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Abstract

In this paper we present Lyapunov based proofs for the well-known Arendt-Batty-Lyubich-Vũ Theorem for strongly
continuous and discrete semigroups. We also study the spectral properties of the limit isometric groups used in the
proofs.
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1. Introduction

In this paper we study the asymptotic behavior of
a strongly continuous semigroup (T (t))t≥0 on a Hilbert
space X. Recall that (T (t))t≥0 is exponentially stable if
there exist M > 0 and ω > 0 such that ‖T (t)‖ ≤ Me−ωt

for t ≥ 0. It is strongly stable if for all x0 ∈ X we have
T (t)x0 → 0 for t → ∞. There are several well-known
characterizations for exponential stability of a semigroup
on a Hilbert space. Characterizing strong stability of a
semigroup is also possible [1, Thm 3.1], but the known
characterizations are usually difficult to verify in practi-
cal applications. Because of this, the strong stability of a
semigroup is usually shown using more easily applicable
sufficient conditions. The most well-known of such suf-
ficient conditions is the Arendt-Batty-Lyubich-Vũ Theo-
rem, [2, 3].

Theorem 1 (Arendt-Batty-Lyubich-Vũ Theorem). Let
(T (t))t≥0 be a uniformly bounded semigroup on a Hilbert
space. If σp(A)∩ iR = ∅ and if the intersection σ(A)∩ iR
is countable, then (T (t))t≥0 is strongly stable.

The above result is also valid in reflexive Banach spaces,
see [4, Corollary V.2.22]. In this case there is an additional
condition that A may have no residual spectrum on the
imaginary axis.

Although there are several proofs available, none of
them make use of Lyapunov techniques. Lyapunov func-
tions are common in proving stability of nonlinear differ-
ential equations, but they can also be used to characterize
stability properties of semigroups, see [5, Theorem 5.1.3]
for exponential stability. In [6] the following necessary and
sufficient condition for strong stability is given.

Email addresses: lassi.paunonen@tut.fi (L. Paunonen),
h.j.zwart@utwente.nl (H. Zwart)

Theorem 2. Let (T (t))t≥0 be a uniformly bounded semi-
group on the Hilbert space X and let A with domain D(A)
be the infinitesimal generator of (T (t))t≥0. Then (T (t))t≥0
is strongly stable if and only if the (unique) solutions of the
Lyapunov equations

〈x1, Qσ(A−σI)x2〉+〈(A−σI)x1, Qσx2〉 = −〈x1, x2〉, (1)

with σ > 0, and x1, x2 ∈ D(A), satisfy

lim
σ↓0
〈x, σQσx〉 = 0, x ∈ X. (2)

The theorem shows that it is possible to characterize
strong stability on a Hilbert space using Lyapunov func-
tions. Unfortunately, solving the Lyapunov equations (1)
is not an easy task. Because of this, applying Theorem 2
will be difficult in many practical situations. However, we
will see that this characterization can be used to prove the
ABLV Theorem.

In particular, the use of Lyapunov equations clarifies the
construction of the limit isometric group used in studying
the stability of semigroups, and in particular, in the proof
of the ABLV Theorem [4, Sec. IV.2b], [3, 1]. We show
that the abstract Banach limit used in the construction
of the limit isometric group can be replaced with a posi-
tive operator determined by the Lyapunov equations (1).
This modification allows us to show a concrete spectral
relationship between the generators of the limit isometric
group and of the original semigroup (T (t))t≥0.

In this paper we also apply Lyapunov techniques to
present a proof for the analogue of Theorem 1 for discrete
semigroups (An)n∈N with A ∈ L(X) on a Hilbert space X.

In Section 2 we give some more properties of the Lya-
punov equation (1) and construct the limit isometric
group. In Section 3 we study its spectral properties and
present the new proof of Theorem 1. The Arendt-Batty-
Lyubich-Vũ Theorem for discrete semigroups is proved in
Section 4.

