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Abstract The 3D Navier–Stokes system, under Lions boundary conditions,
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1 Introduction

We consider the incompressible 3D Navier–Stokes system in (0, T )×Ω, under
Lions boundary conditions,

∂tu+ 〈u · ∇〉u− ν∆u+∇p+ h = η, div u = 0, (1.1a)(
u · n

curlu− ((curlu) · n)n

)∣∣∣∣
∂Ω

=

(
0
0

)
, u(0, x) = u0(x), (1.1b)

where Ω ⊂ R3 is a rectangle Ω = (0, L1)× (0, L2)× (0, L3), whose boundary
is denoted by ∂Ω. As usual u = (u1, u2, u3) and p, defined for (t, x1, x2, x3) ∈
I × Ω with I = (0, T ), T > 0, are respectively the unknown velocity field
and pressure of the fluid, ν > 0 is the viscosity, the operators ∇ and ∆ are
respectively the well known gradient and Laplacian in the space variables
(x1, x2, x3) ∈ Ω, 〈u·∇〉v stands for (u·∇v1, u·∇v2, u·∇v3), div u :=

∑3
i=1 ∂xiui,
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the vector n stands for the outward unit normal vector to ∂Ω, and h is a fixed
function. Finally, η is a control at our disposal.

Lions boundary conditions (cf. [14, Section 6.9]) are a particular case of
Navier boundary conditions. For works and motivations concerning Lions and
Navier boundary conditions (in both 2D and 3D cases) we refer to [7, 12, 13,
20,33,34] and references therein.

1.1 The evolutionary system

We can rewrite system (1.1) as an evolutionary system

u̇+Au+B(u, u) + h = η, u(0) = u0, (1.2)

in the subspace H :=
{
u ∈ L2(Ω, R3) | div u = 0 and (u · n)|∂Ω = 0

}
of diver-

gence free vector fields which are tangent to the boundary. We may suppose
that h and η take their values in H (otherwise we just take their orthogonal
projections onto H). We consider H, endowed with the norm inherited from
L2(Ω, R3), as a pivot space, that is, H = H ′. Further we set the spaces

V := {u ∈ H1
(
Ω, R3

)
| u ∈ H},

D(A) :=
{
u ∈ H2(Ω, R3) | u ∈ H, curlu− ((curlu) · n)n|∂Ω = 0

}
Above, for u, v, w ∈ V ,

A : V → V ′, 〈Au, v〉V ′,V := ν(curlu, curl v)L2(Ω,R3), (1.3)

B : V × V → V ′, 〈B(u, v), w〉V ′,V := −
∫
Ω

(〈u · ∇〉w) · v dΩ. (1.4)

It turns out that D(A) = {u ∈ H | Au ∈ H} is the domain of A. We will
refer to A as the Stokes operator, under Lions boundary conditions. Further,

we have the continuous, dense, and compact inclusions D(A)
d,c
↪−−→ V

d,c
↪−−→ H.

Denoting by Π the orthogonal projection in L2(Ω, R3) onto H, for u, v ∈
D(A) we may write Au := Π(ν∆u), and B(u, v) := Π(〈u · ∇〉v).

Further A maps V onto V ′, and the operator A−1 ∈ L(H) is compact.
The eigenvalues of A, repeated accordingly with their multiplicity, form an
increasing sequence (λk)k∈N0

,

0 < λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ . . . ,

with λk going to +∞ with k.

Remark 1.1 It is clear that the Stokes operator (1.3) is well defined, mapping V
into V ′. We also see that the bilinear operator (1.4) maps V × V into V ′, due
to the estimate

〈B(u, v), w〉V ′,V ≤ C1|u|L6(Ω,R3)|∇w|L2(Ω,R9)|v|L3(Ω,R3)

≤ C2|u|H1(Ω,R3)|w|H1(Ω,R3)|v|H1(Ω,R3)

For further estimations on the bilinear operator we refer to [32, Section 2.3].
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1.2 Saturating sets and approximate controllability

In the pioneering work [3] the authors introduced a method which led to
the controllability of finite-dimensional Galerkin approximations of the 2D
and 3D Navier–Stokes system, and to the approximate controllability of the 2D
Navier–Stokes system, by means of low modes/degenerate forcing.

Hereafter U ⊆ H will stand for a linear subspace of H, and we denote

B(a, b) := B(a, b) +B(b, a), for a, b ∈ U.

Definition 1.1 Let C = {Wk | k ∈ {1, 2, . . . , M}} and let E be a finite-
dimensional space so that C ⊂ E ⊂ U . The finite-dimensional subspace
FL(E) ⊂ U is given by

FL(E) := E+span{B(a, b) | a ∈ C, b ∈ E, and (B(a, a), B(b, b)) ∈ H×H}
⋂
U,

Definition 1.2 A given finite subset C = {Wk | k ∈ {1, 2, . . . , M}} ⊂ U
is said (L, U)-saturating if for the following sequence of subspaces Gj ⊂ U ,
defined recursively by

G0 := span C, Gj+1 := FL(Gj),

we have that the union
⋃
j∈N
Gj is dense in H.

In [4, Section 4] an explicit saturating set with 4 elements is presented for
the 2D Navier–Stokes system under periodic boundary conditions.

Remark 1.2 In order to deal with different types of boundary conditions and
domains the definitions of saturating set has been slightly changed/relaxed
in several works. The definition of saturating set in [4, Section 4] is slightly
different from Definition 1.2. But, we can prove (cf. [24, Section 6.1]) that
the saturating set presented in [4] is also (L,D(A))-saturating (cf. [24, Defini-
tion 2.2.1]).

We would like to refer also to the works [9,11,25], where the notion of sat-
urating set was used to derive ergodicity for the Navier–Stokes system under
degenerate stochastic forcing (compare the sequence of subsets Zn in [11, Sec-
tion 4] with the sequence of subsets Kn in [3, Section 8]).

In the pioneering work [3] the set U in (1.2) is taken to be D(A), the
same is done in [4, 21, 22, 27]. Later, in [19, 23, 24], U is taken as V in order
to deal either with Navier-type boundary conditions or with internal controls
supported in a small subset.

Often, for 2D Navier–Stokes equations and 1D Burgers equations, we have
estimates for the bilinear term B(·, ·) which allow us to derive the well-
posedness of the Cauchy problem, or that we can use to derive the controlla-
bility results. For example, the estimate

|〈B(z + y, y), z〉V ′, V |R ≤ C1|z|H |z|V |y|V + C1|y|H |y|V |z|V
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is used in [19] in the 1D and 2D settings, to derive approximate controllability
results for the Navier–Stokes and Burgers equations. The same estimate

|〈B(z, y), z〉V ′, V |R ≤ C1|z|H |z|V |y|V

above can be used to prove the uniqueness of weak solutions for the corre-
sponding systems. The estimate does not hold in the 3D case.

In [27], the method introduced in [3] is developed so the case where the
well-posedness of the Cauchy problem is not known.

Definition 1.3 Given a finite dimensional space E ⊂ U , let us denote by
FB(E) the largest finite-dimensional linear subspace F ⊂ U so that any η1 ∈ F
can be written as

η1 = η −
k∑
j=1

αjB(ζj),

with k ∈ N0, (η, ζ1, . . . , ζk) ∈ E1+k, and (α1, . . . , αk) ∈ [0,+∞)k.

Definition 1.4 A given finite subset C = {Wk | k ∈ {1, 2, . . . , M}} ⊂ U is
said (B, U)-saturating if for the following sequence of subspaces of Ej ⊂ U ,
defined recursively by

E0 := span C, Ej+1 := FB(Ej),

we have that the union
⋃
j∈N
Ej is dense in H.

Though, in [27] the author focuses on no-slip boundary conditions, u|∂Ω =
0, the results also hold for other boundary conditions. This is also mentioned
in [27, Section 2.3. Remark 2.7] where the author considers the case of periodic
boundary conditions, and presents an explicit (B,D(A))-saturating set C (for
the case of (1, 1, 1)-periodic vectors) whose 64 elements are eigenfunctions of
the Stokes operator (i.e., the Laplacian). For a general period q = (q1, q2, q3) ∈
(R0)3 the existence of a saturating set is also proven in [27, Section 2.3, The-
orem 2.5], though the form of the saturating set is less explicit.

Following the proof of the Main Theorem 2.2 in [27] we can see that the
result holds for a generic setting where we have the subspaces

D(A)
d,c
↪−−→ V = D(A

1
2 )

d,c
↪−−→ H = H ′,

V ⊂ H ∩H1(Ω,R3), D(A) ⊂ H ∩H2(Ω,R3),

with D(A) = {u ∈ H | Au ∈ H} being the domain Stokes operator A (which
depends on the boundary conditions), and where the scalar products

〈Au, v〉V ′,V and (Au,Av)H

induce norms in V and D(A), respectively, which are equivalent to the those
inherited from H1(Ω,R3) and H2(Ω,R3), respectively.
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Remark 1.3 The notation S ↪−→ R above means that the inclusion S ⊆ R is
continuous. The letter “d” (resp. “c”) means that, in addition, the inclusion
is also dense (resp. compact).

