,

gk(x)|Γ0 = −F2(x)>ek,
∂gk(x)

∂ν
|Γ1 = −F3(x)>ek,

(6)

where gk(x) = g(x)>ek. From Lions and Magenes (1972,
pp. 188-189), we know that both of the following bound-
ary value problems:∆fk(x) = 0,

fk(x)|Γ0
= −F2(x)>ek,

∂fk(x)

∂ν
|Γ1

= 0,

and ∆hk(x) = 0,

hk(x)|Γ0
= 0,

∂hk(x)

∂ν
|Γ1

= −F3(x)>ek,

have unique solutions inH1(Ω). Next, invoking the Fred-
holm alternative theorem (Evans, 1998, Sec. 6.2), we find
that the boundary value problem:∆Hk(x) = iωkHk(x) + iωk(fk(x) + hk(x)) + F1(x)>ek,

Hk(x)|Γ0 = 0,
∂Hk(x)

∂ν
|Γ1 = 0,

also has a unique solution in H1(Ω). Therefore, gk(x) =
fk(x) + hk(x) +Hk(x) is the unique solution to (6). For
k = n− q + 1, we right-multiply (5) by ek to obtain

(∆− iωn−q+1)gk(x) = F1(x)>ek,

gk(x)|Γ0
= −F2(x)>ek,

∂gk(x)

∂ν
|Γ1

= −F3(x)>ek,

(7)

which admits a unique solution in H1(Ω) by repeating
the same steps as the proof for previous 1 ≤ k ≤ n− q.
For n−q+2 ≤ k ≤ n, right-multiply (5) by ek to obtain

(∆− iωn−q+1)gk(x) = gk−1(x) + F1(x)>ek,

gk(x)|Γ0
= −F2(x)>ek,

∂gk(x)

∂ν
|Γ1

= −F3(x)>ek,

(8)

which also admits a unique solution in H1(Ω) by repeat-
ing the same steps as the proof for previous 1 ≤ k ≤ n−q.

To facilitate control design, we introduce the extended
system (z(·, ·), p(·)) described by:



zt(x, t) = ∆z(x, t),

z(x, t)|Γ0
= 0,

∂z(x, t)

∂ν
|Γ1

= u(x, t),

ṗ(t) = Gp(t),

e(x, t) = z(x, t)|Γ1
− (g(x)|Γ1

+ F4(x))>p(t).

According to the Sobolev trace theorem, g ∈ H1/2(Γ1;Cn).
The term (g(·)|Γ1

+F4(·))>p(t) ∈ H1/2(Γ1) is expressed
as:

(g(x)|Γ1
+ F4(x))>p(t) =

n−q∑
k=1

Ak(x)eiωkt

+

q∑
k=1

Bk(x)eiωn−q+1t
tk−1

(k − 1)!
,

where Ak(·), Bk(·) ∈ H1/2(Γ1) are unknown parameter-
s. For control design purposes, we consider (g(x)|Γ1

+
F4(x))>p(t) to be generated by the following new ex-
osystem:

dt(x, t) = Gd(x, t), x ∈ Γ1, t ≥ 0,

d(x, 0) = d0(x), x ∈ Γ1,

(g(x)|Γ1
+ F4(x))>p(t) = γd(x, t), x ∈ Γ1.

(9)

Here, d(x, t) = (d1(x, t), · · · , dn(x, t)) ∈ Cn, and

{
γ = (1, 1, . . . , 1, 01×(q−1)),

d0(x) = (A1(x), . . . , An−q(x), B1(x), · · · , Bq(x))>.

(10)

Remark 3.1 The infinite-extension (9) can be viewed
as an infinite-dimensional analog of the p-extension
proposed in Eq.(22) of Deutscher (2017b) for finite-
dimensional systems.
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We then formulate (z(·, t), d(·, t)) to be governed by:

zt(x, t) = ∆z(x, t),

z(x, t)|Γ0
= 0,

∂z(x, t)

∂ν
|Γ1 = u(x, t),

dt(x, t) = Gd(x, t),

e(x, t) = z(x, t)|Γ1 − γd(x, t).

(11)

Subsequently, our focus shifts to designing an error feed-
back control for the transformed system (11), which sim-
plifies the original system (1). The design of the error
feedback control for system (11) will involve first design-
ing a feedforward control, followed by an observer-based
output feedback control, as detailed in the next two sub-
sections.
3.1 Feedforward control design

We introduce the Dirichlet maps Υk ∈ L(H1/2(Γ1),
H1(Ω)), k = 1, 2, · · · , n − q + 1 (Lions and Magenes,
1972, pp. 188-189). These maps are defined such that
Υk(r) = h0 if and only if{

(∆− iωkI)h0 = 0 in Ω,

h0

∣∣
Γ0

= 0, h0

∣∣
Γ1

= r.