Preprint submitted to Systems & Control Letters May 1, 2013



It is straightforward to show that any strongly stable
semigroup must be uniformly bounded. Hence, through-
out this paper we assume that the semigroup (T (t))t≥0 on
the separable Hilbert space X is uniformly bounded. The
generator of (T (t))t≥0 is denoted by A : D(A) ⊂ X → X.

2. The Lyapunov Equations and the Limit Isomet-
ric Group

From [6] we have the following results concerning the
solutions of the Lyapunov equations in Theorem 2.

Lemma 3. Let M be such that ‖T (t)‖ ≤ M for t ≥ 0,
and let Qσ be the solution of the Lyapunov equation (1).
Then Qσ is a bounded, self-adjoint, non-negative operator,
and is given by

〈x,Qσx〉 =

∫ ∞
0

e−2σt‖T (t)x‖2dt. (3)

Furthermore, the norm of Qσ satisfies

‖Qσ‖ ≤
M

2σ
. (4)

By (4) and [5, Thm. A.3.39] we have that for a (positive)
sequence {σn}n∈N with σn → 0 there exists a bounded
linear operator Q such that for all x1, x2 ∈ X

〈x1, Qx2〉 = lim
n→∞

σn〈x1, Qσn
x2〉. (5)

Lemma 4. The operator Q as defined in (5) is self-
adjoint, non-negative and satisfies

〈x1, QAx2〉+ 〈Ax1, Qx2〉 = 0, x1, x2 ∈ D(A). (6)

Furthermore,

‖Q 1
2T (t)x‖ = ‖Q 1

2x‖, x ∈ X, t ≥ 0; (7)

and for the kernel of Q we have

N (Q) = {x ∈ X | lim
t→∞

T (t)x = 0}. (8)

Proof. The operator theoretic properties of Q follow di-
rectly from the corresponding properties of Qσ and (5).
Multiplying equation (1) (with σ = σn) by σn and using
(5) gives (6). For all x ∈ D(A) and t > 0 we have by (6)
that

‖Q 1
2T (t)x‖2 − ‖Q 1

2x‖2 = 〈T (t)x,QT (t)x〉 − 〈x,Qx〉

=

∫ t

0

(
d

ds
〈T (s)x,QT (s)x〉

)
ds

=

∫ t

0

(
〈T (s)x,QAT (s)x〉+ 〈AT (s)x,QT (s)x〉

)
ds = 0.

Since D(A) is dense in X, this implies (7).

The inclusion “⊃” in (8) follows from (7). So it remains
to show that the converse inclusion holds. Let x0 ∈ N (Q)
and define tn = σ−1n . Then

tn〈y, e−σntnT (tn)x0〉 =

∫ tn

0

〈y, e−σntnT (tn)x0〉ds

=

∫ tn

0

〈e−σn(tn−s)T (tn − s)∗y, e−σnsT (s)x0〉ds

≤

√∫ tn

0

‖e−σn(tn−s)T (tn − s)∗y‖2ds

×

√∫ tn

0

‖e−σnsT (s)x0‖2ds

≤ M‖y‖√
2σn

√
〈x0, Qσn

x0〉,

where we have used the uniform bound of the semigroup
and relation (3). Since σntn = 1 by definition, we have

‖T (tn)x0‖ = sup
y 6=0

〈y, T (tn)x0〉
‖y‖

= sup
y 6=0

1

‖y‖
σntne〈y, e−σntnT (tn)x0〉

≤ Me√
2

√
σn
√
〈x0, Qσn

x0〉. (9)

Let ε > 0 be given. Since x0 ∈ N (Q), by (5) there exists
an N such that for n > N we have σn〈x0, Qσn

x0〉 ≤ ε2.
Since σn → 0, we also have tn → ∞. By (9) we see that
‖T (tn)x0‖ ≤ M√

2
ε for all n > N . Hence T (t)x0 converges

to zero along the unbounded sequence tn. Since (T (t))t≥0
is uniformly bounded, we conclude that limt→∞ T (t)x0 =
0.