Remark 1.4 In the periodic case mentioned above, usually we take a smaller
subspace Hper ⊂ H in order to factor out the kernel of A (as an operator
in H), and guarantee that (u, v) 7→ 〈Au, v〉V ′

per,Vper defines a scalar product
in Vper := V

⋂
Hper. Notice that, for a non-zero constant vector field u, and

under periodic boundary conditions, we will have Au = −ν∆u = 0 and
thus 〈Au, u〉V ′,V = 0. Hence, 〈Au, v〉V ′,V does not define a scalar product
in V = H ∩H1(Ω,R3).

In particular, the results in [27] hold true for Lions boundary conditions,
and we can conclude that approximate controllability for 3D Navier–Stokes
equation follows from the existence of a (B,D(A))-saturating set.

In this paper, we prove that approximate controllability also follows from
the existence of a (L,D(A))-saturating set. Namely, we will prove the following.

Main Theorem Let (u0, û) ∈ V × V , ε > 0, and T > 0. If C is a (L,D(A))-
saturating set, then we can find a control η ∈ L∞((0, T ),G1) so that the solu-
tion of system (1.2) satisfies |u(T )− û|V < ε.

Further, for any given length triplet L = (L1, L2, L3), we present an explicit
(L,D(A))-saturating set C for the 3D rectangle Ω = (0, L1)× (0, L2)× (0, L3).
The elements of C are 81 eigenfunctions of the Stokes operator, under Lions
boundary conditions (cf. Theorem 3.1 hereafter). Though it is not our goal here
to find a saturating set with the minimum number of elements as possible, we
must say that for some L (maybe, even for all L) it may exist a saturating set
with less elements. In any case, we underline that the existence of a (L,D(A))-
saturating set C is independent of the viscosity coefficient ν. In particular, the
linear space G1, where the control η takes its values in, does not change with ν.

Finally, we recall that in [22, 23] an explicit saturating set was found for
a 2D rectangle Ω = (0, L1)× (0, L2) with 8 elements. In [19] a saturating set
with 24 elements is presented for the 2D Navier–Stokes system in a Cylin-
der under Lions boundary conditions i.e., in a channel with Lions boundary
conditions in the bounded direction and with periodicity assumption in the
unbounded direction).

Remark 1.5 The “L” subcript in Definition 1.2 underlines the fact that the
linearization B of B is used in the recursion step, while in the “B” subcript in
Definition 1.4 underlines the fact that the bilinear operator B is used in the
recursion step.

1.3 Motivation and further references

An advantage for considering (L,D(A))-saturating sets is that the construction
of FL(E) is easier than the construction of FB(E). This is important, when
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we need to dwell with explicit computations as in the case when we look
for explicit saturating sets. Often, the existence of saturating sets is proven
by showing that a given explicit set is saturating, which involves essentially
explicit computations (Theorem 2.5 in [27] is an exception, but the proof is
still strongly based on explicit computations).

For further results concerning the controllability and approximate control-
lability of Navier–Stokes (and also other) systems by a control with low finite-
dimensional range (independent of the viscosity coefficient) in several domains
(including the 2D Sphere and Hemisphere) we refer the reader to [2,4,5,15–17,
26, 28–30]. We also mention Problem VII raised by A. Agrachev in [1] where
the author inquires about the achievable controllability properties for controls
taking values in a saturating set whose elements are localized/supported in a
small subset ω ⊂ Ω. The existence of such saturating sets is an open ques-
tion (except for 1D Burgers in [19]). The controllability properties implied by
such saturating set is an open question. There are some negative results, as
for example in the case we consider the 1D Burgers equations in Ω = (0, 1)
and take controls in L2(ω,R), w ⊂ Ω, the approximate controllability fails to
hold. Instead, to drive the system from one state u0 = u(0) at time t = 0
to another one uT = u(T ) at time t = T , we may need T to be big enough.
Though we do not consider localized controls here, we refer the reader to the
related results in [8, 10,31] and references therein.

The rest of the paper is organized as follows. In Section 2 we prove that the
existence of a (L,D(A))-saturating set implies the approximate controllability
of the Navier–Stokes system. In Section 3 we present a (L,D(A))-saturating
set.

2 Approximate controllability

As we said above, in [27] it is proven that the existence of a (B,D(A))-
saturating set implies the approximate controllability of the 3D Navier–Stokes
system, at time T > 0. Here we prove that we can conclude the same control-
lability property from the existence of a (L,D(A))-saturating set.

We recall now some definitions from [27]. Hereafter u0 ∈ V , h ∈ L2
loc(R0, H),

and E ⊂ D(A) is a finite-dimensional subspace. Let us consider the system

u̇+Au+B(u, u) + h = η, u(0) = u0, (2.1)

where the control η takes its values in E.
For simplicity we will denote

IT := (0, T ), and IT := [0, T ], T > 0.

Definition 2.1 Let T be a positive constant. System (2.1) is said to be E-
approximately controllable in time T if for any ε > 0 and any pair (u0, û) ∈
V ×D(A), there exists a control function η ∈ L∞(IT , E) and a corresponding
solution u ∈ C(IT , V )

⋂
L2(IT ,D(A)), such that |u(T )− û|V < ε.
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Definition 2.2 Let T , R, and ε be positive constants. System (2.1) is said
to be (ε,R,E)-controllable in time T if for any (u0, û) ∈ V ×D(A) satisfying
|u0|V ≤ R ≥ |û|D(A), there exists a control function η ∈ L∞(IT , E) and a

corresponding solution u ∈ C(IT , V )
⋂
L2(IT ,D(A)) such that |u(T )−û|V < ε.

Recall the sequence in Definition 1.4. In [27, Section 2] we find the following
results.

Theorem 2.1 If C is a (B,D(A))-saturating set, then for any positive T > 0
the system (2.1) is E0-approximately controllable at time T .

Theorem 2.2 Let T , R, and ε be positive constants. Then system (2.1) is
(ε,R,E)-controllable in time T if it is (ε,R,FB(E))-controllable at time T .

Recall the sequence in Definition 1.2. Here we prove the following.

Theorem 2.3 Let T , R, and ε be positive constants. Then system (2.1) is
(ε,R,G1 + E)-controllable in time T if it is (ε,R,G1 + FL(E))-controllable in
time T .

Proof Let us fix ε̂ > 0 and û ∈ D(A). Let also (ξ0, ξ1) ∈ L∞(IT ,G1) ×
L∞(IT ,FL(E)) be such that the corresponding solution for

u̇+Au+B(u, u) + h = ξ0 + ξ1, u(0) = u0, (2.2)

satisfies
|u(T )− û|V ≤ ε̂. (2.3)

We may write, for any ρ > 0,

ξ1 = η +

k∑
i=1

B(ai, bi) = η +

k∑
i=1

(
−B(ρai − ρ−1bi) + ρ2B(ai) + ρ−2B(bi)

)

for suitable k ∈ N0, η ∈ L∞(IT , E), and suitable pairs (ai, bi) ∈ L∞(IT , C×E).
Therefore,

ξ1 = ρ2ηa + ηρ + ρ−2ηb

with

ηa :=

k∑
i=1

B(ai, ai), ηb :=

k∑
i=1

B(bi, bi). (2.4a)

ηρ := η −
k∑
i=1

B(ρai − ρ−1bi, ρai − ρ−1bi). (2.4b)

Now we rewrite (2.2) as

u̇+Au+B(u, u) + h = ξ0 + ρ2ηa + ηρ + ρ−2ηb, u(0) = u0. (2.5)
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Since (2.5) coincides with (2.2), the solution u of (2.5) is independent of ρ.
Let us now consider the solution of the system

ẇρ +Awρ +B(wρ, wρ) + h = ξ0 + ρ2ηa + ηρ, wρ(0) = u0, (2.6)

The solution u is known (by Theorem’s assumption) to exist for t ∈ IT .
We show now that the solution wρ also exists for time t ∈ IT , provided ρ is
big enough.