For any r ∈ H1/2(Γ1), we have h0 ∈ H1(Ω) and

‖h0(·)‖H1(Ω) ≤ Cq‖r(·)‖H1/2(Γ1)

for some constant Cq > 0. By Tucsnak and Weis-
s (2009, Theorem 13.7.6), the Neumann trace op-
erator S1 ∈ L(H2(Ω), H1/2(Γ1)) defined by S1φ =
∂φ
∂ν

∣∣
Γ1
, ∀φ ∈ H2(Ω) admits a unique extension

S1 ∈ L(D(∆), H−1/2(Γ1)),, where D(∆) is the Hilbert
space D(∆) = {f ∈ H1(Ω)|∆f ∈ L2(Ω)}, endowed
with the norm

‖f‖D(∆) =
√
‖f‖2H1(Ω) + ‖∆f‖2L2(Ω), ∀f ∈ D(∆).

If Υk(r) = h0 for some r ∈ H1/2(Γ1) and k =
1, 2, · · · , n − q + 1, then h0 ∈ D(∆) and there exists a
constant Cp > 0 such that

‖S1h0(·)‖H−1/2(Γ1) ≤ ‖S1‖‖h0(·)‖D(∆)

≤ ‖S1‖
√
‖h0(·)‖2H1(Ω) + ‖iωkh0(·)‖2L2(Ω)

≤ Cp‖h0(·)‖H1(Ω) ≤ CpCq‖r(·)‖H1/2(Γ1),

showing that S1Υk ∈ L(H1/2(Γ1), H−1/2(Γ1)). Define
an operator A1 : D(A1)(⊂ L2(Ω))→ L2(Ω) by{

A1φ = (∆− iωn−q+1)φ, ∀ φ ∈ D(A1),

D(A1) =
{
φ ∈ H2(Ω)| φ

∣∣
Γ

= 0
}
.

By Lions and Magenes (1972, pp. 188-189), A−1
1 ∈

L(L2(Ω), H2(Ω)).
Lemma 3.2 Let

v(x, t) =

q∑
k=1

A−(k−1)
1 Υn−q+1(dn−q+k(·, t)). (12)

Then v(x, t) is a solution of the following equation:


vt(x, t) = ∆v(x, t) in Ω,

v(x, t)|Γ0
= 0,

v(x, t)|Γ1 = dn−q+1(x, t).

(13)

Proof. We can verify that v(x, t) defied by (12) satis-
fies every equation of (13). Firstly, by the definition of
Υn−q+1 and A1,

v(x, t)|Γ0 = Υn−q+1(dn−q+1(·, t))|Γ0 = 0,

v(x, t)|Γ1
= Υn−q+1(dn−q+1(·, t))|Γ1

= dn−q+1(·, t).

Next, since for each 1 ≤ k ≤ q−1,
(
∂
∂t − iωn−q+1

)
dn−q+k(x, t)

= dn−q+k+1(x, t),
(
∂
∂t − iωn−q+1

)
dn(x, t) = 0, recalling

of dn−q+k ∈ C∞([0,∞);H1/2(Γ1)), ∀1 ≤ k ≤ q, we have

(
∂

∂t
− iωn−q+1

)
v(·, t) =

q−1∑
k=1

A−(k−1)
1 Υn−q+1(dn−q+k+1(·, t)).

Using the fact (∆− iωn−q+1)Υn−q+1(dn−q+1(·, t)) = 0,
it follows that

(∆−iωn−q+1)v(·, t) =

q∑
k=2

A−(k−2)
1 Υn−q+1(dn−q+k(·, t)).

Therefore, vt(x, t) = ∆v(x, t) in Ω.

Let

ε(·, t) = z(·, t)−
n−q∑
k=1

Υk(dk(·, t))

−
q∑

k=1

A−(k−1)
1 Υn−q+1(dn−q+k(·, t)).