The characterization for the kernel of the limit operator
Q in Lemma 4 shows that the uniformly bounded semi-
group (T (t))t≥0 is strongly stable if and only if Q = 0.

We denote by j : X → X/N (Q) the canonical quotient
map. The space X/N (Q) is a Banach space with the norm
‖·‖X/N (Q) defined by

‖j(x)‖X/N (Q) = dist(x,N (Q)), x ∈ X.

We define the inner product and induced norm onX/N (Q)
by

〈j(x), j(y)〉Q = 〈x,Qy〉X ,
‖j(x)‖2Q = 〈x,Qx〉X = ‖Q1/2x‖2X .

If we decompose X = N (Q) ⊕ N (Q)⊥ into orthogonal
subspaces and write x = x0 + x1 according to this decom-
position, then we can see that the norm ‖·‖Q satisfies

‖j(x)‖Q = ‖Q1/2x‖X = ‖Q1/2x1‖X
≤ ‖Q1/2‖ · ‖x1‖X = ‖Q1/2‖ · ‖j(x)‖X/N (Q),
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where ‖x1‖X = dist(x,N (Q)) = ‖j(x)‖X/N (Q) follows
from the orthogonality of the decomposition x = x0 + x1.

We define the space XQ as the completion of X/N (Q)
with respect to the norm ‖·‖Q, i.e.

XQ = X/N (Q)
‖·‖Q

.

It is then immediate that (XQ, ‖·‖Q) is a Hilbert space.

By (7) or (8) we see that the kernel of Q is T (t)-invariant
for all t ≥ 0 and thus we may consider the quotient semi-
group (T0(t))t≥0 on X/N (Q) defined by [4, Par. I.5.13]

T0(t)j(x) = j(T (t)x) ∀x ∈ X.

Lemma 4 now implies that for any x ∈ X we have

‖T0(t)j(x)‖2Q = ‖j(T (t)x)‖2Q = ‖Q1/2T (t)x‖2X
= ‖Q1/2x‖2X = ‖j(x)‖2Q.

This shows that (T0(t))t≥0 is an isometric semigroup on
X/N (Q). Finally, we complete this construction by ex-
tending the quotient semigroup to a semigroup (TQ(t))t≥0
on the whole space XQ. The fact that the quotient semi-
group is isometric on X/N (Q) implies that also its exten-
sion to XQ isometric.

Corollary 5. The semigroup (TQ(t))t≥0 is isometric.

The construction of the semigroup (TQ(t))t≥0 is similar
to the one carried out in [1, Sec. 2]. The main difference
is that instead of using the abstract concept of Banach
limit, we have used the operator Q to divide the space X
into parts based on whether or not the orbits t 7→ T (t)x
originating from the elements x ∈ X decay to zero asymp-
totically.

We will now turn to the study of the properties of the
semigroup (TQ(t))t≥0 and its generator.

2.1. Properties of the Semigroup (TQ(t))t≥0

Our main interests in this section are the spectral prop-
erties of the generator of the semigroup (TQ(t))t≥0. In
particular we show that if ρ(A)∩ iR 6= ∅, then (TQ(t))t≥0
extends to an isometric group and thus by Stone’s theorem
its generator AQ is a skew-adjoint operator. The spectral
theory of skew-adjoint operators allows us to obtain in-
formation on the stability properties of original uniformly
bounded semigroup (T (t))t≥0.

We will start with the following auxiliary lemma.

Lemma 6. The generator AQ of (TQ(t))t≥0 has the prop-
erty that j(D(A)) ⊂ D(AQ) and AQj(x) = j(Ax) for all
x ∈ D(A). Furthermore, j(D(A)) is a core of AQ.