Indeed, the difference z = u− wρ solves

ż +Az +B(z, z) + B(u, z) = ρ−2ηb, z(0) = 0, (2.7)

and we know that u ∈ C(IT , V ) ⊂ L4(IT , H
1(Ω,R3)) and ρ−2ηb ∈ L∞(IT , H) ⊂

L2(IT , H). Further we know that ẑ = 0 solves system (2.7) with ηb = 0, for
time t ∈ IT . Therefore, from [27, Remark 1.9], we can conclude that there exists
a unique solution for system (2.7), for time t ∈ IT , provided |ρ−2ηb−0|L2(IT ,H)

is small enough. That is, provided ρ is big enough. Furthermore, we have that

|u− wρ|C(IT ,V )
⋂
L2(IT ,D(A)) = |z|C(IT ,V )

⋂
L2(IT ,D(A)) ≤ Cρ

−2|ηb|L2(IT ,H)

for a suitable constant C depending only on |u| See again [27, Remark 1.9].
In particular, for big enough ρ > 0, we will have

|wρ(T )− u(T )|V ≤ ε̂. (2.8)

Observe that ηρ in (2.4) is in E − conv{B(e, e) | e ∈ E}, where convS
stands for the convex cone generated by the subset S, that is,

convS :=

{
k∑
i=1

αisi | k ∈ N, αi > 0, si ∈ S

}
.

Hence by Proposition 3.2 in [27] there is (η̃, ζ̃) ∈ (L∞(IT , E))2 so that the
corresponding solution for

ẏρ +A(yρ + ζ̃) +B(yρ + ζ̃, yρ + ζ̃) + h = ξ0 + ρ2ηa + η̃, yρ(0) = u0, (2.9)

satisfies
|wρ − yρ|C(IT ,V ) ≤ ε̂. (2.10)

Remark 2.1 Actually, in [27, Proposition 3.2], it is assumed that ηρ ∈ FB(E),
but following the proof in [27, Section 3.3], we can see that the the proof is
brought to the “imitation” (in short time intervals) of a constant control ηρ ∈
E − conv{B(e, e) | e ∈ E} (see also [27, Section 4.2, proof of Lemma 3.3]).

Now from [27, Proposition 3.1] it follows that there exists a control η̂ ∈
L∞(IT , E) such that the solution of the system

˙̂yρ +Aŷρ +B(ŷρ, ŷρ) + h = ξ0 + ρ2ηa + η̂, ŵρ(0) = u0, (2.11)

satisfies
|ŷρ(T )− yρ(T )|V ≤ ε̂. (2.12)
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Finally, we observe that ξ0 + ρ2ηa + η̂ ∈ L∞(IT ,G1 + E), and

|ŷρ(T )− û|V ≤ 4ε̂,

which can be concluded from (2.3), (2.8), (2.10), and (2.12). ut

Corollary 2.1 Let T , R, and ε be positive constants. Then system (2.1) is
(ε,R,G1)-controllable in time T .

Proof Proceeding as in [27, Section 2.2] we can prove that system (2.1) is Gj+1-
approximately controllable in time T , provided j ∈ N is big enough. Now for

any u =
M∑
i=1

uiWi ∈ G0, we have that B(u, u) =
M∑
i=1

uiB(Wi, u), which implies

that B(u, u) ∈ FL(G0) = G1, for all j ≥ 0. Since Gj ⊆ Gj+1, for all j ≥ 0, we
have that G1 + FL(Gj) = G1 + Gj+1 = Gj+1. By the following Theorem 2.3
it follows that system (2.1) is (G1 + Gj = Gj)-approximately controllable in
time T . Repeating the last argument, we conclude that system (2.1) is (G1 +
G1 = G1)-approximately controllable in time T . ut

3 The saturating set

Here we present a (L,D(A))-saturating set which consists of a finite number
of suitable eigenfunctions of the Stokes operator A in the 3D rectangle

Ω = R := (0, L1)× (0, L2)× (0, L3)

under Lions boundary conditions, see (1.3), where L1, L2, and L3 are posi-
tive real numbers. We follow the arguments in [18, Section 3.5], where the case
L1 = L2 = L3 = π is considered. Notice that the vector length L = (L1, L2, L3)
plays a role in the explicit computations, and different vector lengths may
require slightly different arguments. Recall for example the case of a 2D rect-
angle (0, L1) × (0, L2) considered in [24, Section 6.3] where the case of a
square L1 = L2 needs a particular consideration (see also [22]). Recall also
the case of the periodic boundary conditions considered in [27, Section 2.3]
where in the case L1 = L2 = L3 it is possible to give an explicit form for the
(B,D(A))-saturating set (cf. [27, Remark 2.7], see also [15, Section 4]).

3.1 A complete system of eigenfunctions

We will present a saturating set for the rectangle under Lions boundary con-
ditions, which consists of eigenfunctions of A.
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For a given k ∈ N3, let #0(k) stand for the number of vanishing components
of k. A complete system of eigenfunctions

{
Y j(k),k

}
is given by

Y j(k),k :=


w
j(k),k
1 sin

(
k1πx1

L1

)
cos
(
k2πx2

L2

)
cos
(
k3πx3

L3

)
w
j(k),k
2 cos

(
k1πx1

L1

)
sin
(
k2πx2

L2

)
cos
(
k3πx3

L3

)
w
j(k),k
3 cos

(
k1πx1

L1

)
cos
(
k2πx2

L2

)
sin
(
k3πx3

L3

)
 , #0(k) ≤ 1,

(3.1a)
with

{wj(k),k | j(k) ∈ {1, 2−#0(k)}} ⊂ {k}⊥[L]

0 (3.1b)

a linearly family which is orthogonal to k; and where

{k}⊥[L]

0 := {z ∈ R3 \ {(0, 0, 0)} | (z, k)[L] = 0, and zi = 0 if ki = 0}, (3.1c)

(z, k)[L] :=
z1k1
L1

+
z2k2
L2

+
z3k3
L3

. (3.1d)

Notice that 2 −#0(k) is the dimension of the subspace {k}⊥[L]

0 and that the
orthogonality of the family {wj(k),k | j(k) ∈ {1, 2 −#0(k)}} implies that the
family in (3.1a) is also orthogonal. The completeness of the system in (3.1a)
is shown in [20, Section 6.6].

Example 1 The eigenspace associated with a frequency vector k = (2, 4, 0), is
the one spanned by the single eigenfunction Y 1,k, where we can choose w1,k =
(−4L1, 2L2, 0). The eigenspace associated with a frequency vector k = (2, 4, 5) ∈
N3

0, is the one spanned by the eigenfunctions Y 1,k and Y 2,k, where we can
choose {w1,k, w2,k} linearly independent in span{(−4L1, 2L2, 0), (−5L1, 0, 2L3)}.

Now we are able to present the saturating set in the following Theorem 3.1,
whose proof is given in Section 3.5. Before, we need to derive some tools used
in the proof.

Theorem 3.1 The set C :=

{
Y j(n),n

∣∣∣∣n ∈ N3, 0 ≤ ni ≤ 3,
#0(n) ≤ 1, j(n) ∈ {1, 2−#0(n)}

}
is (L,D(A))-saturating.

3.2 The expression for
(
Y k · ∇

)
Y m + (Y m · ∇)Y k

Here we will present the expression for the coordinates of
(
Y j(k),k · ∇

)
Y j(m),m+(

Y j(m),m · ∇
)
Y j(k),k for given eigenfunctions as in (3.1a). In order to shorten

the following expressions and simplify the writing, we will write

Y k = Y j(k),k, Y m = Y j(m),m, wk = wj(k),k, and wm = wj(m),m

by omitting the indexes j(k), j(m). We will also denote

Ci(ki) := cos
(
kiπxi
Li

)
and Si(ki) := sin

(
kiπxi
Li

)
, i ∈ {1, 2, 3}.
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Using these notations, we find

(
Y k · ∇

)
Ym =



Y k · wm1


m1π
L1

C1(m1)C2(m2)C3(m3)

−m2π
L2

S1(m1)S2(m2)C3(m3)

−m3π
L3

S1(m1)C2(m2)S3(m3)


Y k · wm2

 −
m1π
L1

S1(m1)S2(m2)C3(m3)
m2π
L2

C1(m1)C2(m2)C3(m3)

−m3π
L3

C1(m1)S2(m2)S3(m3)


Y k · wm3

 −
m1π
L1

S1(m1)C2(m2)S3(m3)

−m2π
L2

C1(m1)S2(m2)S3(m3)
m3π
L3

C1(m1)C2(m2)C3(m3)




, (3.2)

To compute the coordinates of
(
Y k · ∇

)
Y m + (Y m · ∇)Y k it will be useful

to define

β?1?2?3
wk,m

:=
π

8

(
?1

wk1m1

L1
?2

wk2m2

L2
?3

wk3m3

L3

)
, for (?1, ?2, ?3) ∈ {+,−}3.

(3.3)

Example 2

β+++
wk,m

=
π

8

(
wk1m1

L1
+
wk2m2

L2
+
wk3m3

L3

)
,

β−+−wm,k =
π

8

(
−w

m
1 k1
L1

+
wm2 k2
L2

− wm3 k3
L3

)
.