For 1 ≤ k ≤ n− q, given that dk(x, t) = Ak(x)eiωkt, we
obtain

d

dt
Υk(dk(·, t)) = iωkΥk(dk(·, t)) = ∆Υk(dk(·, t)).
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Hence, ε(·, ·) is described by the system:

εt(x, t) = ∆ε(x, t),

ε(x, t)|Γ0 = 0,
∂ε(·, t)
∂ν

|Γ1
= u(·, t)−Hd(·),

e(x, t) = ε(x, t)|Γ1 ,

(14)

where H ∈ L(H1/2(Γ1;Cn);H−1/2(Γ1)) is given by

Hd(·) = S1

( n∑
k=1

Υk(dk(·))

+

q∑
k=1

A−(k−1)
1 Υn−q+1(dn−q+k(·))

)
,

∀d(·) = (d1(·), · · · , dn(·))> ∈ H1/2(Γ1;Cn).

(15)

To compensate the disturbance, we naturally introduce
a feedforward control defined as:

u(·, t) = Hd(·, t). (16)

This control ensures that u ∈ C([0,∞);H−1/2(Γ1)).
With this control, system (14) transforms into:

εt(x, t) = ∆ε(x, t),

ε(x, t)|Γ0
= 0,

∂ε(x, t)

∂ν
|Γ1

= 0,

e(x, t) = ε(x, t)|Γ1 .

(17)

For any initial state ε(·, 0) ∈ L2(Ω), this system admits
a unique solution ε(·, t) = eAtε(·, 0) ∈ L2(Ω) that decays
exponentially.
3.2 Observer design

An observer for the z-subsystem, as described in (11),
can be trivially designed as follows:

ẑt(x, t) = ∆ẑ(x, t),

ẑ(x, t)|Γ0
= 0,

∂ẑ(x, t)

∂ν
|Γ1

= u(x, t),

(18)

From this design, the observer error z̃(x, t) = z(x, t) −
ẑ(x, t) evolves according to:

z̃t(x, t) = ∆z̃(x, t),

z̃(x, t)|Γ0
= 0,

∂z̃(x, t)

∂ν
|Γ1

= 0.

(19)

For any initial state z̃(·, 0) ∈ L2(Ω), system (19) admit-
s a unique solution in C([0,∞);L2(Ω)) that decays ex-
ponentially. The admissibility of C leads to lemma 3.3
following.

Lemma 3.3 The solution of system (19) satisfies∫ ∞
0

eβt‖z̃(·, t)‖2H1/2(Γ1) dt ≤ C̃‖z̃(·, 0)‖2L2(Ω) (20)

for some β > 0.
In (11), the term γd(x, t) in the error e(x, t) =

z(x, t)|Γ1
− γd(x, t) is unknown. Since z(x, t) can be

estimated by the observer (19), we introduce a known
function

yd(x, t) = −e(x, t) + ẑ(x, t)|Γ1 = γd(x, t)− z̃(x, t)|Γ1

to estimate γd(x, t) and consider the system:
dt(x, t) = Gd(x, t), x ∈ Γ1, t ≥ 0,

d(x, 0) = d0(x), x ∈ Γ1,

yd(x, t) = γd(x, t)− z̃(x, , t)|Γ1
, x ∈ Γ1.

(21)

Based on the output yd(x, t), we design the following
observer for (21):{

d̂t(x, t) = Gd̂(x, t) + L(yd(x, t)− γd̂(x, t)),

d̂(x, 0) = d̂0(x) ∈ H1/2(Γ1;Cn).
(22)

Here, L = (l1, · · · , ln)> ∈ Cn is chosen so that G − Lγ
is Hurwitz. Such an L always exists because (G, γ) is
observable for γ defined by (10). Defining the observer

error as d̃(x, t) = d(x, t)− d̂(x, t), we obtain:

d̃t(x, t) = (G− Lγ)d̃(x, t) + Lz̃(x, t)|Γ1
. (23)

Rewriting system (23) as an evolution equation on Y n

gives:

˙̃
d(·, t) = (G1 − L1γ1)d̃(·, t) + L1z̃(·, t)|Γ1

, (24)

where

G1 = diag

{
iω1IY , iω2IY , . . . ,

[
0 IY q−1

0 0

]
+ iωn−q+1IY q

}
,

and γ1 = [IY , IY , . . . , IY , 0, · · · , 0] ∈ L(Y n, Y ), L1 =
[l1IY , · · · , lnIY ]> ∈ L(Y, Y n).