From straightforward computations we can find

((
Y k · ∇

)
Ym + (Ym · ∇)Y k

)
1

= +
(
wm1 β

+++
wk,m

+ wk1β
+++
wm,k

)
S1(k1 +m1)C2(k2 +m2)C3(k3 +m3)

+
(
wm1 β

+++
wk,m

− wk1β
+++
wm,k

)
S1(k1 −m1)C2(k2 −m2)C3(k3 −m3)

+
(
wm1 β

++−
wk,m

+ wk1β
++−
wm,k

)
S1(k1 +m1)C2(k2 +m2)C3(k3 −m3)

+
(
wm1 β

++−
wk,m

− wk1β
++−
wm,k

)
S1(k1 −m1)C2(k2 −m2)C3(k3 +m3)

+
(
wm1 β

+−+
wk,m

+ wk1β
+−+
wm,k

)
S1(k1 +m1)C2(k2 −m2)C3(k3 +m3)

+
(
wm1 β

+−+
wk,m

− wk1β
+−+
wm,k

)
S1(k1 −m1)C2(k2 +m2)C3(k3 −m3)

+
(
wm1 β

+−−
wk,m

+ wk1β
+−−
wm,k

)
S1(k1 +m1)C2(k2 −m2)C3(k3 −m3)

+
(
wm1 β

+−−
wk,m

− wk1β
+−−
wm,k

)
S1(k1 −m1)C2(k2 +m2)C3(k3 +m3),

(3.4a)
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((
Y k · ∇

)
Ym + (Ym · ∇)Y k

)
2

= +
(
wm2 β

+++
wk,m

+ wk2β
+++
wm,k

)
C1(k1 +m1)S2(k2 +m2)C3(k3 +m3)

+
(
wm2 β

+++
wk,m

− wk2β
+++
wm,k

)
C1(k1 −m1)S2(k2 −m2)C3(k3 −m3)

+
(
wm2 β

++−
wk,m

+ wk2β
++−
wm,k

)
C1(k1 +m1)S2(k2 +m2)C3(k3 −m3)

+
(
wm2 β

++−
wk,m

− wk2β
++−
wm,k

)
C1(k1 −m1)S2(k2 −m2)C3(k3 +m3)

+
(
−wm2 β

+−+
wk,m

+ wk2β
+−+
wm,k

)
C1(k1 +m1)S2(k2 −m2)C3(k3 +m3)

+
(
−wm2 β

+−+
wk,m

− wk2β
+−+
wm,k

)
C1(k1 −m1)S2(k2 +m2)C3(k3 −m3)

+
(
−wm2 β

+−−
wk,m

+ wk2β
+−−
wm,k

)
C1(k1 +m1)S2(k2 −m2)C3(k3 −m3)

+
(
−wm2 β

+−−
wk,m

− wk2β
+−−
wm,k

)
C1(k1 −m1)S2(k2 +m2)C3(k3 +m3),

(3.4b)

((
Y k · ∇

)
Ym + (Ym · ∇)Y k

)
3

= +
(
wm3 β

+++
wk,m

+ wk3β
+++
wm,k

)
C1(k1 +m1)C2(k2 +m2)S3(k3 +m3)

+
(
wm3 β

+++
wk,m

− wk3β
+++
wm,k

)
C1(k1 −m1)C2(k2 −m2)S3(k3 −m3)

+
(
−wm3 β

++−
wk,m

+ wk3β
++−
wm,k

)
C1(k1 +m1)C2(k2 +m2)S3(k3 −m3)

+
(
−wm3 β

++−
wk,m

− wk3β
++−
wm,k

)
C1(k1 −m1)C2(k2 −m2)S3(k3 +m3)

+
(
wm3 β

+−+
wk,m

+ wk3β
+−+
wm,k

)
C1(k1 +m1)C2(k2 −m2)S3(k3 +m3)

+
(
wm3 β

+−+
wk,m

− wk3β
+−+
wm,k

)
C1(k1 −m1)C2(k2 +m2)S3(k3 −m3)

+
(
−wm3 β

+−−
wk,m

+ wk3β
+−−
wm,k

)
C1(k1 +m1)C2(k2 −m2)S3(k3 −m3)

+
(
−wm3 β

+−−
wk,m

− wk3β
+−−
wm,k

)
C1(k1 −m1)C2(k2 +m2)S3(k3 +m3).

(3.4c)

Accordingly to Definition 1.2, we would need to compute the orthogonal
projection B(Y k, Y m) = Π

((
Y k · ∇

)
Y m + (Y m · ∇)Y k

)
, onto H. However,

we will manage to use only the coordinates in (3.4) instead of the explicit
expression for B(Y k, Y m) (cf. Section 3.4). The expression for B(Y k, Y m)
can be more cumbersome than the expressions in (3.4). For the case L =
(L1, L2, L3) = (π, π, π), the explicit expression for B(Y k, Y m) can be found
in [18, Section 3.5.1].

3.3 A difference between 2D and 3D cases

For the case of 2D Navier–Stokes equation on a rectangle under Lions bound-
ary conditions, treated in [22], it holds that B(Wn,Wn) = 0 for an eigenfunc-
tion Wn of the corresponding 2D Stokes operator (cf. [24, Section 4.5]). This
can be seen from the fact that vectors fields in u ∈ H can be identified with



Approximate controllability for Navier–Stokes equations in 3D rectangles 13

a so-called stream function φu, as u = ∇⊥φu, and that we have the vorticity
relations

∇⊥ · u = −∆φu
∇⊥ ·B(u, u) = −u · ∇(∇⊥ · u) = ∇φu · ∇⊥(∇⊥ · u) = −∇φu ·∆u.

Thus ∇⊥ ·B(Wn,Wn) = λn∇φWn ·Wn = λn∇φWn · ∇⊥φWn = 0, where λn
is the eigenvalue associated to Wn, Π(−∆)Wn = λnWn.

From Theorem 3.2 below, in the case of the 3D rectangle, the identity
B(Y k, Y k) = 0 does not hold for all eigenfunctions Y k (cf. the case of the 1D
Burgers equation studied in [19]).

Theorem 3.2 For an eigenfuntion Y k = Y j(k),k as in (3.1), we have

B(Y k, Y k) 6= 0, if #0(k) = 0,

B(Y k, Y k) = 0, if #0(k) = 1.

Proof Indeed in the case #0(k) = 0, since 0 = (wk, k)[L] =
wk1k1
L1

+
wk2k2
L2

+
wk3k3
L3

,
from (3.4) with m = k, we can rewrite the first coordinate in short form as
follows((

Y k · ∇
)
Y k
)
1

= −π
4
wk1

wk3k3
L3

S1(2k1)C2(2k2)− π

4
wk1

wk2k2
L2

S1(2k1)C3(2k3) +
π

4
wk1

wk1k1
L1

S1(2k1)

= −π
2
wk1 sin

(
2k1πx1

L1

)(
wk3k3
L3

cos2
(
k2πx2

L2

)
+

wk2k2
L2

cos2
(
k3πx3

L3

))
.

(3.5)

Proceeding analogously for the other two coordinates, we obtain

(
Y k · ∇

)
Y k = −π

2


wk1 sin

(
2k1πx1

L1

)(
wk3k3
L3

cos2
(
k2πx2

L2

)
+

wk2k2
L2

cos2
(
k3πx3

L3

))
wk2 sin

(
2k2πx2

L2

)(
wk3k3
L3

cos2
(
k1πx1

L1

)
+

wk1k1
L1

cos2
(
k3πx3

L3

))
wk3 sin

(
2k3πx3

L3

)(
wk1k1
L1

cos2
(
k2πx2

L2

)
+ wk2k2 cos2

(
k1πx1

L1

))
 .

(3.6)

Assuming that B(Y k, Y k) = Π
((
Y k · ∇

)
Y k
)

= 0, there would exist a func-

tion g such that
(
Y k · ∇

)
Y k = ∇g because H⊥ = {∇g | g ∈ H1(Ω,R)}

(cf. [32, Section 2.5]), which implies that curl
((
Y k · ∇

)
Y k
)

= curl(∇g) = 0.
That is,

0 = curl
((
Y k · ∇

)
Y k
)

=
π2

2


wk1k1
L1

sin
(

2k2πx2

L2

)
sin
(

2k3πx3

L3

)(
wk3 k2
L2

− wk2k3
L3

)
wk2k2
L2

sin
(

2k3πx3

L3

)
sin
(

2k1πx1

L1

)(
wk1 k3
L3

− wk3k1
L1

)
wk3k3
L3

sin
(

2k1πx1

L1

)
sin
(

2k2πx2

L2

)(
wk2 k1
L1

− wk1k2
L2

)
 .