Lemma 3.4 For any initial state d̃(·, 0) ∈ H1/2(Γ1;Cn),
and z̃(·, t) from (19), system (23) admits a unique solu-

tion d̃ ∈ C([0,∞);H1/2(Γ1;Cn)).
Proof. Since G1 − L1γ1 is bounded and G − Lγ is
Hurwitz, G1 − L1γ1 generates an exponentially stable
uniformly continuous semigroup Sg(t) with ‖Sg(t)‖ ≤
Mge

−ωgt for some Mg, ωg > 0. Because L1 is bound-
ed, it follows from Tucsnak and Weiss (2009, Proposi-
tion 4.2.5) that system (23) admits a unique solution

d̃ ∈ C([0,∞);H1/2(Γ1;Cn)).
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3.3 Observer-based error feedback control

By referring to equation (16), we can naturally design
a tracking error feedback control, as follows:

u(·, t) = Hd̂(·, t), (25)

where H is as defined in (15). Since H ∈ L(H1/2(Γ1;
Cn);H−1/2(Γ1)) and u ∈ C([0,∞);H−1/2(Γ1)), the
closed-loop system arising from (1) under the control
(25) can be expressed as:

wt(x, t) = ∆w(x, t) + F1(x)>p(t),

w(x, t)|Γ0 = F2(x)>p(t),
∂w(·, t)
∂ν

|Γ1 = Hd̂(·, t) + F3(·)>p(t),
ẑt(x, t) = ∆ẑ(x, t),

ẑ(x, t)|Γ0
= 0,

∂ẑ(·, t)
∂ν

|Γ1
= Hd̂(·, t),

d̂t(x, t) = Gd̂(x, t) + L(−e(x, t) + ẑ(x, t)|Γ1

−γd̂(x, t)),

e(x, t) = w(x, t)|Γ1 − F4(x)>p(t),

(26)

which is equivalent to:

εt(x, t) = ∆ε(x, t),

ε(x, t)|Γ0
= 0,

∂ε(·, t)
∂ν

|Γ1
= −Hd̃(·, t),

z̃t(x, t) = ∆z̃(x, t),

z̃(x, t)|Γ0
= 0,

∂z̃(x, t)

∂ν
|Γ1

= 0,

d̃t(x, t) = (G− Lγ)d̃(x, t) + Lz̃(x, t)|Γ1
,

e(x, t) = ε(x, t)|Γ1 ,

(27)

where ε(·, ·), z̃(·, ·) and d̃(·, ·) are as specified in (14), (19)
and (23), respectively. Now, let’s consider system (27)
within the Hilbert space H = (L2(Ω))2 ×H1/2(Γ1;Cn),
equipped with the norm:

‖(φ1, φ2, φ3)‖H =

(
ν2
∫

Ω
|φ1(x)|2dx+

∫
Ω
|φ2(x)|2dx

+ν〈φ3, Pφ3〉H1/2(Γ1;Cn)

)1/2

, ∀(φ1, φ2, φ3) ∈ H,

(28)
where P ∈ L(Y n) is a positive definite operator satisfy-
ing:

P (G1 − L1γ1) + (G1 − L1γ1)∗P = −2I. (29)

System (27) can be rewritten as:

d

dt


ε(·, t)
z̃(·, t)
d̃(·, t)

 = AE


ε(·, t)
z̃(·, t)
d̃(·, t)

 ,

where AE : D(AE) → (L2(Ω))2 × H1/2(Γ1;Cn) is de-
fined as:


AE

φ1

φ2

φ3

 =

 Aφ1 − BHφ3

Aφ2

(G1 − L1γ1)φ3 + L1φ2|Γ1

 ,

D(AE) =
{

(φ1, φ2, φ3)> ∈ H1
Γ0

(Ω)× (H2(Ω) ∩H1
Γ0

(Ω))

×H1/2(Γ1;Cn) : Aφ1 − BHφ3 ∈ L2(Ω),
∂φ2

∂ν
|Γ1

= 0

}
.

(30)

Lemma 3.5 The operator AE defined by (30) generates
an exponentially stableC0-semigroup onH = (L2(Ω))2×
H1/2(Γ1;Cn).
Proof. For any triplet (ϕ1, ϕ2, ϕ3) ∈ H, solving the e-
quation

AE


φ1

φ2

φ3

 =


ϕ1

ϕ2

ϕ3


leads us to the following system of equations:

{
φ2 = A−1ϕ2 ∈ H2(Ω) ∩H1

Γ0
(Ω),

φ3 = (G1 − L1γ1)−1(ϕ3 − L1φ2|Γ1
) ∈ H1/2(Γ1;Cn),

where φ1 satisfies

∆φ1(x) = ϕ1(x), φ1(x)|Γ0
= 0,

∂φ1(x)

∂ν
|Γ1

= −Hφ3(·).