(3.7)
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We will prove that this equality cannot hold if #0(k) = 0. We start by proving
that, in this case, no component of wk is vanishing. Indeed, if for example

wk1 = 0, we would have
wk2k2
L2

= −w
k
3k3
L3

. Then, (3.7) would give us

0 =


0

−w
k
2k2
L2

wk3k1
L1

sin
(

2k3πx3

L3

)
sin
(

2k1πx1

L1

)
wk3k3
L3

wk2k1
L1

sin
(

2k1πx1

L1

)
sin
(

2k2πx2

L2

)


=
wk3k3
L3

k1
L1

sin
(

2k1πx1

L1

)
0

wk3 sin
(

2k3πx3

L3

)
wk2 sin

(
2k2πx2

L2

)
 .

Since k ∈ N3
0, it follows that necessarily (wk3 )2 = wk2w

k
3 = 0, which in turn

leads us to wk = (0, 0, 0). This contradicts the fact that by the definition
wk 6= 0 . Thus wk1 6= 0. A similar argument leads us to wk2 6= 0 and wk3 6= 0.

Now, since all components of wk are different from 0, from (3.7), we have

wk3 k2
L2

− wk2k3
L3

=
wk1 k3
L3

− wk3k1
L1

=
wk2 k1
L1

− wk1k2
L2

= 0,

that is kL×wk = 0, with kL := ( k1L1
, k2L2

, k3L3
). Furthermore wk·kL = (wk, k)[L] =

0 and from the triple vector product relation

kL ×
(
kL × wk

)
= (kL · wk)kL −

(
kL · kL

)
wk,

(cf. [6, Section 2.35]) it follows that 0 = 0 −
(
kL · kL

)
wk = −|kL|2wk which

leads to the contradiction wk = 0. Therefore we can conclude thatB(Y k, Y k) 6=
0 for all k ∈ N3

0.
In the case #0(k) = 1, for example if k3 = 0, then wk3 = 0 and from (3.6)

we obtain

(
Y k · ∇

)
Y k = −π

2


wk1 sin

(
2k1πx1

L1

)
wk2k2
L2

wk2 sin
(

2k2πx2

L2

)
wk1k1
L1

0

 = ∇g,

with g =
wk1w

k
2

4

(
k2L1

k1L2
cos
(

2k1πx1

L1

)
+ k1L2

k2L1
cos
(

2k2πx2

L2

))
. Thus B(Y k, Y k) =

0, if k3 = 0. A similar argument gives us that B(Y k, Y k) = 0 if ki = 0, for
i ∈ {1, 2}.

3.4 Avoiding the computation of B(Y k, Y m)

We present here an auxiliary result which will allow us to work with the coor-
dinates in (3.4), avoiding to derive (and avoiding the need to work with) the ex-
plicit expression for the projection B(Y k, Y m) = Π

(
〈Y k · ∇〉Y m + 〈Y m · ∇〉Y k

)
(cf. Definition 1.2).
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With k ∈ N3, let us define the functions

ψk1 = ψk1 (x) = sin(k1πx1

L1
) cos(k2πx2

L2
) cos(k3πx3

L3
),

ψk2 = ψk2 (x) = cos(k1πx1

L1
) sin(k2πx2

L2
) cos(k3πx3

L3
),

ψk3 = ψk3 (x) = cos(k1πx1

L1
) cos(k2πx2

L2
) sin(k3πx3

L3
),

and the vector functions

Ykz =

z1ψk1z2ψ
k
2

z3ψ
k
3

 , k ∈ N3, z ∈ R3. (3.8)

We observe that for the eigenfunctions Y k = Y j(k),k in (3.1a), we have

Y j(k),k = Ykwj(k).k with k ∈ N3, #0(k) ≤ 1, j(k) ∈ {1, 2−#0(k)}.

Observe also that if m 6= k then
(
Ykz ,Ymw

)
L2(Ω,R3)

= 0 for all z, w ∈ R3,

because we have
(
ψki , ψ

m
i

)
L2((0,Li),R)

= 0 for all i ∈ {1, 2, 3}. From (3.4), we

observe that (
Y k · ∇

)
Y m + (Y m · ∇)Y k =

∑
n=(k(?1?2?3)m)+

(?1,?2,?3)∈{−,+}3

Ynzn , (3.9)

where

(k(?1 ?2 ?3)m)+ := (|k1 ?1 m1|, |k2 ?2 m2|, |k3 ?3 m3|), (3.10)

and for suitable vectors zn = (zn1 , z
n
2 , z

n
3 ) ∈ R3 (depending on the parameters

k, m, wm and wk). Thus the projection

B(Y m, Y k) =
∑

n=(k(?1?2?3)m)+

(?1,?2,?3)∈{−,+}3
#0(n)≤1,
j(n)∈{1,2−#0(n)}

αj(n),nY j(n),n

satisfies for any n,

∑
j(n)∈{1,2−#0(n)}

αj(n),nY j(n),n = ΠYnzn = Π

zn1ψn1zn2ψ
n
2

zn3ψ
n
3

 .

Lemma 3.1 Let us be given α, γ ∈ R3 and k ∈ N3
0. Then the family {α, γ, k}

is linearly independent if, and only if, the family {ΠYkα, ΠYkγ } is linearly in-
dependent. In either case

span{ΠYkα, ΠYkγ } = spanY {1,2},k.
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Proof Let us fix a basis {w1,k, w2,k} for {k}⊥0 = {k}⊥.
Given α, γ ∈ R3, since {w1,k, w2,k, k} is a basis in R3, we can write (in a

unique way)

α = α1,kw1,k + α2,kw2,k + α0k,

γ = γ1,kw1,k + γ2,kw2,k + γ0k,
(3.11)

and it follows that

Ykα = α1,kY 1,k + α2,kY 2,k + α0Ykk ,
Ykγ = γ1,kY 1,k + γ2,kY 2,k + γ0Ykk .

Since Ykk = ∇(− cos(k1πx1

L1
) cos(k2πx2

L2
) cos(k3πx3

L3
)), we obtain

ΠYkα = α1,kY 1,k + α2,kY 2,k,

ΠYkγ = γ1,kY 1,k + γ2,kY 2,k.
(3.12)

Now, it is clear that span{ΠYkα, ΠYkγ } = spanY {1,2},k if, and only if, the

family {ΠYkα, ΠYkγ } is linearly independent. Recall that {Y 1,k, Y 2,k} is linearly
independent by definition.

Observe that given (r, s) ∈ R2 such that rΠYkα + sΠYkγ = 0, we have

(using (3.12)) that (rα1,k + sγ1,k)Y 1,k + (rα2,k + sγ2,k)Y 2,k = 0 and, since

{Y 1,k, Y 2,k} is linearly independent, we find that

(
α1,k γ1,k

α2,k γ2,k

)(
r
s

)
=

(
0
0

)
.

Therefore

{ΠYkα, ΠYkγ } is linearly independent if, and only if, det

(
α1,k α2,k

γ1,k γ2,k

)
6= 0.

(3.13)
Since {w1,k, w2,k, k} is linearly independent, a similar argument (using (3.11)

together with k = 0w1,k + 0w2,k + 1k) leads us to

{α, γ, k} is linearly independent if, and only if, det

α1,k α2,k α0

γ1,k γ2,k γ0
0 0 1

 6= 0.

(3.14)
The Lemma follows from (3.13) and (3.14).

3.5 Proof of Theorem 3.1

Introducing the family of sets

Sq :=
{
n ∈ N3 | 0 ≤ ni ≤ q, #0(n) ≤ 1

}
,

Cq :=
{
Y j(n),n | n ∈ Sq, j(n) ∈ {1, 2−#0(n)}

}
,

q ∈ N, q ≥ 3,

(3.15)
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and recalling the sequence in Definition 1.2, we can see that Theorem 3.1 is a
corollary of the following inclusions

C3 ⊆ G0, and Cq ⊆ Gq−1, for all q ∈ N, q ≥ 3, (3.16)

which we will prove by induction.
Base step. By definition, C = C3 and span C = G0 ⊆ G2. Therefore

Inclusions (3.16) hold for q = 3. (3.17)

Induction step. The induction hypothesis is

C3 ⊆ G0 and the inclusion Cq ⊆ Gq−1 holds true for a given q ∈ N, q ≥ 3.
(IH.R-eq.3.18)

We want to prove that Cq+1 ⊆ Gq.