Since ϕ1 ∈ L2(Ω), and Hφ3(·) ∈ H−1/2(Γ1), according
to Lions and Magenes (1972, pp. 188-189), we deduce
that φ1 ∈ H1

Γ0
(Ω), which establishes that R(AE) = H.

For any triplet (φ1, φ2, φ3) ∈ D(AE), and for any ν > 0,
we have the following inequality:

Re〈AE(φ1, φ2, φ3), (φ1, φ2, φ3)〉H
= Re

(
ν2〈Aφ1, φ1〉H−1

Γ0
(Ω),H1

Γ0
(Ω)

+

∫
Ω

∆φ2(x)φ2(x)dx

+ν〈(G1 − L1γ1)φ3, Pφ3〉H1/2(Γ1;Cn) + ν〈L1φ2|Γ1 , Pφ3〉H1/2(Γ1;Cn)

−ν2〈BHφ3, φ1〉H−1
Γ0

(Ω),H1
Γ0

(Ω)

)
= Re

(
− ν2〈(−A)1/2φ1, (−A)1/2φ1〉L2(Ω) −

∫
Ω

|∇φ2(x)|2dx

−ν‖φ3‖2H1/2(Γ1;Cn) + ν〈L1Cφ2, Pφ3〉H1/2(Γ1;Cn)

−ν2〈Hφ3, Cφ1〉H−1/2(Γ1),H1/2(Γ1)

)
≤ −ν2

∫
Ω

|∇φ1(x)|2dx−
∫

Ω

|∇φ2(x)|2dx

−ν‖φ3‖2H1/2(Γ1;Cn) + νC2‖φ2‖H1
Γ0

(Ω)‖φ3‖H1/2(Γ1;Cn)

+ν2C3‖φ1‖H1
Γ0

(Ω)‖φ3‖H1/2(Γ1;Cn),
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for some constants C2, C3 > 0 independent of ν. Con-
sidering the symmetric matrix

−ν2 0 1
2ν

2C3

0 −1 1
2νC2

1
2ν

2C3
1
2νC2 −ν

 ,

which is negative definite for sufficiently small ν > 0. By
Poincaré’s inequality, there exist constants CA, CB > 0
such that

Re〈AE(φ1, φ2, φ3), (φ1, φ2, φ3)〉H
≤ −CA‖(φ1, φ2, φ3)‖2

H1
Γ0

(Ω)×H1
Γ0

(Ω)×H1/2(Γ1;Cn)

≤ −CB‖(φ1, φ2, φ3)‖2H.

(31)

Together with the Lumer-Philips theorem (Pazy, 1983,
Theorem 1.4.3), this implies that AE generates an ex-
ponentially stable C0-semigroup on H.
Theorem 3.1 For any unknown coefficients F1(·) ∈
L2(Ω;Cn), F2(·) ∈ H1/2(Γ0;Cn), F4(·) ∈ H1/2(Γ1;Cn)
and F3(·) ∈ L2(Γ1;Cn), and for any initial state

(w(·, 0), ẑ(·, 0), d̂(·, 0)) ∈ (L2(Ω))2 ×H1/2(Γ1;Cn),

system (26) admits a unique solution (w, ẑ, d̂) ∈
C([0,∞); (L2(Ω))2 ×H1/2(Γ1;Cn)), and the output
tracking of the closed-loop system (26) is guaranteed
such that ∫ ∞

0

eαt‖e(·, t)‖2H1/2(Γ1) dt <∞ (32)

for some α > 0.
Proof. Since the operator AE generates an expo-
nentially stable C0-semigroup on H = (L2(Ω))2 ×
H1/2(Γ1;Cn), system (27) admits a unique solution in
C([0,∞); (L2(Ω))2 ×H1/2(Γ1;Cn)) satisfying∥∥∥ε(·, t), z̃(·, t), d̃(·, t)

∥∥∥
(L2(Ω))2×H1/2(Γ1;Cn)

≤M1e
−µ1t

∥∥∥ε(·, 0), z̃(·, 0), d̃(·, 0)
∥∥∥

(L2(Ω))2×H1/2(Γ1;Cn)

(33)
for some M1, µ1 > 0. Therefore, the transforms

w(·, t) = ε(·, t) +
∑n−q
k=1 Υk(dk(·, t))

+
∑q
k=1 A

−(k−1)
1 Υn−q+1(dn−q+k(·, t))− g(·)p(t),

ẑ(·, t) = ε(·, t) +
∑n−q
k=1 Υk(dk(·, t))