Notice that

Cq+1 :=
{
Y 1,n | n ∈ Sq+1, #0(n) = 1

}⋃{
Y 1,n, Y 2,n | n ∈ Sq+1, #0(n) = 0

}
,

We will consider the cases #0(n) = 1 and #0(n) = 0 separately.
• The case n ∈ Cq+1 and #0(n) = 1. Suppose that k ∈ N3, #0(k) = 1,

and k3 = 0. We can see that, up to a constant C 6= 0, Y k = C

(
Wk

0

)
, where

for simplicity we denoted Y k = Y 1,k and Wk :=

(
−k2π
L2

S1(k1)C2(k2)
k1π
L1

C1(k1)S2(k2)

)
, with

k := (k1, k2). Notice that Wk is an eigenfunction of the Stokes operator in the
2D rectangle R2 = (0, L1) × (0, L2), as observed in [22, Section 2.2]. Now let
also m ∈ N3, #0(m) = 1, and m3 = 0. Then, we can see that((

Y k · ∇
)
Y m + (Y m · ∇)Y k

)
=

(((
Wk · ∇2

)
Wm + (Wm · ∇2)Wk

)
0

)
(3.19a)

where ∇2 is the gradient on the rectangle R2, that is, on the variables (x1, x2).
Now, on one hand we can write((

Y k · ∇
)
Y m + (Y m · ∇)Y k

)
= B(Y k, Y m) +∇q (3.19b)

where B(Y k, Y m) ∈ H and q ∈ H1(R,R3). On the other hand we can write(
Wk · ∇2

)
Wm + (Wm · ∇2)Wk = B2(Wk,Wm) +∇p (3.19c)

where B2(Y k, Y m) ∈ {u ∈ L2(R2,R2) | ∂x1
u1+∂x2

u2 = 0 and u ·(n1,n2) = 0}
and p ∈ H1(R2,R2). Therefore from (3.19) it follows that necessarily

B(Y k, Y m) =

(
B2(Wk,Wm)

0

)
and ∇q =

(
∇2p

0

)
.

Notice that given x ∈ ∂R, the normal nx, to R at x, satisfies
nx = (nx,1,nx,2,nx,3) = (nx,1,nx,2, 0) if x =: (x, x3) ∈ ∂R2 × (0, L3), and
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nx = (0, 0,±1) if x ∈ R2×{0, L3}. Notice also that ∂R2×(0, L3)
⋃

R2×{0, L3}
is dense in ∂R.

From the results in [24, Section 6.3] (see also [22, Section 7.1], for (B,D(A))-
saturating sets) we know that if for all q ≥ 3 and n ∈ Sq+2, with n3 = 0
and (n1, n2) 6= (q + 2, q + 2), we have that Wn ∈ Gq+2−3+1, then for all
n ∈ Sq+1, with n3 = 0, we have that Wn ∈ Gq. Repeating the argument for
the cases n1 = 0 and n2 = 0, we arrive at

span{Y n | n ∈ Sq+1,#0(n) = 1} ⊆ Gq. (3.20)

• The case n ∈ Cq+1 and #0(n) = 0. In this case n ∈ N3
0. We start by

defining, again for q ≥ 3 and for some given m, m1, and m2 in {1, 2, 3}, the
index sets

Rqm := {n ∈ Sq | nm = q, 1 ≤ ni ≤ q − 1 for i 6= m} ,
Lqm1,m2

:= {n ∈ Sq | nm1
= q = nm2

, m1 6= m2, 1 ≤ ni ≤ q − 1, i /∈ {m1,m2}} .
(3.21)

We define the set of eigenfunctions

Cq0 =
{
Y 1,n, Y 2,n | n ∈ Sq, #0(n) = 0

}
.

Notice that

{n ∈ Sq+1 | #0(n) = 0} = {n ∈ Sq | #0(n) = 0}
⋃(
Rq+1

1 ∪Rq+1
2 ∪Rq+1

3

)
⋃(
Lq+1
1,2 ∪ L

q+1
2,3 ∪ L

q+1
3,1

)⋃
{(q + 1, q + 1, q + 1)}.

(3.22)

It remains to prove that Cq+1
0 ⊂ Gq, which is a corollary of the fol-

lowing Lemmas 3.2, 3.3, and 3.4 which we will prove in the following Sec-
tions 3.5.1, 3.5.2, and 3.5.3.

Lemma 3.2 Y j(n),n ∈ Gq for all n ∈
3⋃
i=1

Rq+1
i .

Lemma 3.3 Y j(n),n ∈ Gq for all n ∈ Lq+1
1,2 ∪ L

q+1
2,3 ∪ L

q+1
3,1 .

Lemma 3.4 Y {1,2},(q+1,q+1,q+1) ⊂ Gq.

Observe that, from (3.20) and Lemmas 3.2, 3.3, and 3.4, it follows that

Y j(n),n ∈ Gq for all n ∈ Sq+1. (3.23)

which implies that Cq+1 ⊆ Gq. Therefore, we have just proven that (IH.R-eq.3.18)
implies that Cq+1 ⊆ G(q+1)−1. Then by induction, using (3.17), it follows
that (3.16) holds true, which implies the statement of Theorem 3.1. ut
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3.5.1 Proof of Lemma 3.2

We proceed into 2 main steps:

• Step 1: Generating Y j(n),n with n ∈ {(1, l, q+1), (l, 1, q+1) | 0 < l ≤ q}.
• Step 2: Generating Y j(n),n with n ∈ {(n1, n2, q+1) | 2 ≤ n1 ≤ q and 2 ≤
n2 ≤ q}.

• Step 1: Generating the family Y j(n),n with n = (1, l, q+1) or n = (l, 1, q+1).
We start with n = (1, l, q + 1) and proceed by induction on l.
Base step. We will prove that

Y {1,2},(1,1,q+1) ⊂ Gq. (3.24)

To generate n = (1, 1, q + 1) we choose

k = (1, 0, q), m = (0, 1, 1),

wk = (L1q, 0,−L3), wm = (0, L2,−L3).

From (3.4), this choice gives us(
Y k · ∇

)
Y m + (Y m · ∇)Y k = Y(1,1,q+1)

zα1
+ Y(1,1,q−1)

zα2
,

for suitable zα1 , zα2 ∈ R3. By the induction hypothesis in assumption
(IH.R-eq.3.18), we have Y {1,2},(1,1,q−1) := {Y 1,(1,1,q−1), Y 2,(1,1,q−1)} ⊆ Gq−1 ⊆
Gq, which implies thatΠY(1,1,q−1)

zα2 ∈ Gq. Hence, we can conclude thatΠY(1,1,q+1)

zα1 ∈
Gq. Next, we can compute the vector zα1 as follows: from

β?1?2+
wk,m

= −π
8
, β?1?2−

wk,m
=
π

8
, β?1?2+wm,k = −π

8
q, β?1?2−wm,k =

π

8
q,

with (?1, ?2) ∈ {+,−}2, we get

zα1 =


0 + L1q

(
β+++
wm,k − β

++−
wm,k + β+−+

wm,k − β
+−−
wm,k

)
L2

(
β+++
wk,m

+ β++−
wk,m

sign(0− 1)− β+−+
wk,m

sign(0− 1)− β+−−
wk,m

)
+ 0

−L3

(
β+++
wk,m

+ β+−+
wk,m

− β+−−
wk,m

− β++−
wk,m

)
− L3

(
β+++
wm,k + β+−+

wm,k − β
+−−
wm,k − β

++−
wm,k

)


=
π

2

 −L1q
2

L2

L3(q + 1)

 .

Remark 3.1 The factors sign(0 − 1) = sign(k2 −m2) appearing in (3.5.1) are
due to the fact that the vector functions Ynz in (3.8) are defined for nonnegative
frequencies n ∈ N3, and in (3.4) the frequencies may be negative. To guarantee
nonnegative frequencies we can just rewrite (3.4) by replacing each Si(ki−mi)
by its equivalent sign(ki −mi)Si(|ki −mi|). Also, recall that Ci(|ki −mi|) =
Ci(ki −mi).
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Next, we choose

k = (1, 0, q − 1), m = (0, 1, 2),

wk = (L1(q − 1), 0,−L3), wm = (0, 2L2,−L3),

which gives us(
Y k · ∇

)
Y m + (Y m · ∇)Y k = Y(1,1,q+1)

zγ1
+ Y(1,1,q−2)

zγ2
,

for suitable zγ1 , zγ2 ∈ R3. Again from assumption (IH.R-eq.3.18) we have

Y {1,2},(1,1,q−2) ⊆ Gq−1, and we can conclude that ΠY(1,1,q+1)

zγ1
∈ Gq. From (3.4)

we find

zγ1 =
π

2

−L1(q − 1)2

−4L2

L3(q + 1)

 .

In order to use Lemma 3.1, we observe that the family {zα1 , zγ1 , (1, 1, q+ 1)}
is linearly independent, which follows from

det(n zα1 zγ1) =
π2

4
det

 1 −L1q
2 −L1(q − 1)2

1 −L2 −4L2

q + 1 L3(q + 1) L3(q + 1)


=
π2

4
(q + 1)

(
L1(L2 + L3)(2q − 1) + 3L1L2q

2 + 3L2L3

)
> 0.