+
∑q
k=1 A

−(k−1)
1 Υn−q+1(dn−q+k(·, t))− z̃(·, t),

d̂(·, t) = d(·, t)− d̃(·, t),

show that (w, ẑ, d̂) is well-defined and bounded in
(L2(Ω))2 × H1/2(Γ1;Cn) with respect to time. The

ε-subsystem now reads
εt(x, t) = ∆ε(x, t),

ε(x, t)|Γ0
= 0,

∂ε(x, t)

∂ν
|Γ1 = ũ(x, t),

(34)

where

ũ(·, t) = −Hd̃(·, t),

which satisfies ũ ∈ C([0,∞);H−1/2(Γ1)) and

‖ũ(·, t)‖H−1/2(Γ1) ≤ ‖H‖‖d̃(·, t)‖H1/2(Γ1;Cn)

≤ ‖H‖M1e
−µ1t

∥∥∥ε(·, 0), z̃(·, 0), d̃(·, 0)
∥∥∥

(L2(Ω))2×H1/2(Γ1;Cn)
.

(35)
Without loss of generality, we consider only the real so-
lution. Let

V1(t) =
1

2

∫
Ω

ε2(x, t)dx.

It follows from (33) that V1(t) decays exponentially, i.e.,

V1(t) =
1

2
‖ε(x, t)‖2L2(Ω)

≤ 1

2
M2

1 e
−2µ1t

∥∥∥ε(·, 0), z̃(·, 0), d̃(·, 0)
∥∥∥2

(L2(Ω))2×H1/2(Γ1;Cn)
.

(36)
Differentiating V1(t) along the solution of (34) and

using Green’s formula yields

V̇1(t) = −
∫

Ω

|∇ε(x, t)|2dx+

∫
Γ1

ε(x, t)ũ(x, t)dx.

≤ −
∫

Ω

|∇ε(x, t)|2dx+ ‖ε(·, t)‖H1/2(Γ1)‖ũ(·, t)‖H−1/2(Γ1)

≤ −‖ε(·, t)‖2H1
Γ0

(Ω) +m0‖ε(·, t)‖H1
Γ0

(Ω)‖ũ(·, t)‖H−1/2(Γ1)

≤ −(1− δm0)‖ε(·, t)‖2H1
Γ0

(Ω) +
m0

4δ
‖ũ(·, t)‖2H−1/2(Γ1),

(37)
where we used Young’s inequality and the Sobolev trace
theorem that ‖ε(·, t)‖H1/2(Γ1) ≤ m0‖ε(·, t)‖H1(Ω) with

m0 being a positive constant. Let δ = 1
2m0

. Then,

V̇1(t) ≤ −1

2
‖ε(·, t)‖2H1

Γ0
(Ω) +

m0

4δ
‖ũ(·, t)‖2H−1/2(Γ1).

(38)
From (38) and (36), we obtain

1

2

∫ ∞
0

eαt‖ε(·, t)‖2H1
Γ0

(Ω)dt

≤ V1(0) +

∫ ∞
0

αeαtV1(t)dt

+

∫ ∞
0

m0

4δ
eαt‖ũ(·, t)‖H−1/2(Γ1)dt

≤ Ce
∥∥∥ε(·, 0), z̃(·, 0), d̃(·, 0)

∥∥∥2

(L2(Ω))2×H1/2(Γ1;Cn)
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for any α < 2µ1 and some Ce > 0. This, together with
the Sobolev trace theorem, gives∫ ∞

0

eαt‖ε(·, t)‖2H1/2(Γ1) dt <∞.

4 Robustness of the control

In this section, we delve into the robustness of the con-
troller within a simplified context where F2 = 0 and q =
1. The assumption F2 = 0 is to make the system be regu-
lar. For q > 1, there is difficulty to discuss the robustness.
Under these conditions, G = diag {iω1, iω2, . . . , iωn},
and γ = (1, 1, · · · , 1). For simplicity, L can be chosen as
L = (1, 1, · · · , 1)>, ensuring that G − Lγ satisfies the
Hurwitz criterion. We demonstrate that the feedback
control introduced in the preceding section:

u(·, t) = H(d̂(·, t)),
ẑt(x, t) = ∆ẑ(x, t),

ẑ(x, t)|Γ0
= 0,

∂ẑ(·, t)
∂ν

|Γ1
= H(d̂(·, t)),

d̂t(x, t) = Gd̂(x, t) + L(−e(x, t)
+ẑ(x, t)|Γ1

− γd̂(x, t)),

(39)

fulfills the G− conditions, thereby solving the robust out-
put regulation problem. To facilitate our analysis, we
introduce a bounded and invertible coordinate transfor-
mation: (

ε̂(·, t)
d̂(·, t)

)
=

(
ẑ(·, t)−H1(d̂(·, t))

d̂(·, t)

)
, (40)

where H1 is defined asH1d(·) =

n∑
k=1

Υk(dk(·)),

∀d(·) = (d1(·), · · · , dn(·))> ∈ H1/2(Γ1;Cn).