Therefore Lemma 3.1 gives us

Y {1,2},(1,1,q+1) ⊆ Gq. (3.25)

Induction step. Now let us assume that

Y {1,2},(1,l−2,q+1) ⊆ Gq, for a given l, 2 ≤ l ≤ q. (IH.R1-eq.3.26)

Notice that (3.20) and (3.25) give us

Y {1,2},(1,l,q+1) ⊆ Gq, for all l ∈ {0, 1}. (3.27)

In order to generate Y {1,2},(1,l,q+1) we choose

k = (1, l − 1, q), m = (0, 1, 1),

wk = (0, L2q, L3(1− l)), wm = (0, L2,−L3).

This choice gives us(
Y k · ∇

)
Y m + (Y m · ∇)Y k = Y(1,l,q+1)

zα1
+ Y(1,l−2,q+1)

zα2
+ Y(1,l,q−1)

zα3
+ Y(1,l−2,q−1)

zα3
.

From assumption (IH.R-eq.3.18) we have that both Y j(1,l,q−1),(1,l,q−1) and
Y j(1,l−2,q−1),(1,l−2,q−1) belong to Gq−1; and from assumption (IH.R1-eq.3.26)

we have Y j(1,l−2,q+1),(1,l−2,q+1) ∈ Gq. Thus, we can conclude thatΠY(1,l,q+1)
zα1 ∈
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Gq.
To compute zα1 we use

β+++
wk,m

= β−++
wk,m

=
π

8
(q − l + 1) and β+++

wm,k = β−++
wm,k =

π

8
(l − q − 1),

and obtain

zα1 =


0

L2

(
β+++
wk,m

+ β−++
wk,m

)
+ L2q

(
β+++
wm,k + β−++

wm,k

)
−L3.

(
β+++
wk,m

+ β−++
wk,m

)
+ L3(1− l).

(
β+++
wm,k + β−++

wm,k

)


=
π

4

 0
L2(q − l + 1)(1− q)
L3(q − l + 1)(l − 2)

 .

Next, we choose the same frequencies (k,m) with different (wk, wm):

k = (1, l − 1, q), m = (0, 1, 1),

wk = (L1q, 0,−L3), wm = (0, L2,−L3).

Proceeding as above, we obtain that ΠY(1,l,q+1)
zγ1 ∈ Gq and, from

β+++
wk,m

= β−++
wk,m

= −π
8

and β+++
wm,k = β−++

wm,k =
π

8
(l − q − 1),

we find

zγ1 =
π

4

−L1q(q − l + 1)
−L2

L3(q − l + 2)

 .

Then, from

16

π2
det(n zα1 zγ1) = det

 1 0 −L1q(q − l + 1)
l L2(q − l + 1)(1− q) −L2

q + 1 L3(q − l + 1)(l − 2) L3(q − l + 2)


= det

(
L2(q − l + 1)(1− q) −L2

L3(q − l + 1)(l − 2) L3(q − l + 2)

)
− L1q(q − l + 1) det

(
l L2(q − l + 1)(1− q)

q + 1 L3(q − l + 1)(l − 2)

)
= −L2L3q(q − l + 1)2 − L1q(q − l + 1)2

(
L3l

2 − 2L3l + L2q
2 − L2

)
= −q(q − l + 1)2

[
L2L3 + L1L3l(l − 2) + L1L2(q2 − 1)

]
< 0,

since 2 ≤ l ≤ q, using Lemma 3.1, we can conclude that Y {1,2},(1,l,q+1) ∈ Gq.
We have just proven that assumption (IH.R1-eq.3.26) leads us to Y {1,2},(1,l,q+1) ∈

Gq. Then by induction, using (3.27), we can conclude that{
Y {1,2},(1,l,q+1) | 0 < l ≤ q

}
⊆ Gq, (3.28a)
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and by a similar argument we can derive that{
Y {1,2},(l,1,q+1) | 0 < l ≤ q

}
⊆ Gq. (3.28b)

• Step 2: Generating the family Y j(n),n with n = (n1, n2, q + 1) where 2 ≤
n1 ≤ q and 2 ≤ n2 ≤ q.

Again, we proceed by induction on the pair (n1, n2), under the lexicograph-
ical order (n1, n2) < (m1,m2) iff n1 < m1, or n1 = m1 and n2 < m2, defined
on the set Nq := {(κ1, κ2) ∈ {0, 1, 2, . . . , q}2 \ {0, 0}}.
Base step. From (3.20), (3.27), and (3.28), we know that

Y j(n),n ∈ Gq, for all n = (n1, n2, q+1), (n1, n2) ∈ Nq, (0, 0) < (n1, n2) < (2, 2).
(3.29)

Induction step. Now we assume that

Y j(κ),κ ∈ Gq, for all κ ∈ Nq,
{

(0, 0) < (κ1, κ2) < (n1, n2) ≤ (q, q),
(2, 2) ≤ (n1, n2), κ3 = q + 1

(IH.R1-eq.3.30)

We want to prove that Y j(n),n ∈ Gq, with n = (n1, n2, q + 1).
By choosing

k = (n1 − 1, n2 − 1, q), m = (1, 1, 1),

wk = (0, L2q, L3(1− n2)), wm = (0, L2,−L3),

we find

(
Y k · ∇

)
Y m + (Y m · ∇)Y k = Y(n1,n2,q+1)

zα1
+

8∑
i=2

Yκ
i

zαi
,

with {κi | 2 ≤ i ≤ 8} = {(n1−2, n2−2, q−1), (n1, n2−2, q−1), (n1−2, n2, q−
1), (n1, n2, q−1)(n1−2, n2−2, q+1), (n1, n2−2, q+1), (n1−2, n2, q+1)}. From

assumption (IH.R-eq.3.18), we find that ΠYκizαi ∈ G
q−1, for κi ∈ {(n1, n2 −

2, q − 1), (n1 − 2, n2, q − 1), (n1, n2, q − 1)}; and assumption (IH.R1-eq.3.30)

implies that ΠYκizαi ∈ G
q, for κi ∈ {(n1, n2 − 2, q + 1), (n1 − 2, n2, q + 1)}.

Now if (n1, n2) > (2, 2), then again by assumptions (IH.R-eq.3.18)

and (IH.R1-eq.3.30) we find that ΠYκizαi ∈ G
q, with κi ∈ {(n1 − 2, n2 −

2, q − 1), (n1 − 2, n2 − 2, q − 1)}. On the other hand if (n1, n2) = (2, 2), then

ΠYκizαi = 0 ∈ Gq, with κi ∈ {(n1 − 2, n2 − 2, q − 1), (n1 − 2, n2 − 2, q + 1)}.
Thus, we can conclude that ΠY(n1,n2,q+1)

zα1 ∈ Gq. Now, from

β+++
wk,m

=
π

8
(q − n2 + 1) and β+++

wm,k =
π

8
(n2 − q − 1),
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we obtain

zα1 =
π

8

 0
L2(q − n2 + 1)(1− q)
L3(q − n2 + 1)(2− n2)

 .

Analogously with the choice

k = (n1 − 1, n2 − 1, q), m = (1, 1, 1),

wk = (L1q, 0, L3(1− n1)), wm = (0, L2,−L3),

we can conclude that ΠY(n1,n2,q+1)
zγ1 ∈ Gq and, from

β+++
wk,m

=
π

8
(q − n1 + 1) and β+++

wm,k =
π

8
(n2 − q − 1),

we obtain

zγ1 =
π

8

 −L1q(q − n2 + 1)
L2(q − n1 + 1)

L3(1− n1)(q − n2 + 1) + L3(q − n1 + 1)

 .

The family {n, zα1 , zγ1} is linearly independent, because

det

 n1 0 −L1q(q − n2 + 1)
n2 L2(q − n2 + 1)(1− q) L2(q − n1 + 1)
q + 1 L3(q − n2 + 1)(n2 − 2) L3(n1 − 1)(q − n2 + 1)− L3(q − n1 + 1)


= n1(q − n2 + 1) det

(
L2(1− q) L2(q − n1 + 1)
L3(n2 − 2) L3(n1 − 1)(q − n2 + 1)− L3(q − n1 + 1)

)
− L1q(q − n2 + 1)2 det

(
n2 L2(1− q)
q + 1 L3(n2 − 2)

)
= −q(q − n2 + 1)2

[
L2L3n1(n1 − 2) + L1L3n2(n2 − 2) + L1L2(q2 − 1)

]
< 0,

since 2 ≤ n1 ≤ q and 2 ≤ n1 ≤ q. Thus from Lemma 3.1 we have that
Y {1,2},(n1,n2,q+1) ⊂ Gq.

We have just proved that assumption (IH.R1-eq.3.30) implies that

Y {1,2},(n1,n2,q+1) ∈ Gq.

Therefore, using (3.29), by induction it follows that Y {1,2},n ∈ Gq with n =
(n1, n2, q + 1) and (n1, n2) ∈ Nq, which implies that Y {1,2},n ∈ Gq for all

n ∈ Rq+1
3 . An analogous argument leads us to

Y {1,2},n ∈ Gq, for all n ∈ Rq+1
1 ∪Rq+1

2 ∪Rq+1
3 , (3.31)

which ends the proof of Lemma 3.2. ut
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3.5.2 Proof of Lemma 3.3

.
We prove that Y j(n),n ∈ Gq for n = (l, q + 1, q + 1) ∈ Lq+1

2,3 , 1 ≤ l ≤ q. We
choose

k = (l, q − 1, q), m = (0, 2, 1),

wk = (0, L2q, L3(1− q)), wm = (0, L2,−2L3),

which leads us to(
Y k · ∇

)
Y m + (Y m · ∇)Y k = Y(l,q+1,q+1)

zα1
+ Y(l,q−2,q+1)

zα2
+ Y(l,q+1,q−1)

zα3
+ Y(l,q−2,q−1)

zα4
.

By the induction hypothesis (IH.R-eq.3.18) we have ΠY(l,q−2,q−1)
zα4 ∈ Gq−1.

From (3.31), since {(l, q−2, q+1), (l, q+1, q−1)} ⊂ Rq+1
3 ∪Rq+1

2 , we also have

ΠY(l,q−2,q+1)
zα2 +ΠY(l,q+1,q−1)

zα3 ∈ Gq. Therefore, we obtain that ΠY(l,q+1,q+1)
zα1 ∈

Gq. Now, from

β+++
wk,m

= β−++
wk,m

=
π

8
(q + 1) and β+++

wm,k = β−++
wm,k = −π

8
(q + 1),

we obtain

zα1 =


0

L2

(
β+++
wk,m

+ β−++
wk,m

)
+ L2q

(
β+++
wm,k + β−++

wm,k

)
−2L3

(
β+++
wk,m

+ β−++
wk,m

)
+ L3(1− q)

(
β+++
wm,k + β−++

wm,k

)


=
π

4

 0
L2(1− q2)

L3(q + 1)(q − 2)

 .

Analogously the choice

k = (l, q − 1, q), m = (0, 2, 1),

wk = (L1q, 0,−L3l), wm = (0, L2,−2L3)

allows us to conclude that ΠY(l,q+1,q+1)
zγ1 ∈ Gq where from

β+++
wk,m

= β−++
wk,m

= −π
8
l and β+++

wm,k = β−++
wm,k = −π

8
(q + 1),

we have

zγ1 =
π

4

−L1q(q + 1)
−L2l

L3l(q + 3)

 .
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Now from Lemma 3.1 and

det(n zα1 zγ1) = det

 l 0 −L1q(q + 1)
q + 1 L2(1− q2) −L2l
q + 1 L3(q + 1)(q − 2) L3l(q + 3)


= −q(q + 1)2

[
L2L3l

2 + L1L3(q + 1)(q − 2) + L1L2(q2 − 1)
]
< 0,

because l ≥ 1 and q ≥ 3, it follows that Y {1,2},(l,q+1,q+1) ∈ Gq, for 1 ≤ l ≤ q.
A similar argument gives us

Y {1,2},n ∈ Gq, for all n ∈ Lq+1
1,2 ∪ L

q+1
2,3 ∪ L

q+1
3,1 , (3.32)

which ends the proof of Lemma 3.3. ut

3.5.3 Proof of Lemma 3.4.

Firstly, we choose

k = (q, q − 1, q), m = (1, 2, 1),

wk = (0, L2q, L3(1− q)), wm = (0, L2,−2L3),

which give us

(
Y k · ∇

)
Y m + (Y m · ∇)Y k = Y(q+1,q+1,q+1)

zα1
+

8∑
i=2

Yκ
i

zαi
,

where {κi | i ∈ {2, · · · , 8}} = {(q + 1, q + 1, q − 1), (q − 1, q + 1, q + 1)), (q −
1, q−2, q+ 1), (q−1, q+ 1, q−1), (q+ 1, q−2, q−1), (q−1, q−2, q+ 1), (q−
1, q − 2, q − 1)}.
Since

{κi | i ∈ {2, · · · , 8}} ⊆ (Rq+1
1 ∪Rq+1

2 ∪Rq+1
3 )

⋃
(Lq+1

1,2 ∪ L
q+1
2,3 )

⋃
Sq

from (IH.R-eq.3.18), (3.31), and (3.32) we can conclude thatΠY(q+1,q+1,q+1)
zα1 ∈

Gq.
Now, from the identities

β+++
wk,m

=
π

8
(q + 1) and β+++

wm,k = −π
8

(q + 1),

we obtain

zα1 =

 0
L2.β

+++
wk,m

+ L2q.β
+++
wm,k

−2L3.β
+++
wk,m

+ L3(1− q).β+++
wm,k

 =
π

8

 0
L2(1− q2)

L3(q + 1)(q − 2)

 .
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Next by choosing

k = (q, q − 1, q), m = (1, 2, 1),

wk = (L1(1− q), L2q, 0), wm = (0, L2,−2L3),

and proceeding as above, we can conclude that ΠY(q+1,q+1,q+1)
zγ1 ∈ Gq, with

zγ1 =

0β+++
wk,m

+ L1(1− q)β+++
wm,k

L2β
+++
wk,m

+ L2qβ
+++
wm,k

−2L3.β
+++
wk,m

+ 0β+++
wm,k

 =
π

8

 L1(q2 − 1)
L2(1− q2)
−2L3(q + 1)

 .

With n = (q + 1, q + 1, q + 1), using again Lemma 3.1 and

det(n zα1 zγ1) =
π2

64
(q + 1)3 det

1 0 L1(q − 1)
1 L2(1− q) L2(1− q)
1 L3(q − 2) −2L3


=
π2

64
(q + 1)3

[
L2L3 det

(
1− q 1− q
q − 2 −2

)
+ L1(q − 1) det

(
1 L2(1− q)
1 L3(q − 2)

)]
=
π2

64
(q + 1)3(q − 1) [(L1L2 + L2L3)(q − 1) + L1L3(q − 2)] > 0,

because q ≥ 3, we obtain

Y {1,2},(q+1,q+1,q+1) ⊂ Gq, (3.33)

which ends the proof of Lemma 3.4. ut

4 Final Remarks

We proved the approximate controllability of the Navier–Stokes system in a 3D
rectangle by degenerate (low modes) forcing, under Lions boundary conditions.
We used the analogous 2D result, derived in [24] (see also [22] for (B,D(A))-
saturating sets). In [19] the case of a 2D cylinder is considered, thus we may
wonder whether we can also derive the approximate controllability for the
case of a 3D cylinder. This case can be seen as the case where the fluid is
contained in a long (infinite) 3D channel with Lions boundary conditions, and
with the periodicity assumption on the long (infinite) direction, thus it is a case
of interest for applications. First computations show that the existence of a
(L,D(A))-saturating set in this case is plausible, but the computations details
are still to be checked. Since those computations will be long, and since this
manuscript is already long, we will investigate the case of a 3D cylinder in a
future work.

We underline that the presented saturating set is (by definition) indepen-
dent of the viscosity coefficient ν. That is, approximate controllability holds
by means of controls taking values in G1 = span(C) + spanB(C, span C) =
span (C

⋃
B(C, C)), for any ν > 0. It is plausible that a (L,D(A))-saturating
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set with less elements does exist, but it is not our goal here to minimize the
number of elements of C.

We have used the result in [27] where it is proven that under Dirichlet
boundary conditions the existence of a (B,D(A))-saturating set implies the
approximate controllability of Navier–Stokes system by degenerate forcing.
We can conclude from our results that the same controllability result fol-
lows from the existence of a (L,D(A))-saturating set. However, up to our
knowledge, neither the existence of a (B,D(A))-saturating set nor that of a
(L,D(A))-saturating set is known under Dirichlet boundary conditions. That
is, essentially the approximate controllability of the Navier–Stokes system is
still an open problem under Dirichlet boundary conditions. Therefore, it is of
interest to find a saturating set for such classical boundary conditions, because
they are the most realistic in many situations.

Up to now the known examples of saturating sets consist of eigenfuntions
of the Stokes operator. For applications, it would be interesting to consider
more realistic functions as actuators as locally supported functions, recall [1,
Problem VII] (cf. [19, Section V]). Furthermore, the explicit expressions for
the Stokes operator may be not available as it is the case (up to our best
knowledge) for Dirichlet boundary conditions.
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