It’s worth noting that this type of general coor-
dinate transformation is analogous to the one p-
resented in (3.19) of Immonen (2007). Evidently,
H1 ∈ L(H1/2(Γ1;Cn);H1(Ω)). The control (39) can be
equivalently expressed as:

u(·, t) = H(d̂(·, t)),

ε̂t(·, t) = ∆ε̂(·, t) +

n∑
k=1

Υk(−e(·, t) + ε̂(·, t)|Γ1
),

ε̂(x, t)|Γ0
= 0,

∂ε̂(x, t)

∂ν
|Γ1

= 0,

d̂t(x, t) = Gd̂(x, t) + L(−e(x, t) + ε̂(x, t)|Γ1),
(41)

This system can be further abstracted as:{
ż(t) = G1z(t) + G2e(t),

u(t) = Kz(t),
(42)

where z = (ε̂, d̂)> and the triple (G1,G2,K) is given by:

G1 =

(
A+H1L1CΛ 0

L1CΛ G1

)
, G2 =

(
−H1L1

−L1

)
, K =

(
0 H

)
.

Note that both G2 and K are bounded operators. The
following lemma establishes key properties of the system
operators:
Lemma 4.1 The operator G1 generate a C0-semigroup
on L2(Ω)×H1/2(Γ1;Cn)). The triple (G1,G2,K) satis-
fies the G-conditions, specifically:{

R(iωk −G1) ∩R(G2) = {0}, ∀1 ≤ k ≤ n,
N (G2) = {0},

(43)

Proof. According to Weiss (1994, Section 7), G1 gen-
erate an C0-semigroup on L2(Ω)×H1/2(Γ1;Cn)) due to
the following operator representation:

G1 =

[
A 0

0 G1

]
−G2

[
CΛ 0

]
. (44)

The operator L1 takes the form L1 = (IY , · · · , IY )> ∈
L(Y, Y n), implying thatN (G2) = {0}. Now, let 1 ≤ k ≤
n be arbitrary and assume that(
w

v

)
= (iωk−G1)

(
h0

h

)
= G2h1 ∈ R(iωk−G1)∩R(G2)

for some (h0, h)> ∈ (H2(Ω) ∩H1
Γ0

(Ω))×H1/2(Γ1;Cn),

and h1 ∈ H1/2(Γ1). Denote h = (h1, · · · , hn)>. Then,(
w

v

)
=

(
(iωk −A−H1L1CΛ)h0

(−L1CΛ)h0 + (iωk −G1)h

)
=

(
−H1L1h1

−L1h1

)
.

The second row above implies that (iωk − G1)h =
L1(CΛh0 + h1), which specifically means that 0 =
(iωk − iωk)hk = (CΛh0 + h1). Hence, the first row
above implies that (iωk − A)h0 = 0 which leads to
h0 = 0, leading to h0 = 0 since iωk ∈ ρ(A). Therefore,
h1 = −CΛh0 = 0 and (w, v)> = G2h1 = 0. This con-
cludes thatR(iωk−G1)∩R(G2) = {0}. Since 1 ≤ k ≤ n
are arbitrary, the G-conditions is satisfied.

We emphasize that in this section, when operators
A,B, Bd, C andD are perturbed to Ã : D(Ã) ⊂ X → X,
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B̃ ∈ L(U, X̃−1), B̃1 ∈ L(Ud, X̃−1), C ∈ L(X̃1, Y ), D̃ ∈
L(U, Y ) respectively, where X̃1 and X̃−1 are scale spaces

linked to Ã, we presume that (Ã, B̃, B̃d, C̃, D̃) constitutes
a regular linear system, and F is perturbed in a way that
F̃ ∈ L(Ud, Y ).

Denoting the operators of the closed-loop system
formed by the perturbed plant and the controller as
C̃e = [C̃Λ, D̃K], D̃e = F̃ , and

Ãe =

[
Ã B̃K

G2C̃Λ G1 + G2D̃K

]
, B̃e =

[
B̃d

G2F̃

]
, (45)

we have the following lemma:
Lemma 4.2 (Paunonen, 2017, Theorem 2.3) As-
sume q = 1 and F2 = 0. The closed-loop system
(Ãe, B̃e, C̃e, D̃e) is a regular system.

The class O of perturbations encompasses operators
(Ã, B̃, B̃d, C̃, D̃, F̃ ) satisfying the aforementioned as-
sumptions. Notably, the class O includes the nominal
plant, i.e., (A,B, Bd, C,D, F ) ∈ O. Given that we have
established the exponential stability of the nominal
closed-loop system Ae = Γ−1AEΓ, with Γ being


I 0 0

I −I 0

0 0 I

 ,

the succeeding theorem is a direct consequence of
Paunonen (2017, Theorem 3.8).
Theorem 4.1 The control (39) is robust with respect
to all perturbations for which the perturbed closed-loop
system Ãe is exponentially stable.

5 Conclusions

In this paper, we design a robust output regulator
for a multi-dimensional heat equation with infinite-
dimensional output space by the internal model prin-
ciple approach. The approach we adopt is again the
observer-based feedback control approach. Two trans-
formations are made. The first transformation is for the
observer design for which we re-generate the exosystem
so that the tracking error can detect both PDE and
ODE. The second transformation is for the feedforward
control design. The tracking error feedback control is
therefore designed with replacement of the state and
disturbance by their estimates. The closed-loop system
is proved to be conditionally robust when G is a diag-
onal matrix. For the special case, since the plant is a
impedance passive and stable regular linear system, it
is possible to use the simple controller design in (see,

e.g., Rebarber and Weiss (2003))
u(x, t) = −γd̂(x, t),
˙̂
d(x, t) = Gd̂(x, t) + γ>e(x, t).

d̂(x, 0) = d̂0(x) ∈ H1/2(Γ1;Cn).

The approach of Rebarber and Weiss (2003) is not
working for non-trivial Jordan block case. On the oth-
er hand, the low-gain simple control design has been
extended to the stable systems and non-trivial Jordan
blocks in Hämäläinen and Pohjolainen (2002), which
is, however, only limited to finite-dimensional output s-
pace. Our approach has potential application for unsta-
ble heat equation, which has been shown working well
for 1-d case. Another potential problem that we need to
consider in the next future work is the non-collocated
case which has been solved for 1-d PDEs. Given that
the control is observer-based, the finite approximations
represent an intriguing area for future investigation.
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Weiss, G. (1989). Admissibility of unbounded control
operators. SIAM J. Control Optim., 27, 527-545.

Weiss, G. (1994). Regular linear systems with feedback.
Math. Control Signals Systems, 7, 23-57.

Zhou, H.C., Guo, B.Z., and Xiang, S.H. (2020). Perfor-
mance output tracking for multidimensional heat e-
quation subject to unmatched disturbance and non-
collocated control. IEEE Trans. Automat. Control, 65,
1940-1955.

Ren-Xi Zhao received his Ph.D. from the Academy
of Mathematics and Systems Science, Chinese Academy
of Sciences, in 2024. Currently, he serves as an Assis-
tant Professor in the School of Mathematics at Foshan
University, China. His research interests encompass the
control theory of infinite-dimensional systems.

Fig. 1. Ren-Xi Zhao

Fig. 2. Bao-Zhu Guo

Fig. 3. Lassi Paunonen

Bao-Zhu Guo received his Ph.D. in Applied Mathe-
matics from the Chinese University of Hong Kong in
1991. Since 2000, he has been affiliated with the Acade-
my of Mathematics and Systems Science, Chinese A-
cademy of Sciences, where he holds the position of Re-
search Professor in Mathematical System Theory. Ad-
ditionally, he is currently associated with the School
of Mathematics and Physics at North China Electrical
Power University in China. His research pursuits include
the control of nonlinear systems, as well as the theory
and application of infinite-dimensional systems control.
Lassi Paunonen received his Ph.D. in Mathematics
from Tampere University of Technology, Tampere, Fin-
land, in 2011. He currently holds the position of Asso-
ciate Professor in the Department of Mathematics at
Tampere University of Technology. His primary research
focus is on the asymptotic behavior of strongly continu-
ous semigroups, operator theory, and the robust control
of infinite-dimensional linear systems.

11