Proof. The first claim follows directly from the fact that

for any x ∈ D(A) ⊂ X we have∥∥∥∥TQ(t)j(x)− j(x)

t
− j(Ax)

∥∥∥∥
Q

=

∥∥∥∥j (T (t)x− x
t

)
− j(Ax)

∥∥∥∥
Q

=

∥∥∥∥Q1/2

(
T (t)x− x

t
−Ax

)∥∥∥∥
X

≤ ‖Q1/2‖ ·
∥∥∥∥T (t)x− x

t
−Ax

∥∥∥∥
X

→ 0

as t ↓ 0.

It remains to show that j(D(A)) is a core of AQ. By
[4, Prop. II.1.7] it suffices to show that j(D(A)) is TQ(t)-
invariant for all t ≥ 0 and ‖·‖Q-dense in XQ. Let j(x) ∈
j(D(A)) and t ≥ 0. Since on the space X/N (Q) the semi-
group (TQ(t))t≥0 coincides with the quotient semigroup
(T0(t))t≥0, we have

TQ(t)j(x) = T0(t)j(x) = j(T (t)x) ∈ j(D(A)),

since T (t)x ∈ D(A). To show the density of j(D(A)) in
XQ, let xQ ∈ XQ and ε > 0. Since XQ is the completion of
X/N (Q), there exists x ∈ X such that ‖xQ− j(x)‖Q < ε

2 .
Furthermore, since D(A) is ‖·‖X -dense in X, there now
exists y ∈ D(A) such that

‖x− y‖X <
ε

2‖Q1/2‖
.

Combining these two estimates and using the definition of
‖·‖Q we obtain

‖xQ − j(y)‖Q ≤ ‖xQ − j(x)‖Q + ‖j(x)− j(y)‖Q

<
ε

2
+ ‖Q1/2(x− y)‖X <

ε

2
+
ε

2
= ε.

This concludes that j(D(A)) is a core of AQ.

Now we can formulate and prove the first result on
the relation between the spectra of A and AQ. In the
case where (TQ(t))t≥0 extends to a group, the extension
(TQ(t))t∈R is called the limit isometric group.

Theorem 7. The spectrum of the operator AQ satisfies
σ(AQ) ⊂ σ(A). If ρ(A)∩ iR 6= ∅, then (TQ(t))t≥0 extends
to an isometric group (TQ(t))t∈R on XQ and AQ is a skew-
adjoint operator whose spectrum satisfies σ(AQ) ⊂ σ(A)∩
iR.

Proof. Let λ ∈ ρ(A) and denote by R(λ) : X/N (Q) →
X/N (Q) the linear operator defined by

R(λ)j(x) = j(R(λ,A)x), x ∈ X. (10)
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Now for any x ∈ X we have by (3) and (5) that

‖R(λ)j(x)‖2Q = ‖j(R(λ,A)x)‖2Q = ‖Q1/2R(λ,A)x‖2

= lim
σn→0

σn

∫ ∞
0

e−2σnt‖T (t)R(λ,A)x‖2dt

= lim
σn→0

σn

∫ ∞
0

e−2σnt‖R(λ,A)T (t)x‖2dt

≤ ‖R(λ,A)‖2 · lim
σn→0

σn

∫ ∞
0

e−2σnt‖T (t)x‖2dt

= ‖R(λ,A)‖2‖Q1/2x‖2 = ‖R(λ,A)‖2‖j(x)‖2Q.

This shows that R(λ) is bounded on X/N (Q) ⊂ XQ and
thus it extends to a bounded operator on XQ. Using (10)
and Lemma 6 we can see that for any x ∈ X and y ∈ D(A)

(λI −AQ)R(λ)j(x) = (λI −AQ)j(R(λ,A)x)

= j((λI −A)R(λ,A)x) = j(x)

R(λ)(λI −AQ)j(y) = R(λ)j((λI −A)y)

= j(R(λ,A)(λI −A)y) = j(y).

Since X/N (Q) is dense in XQ and since j(D(A)) is a
core of AQ, the above identities are satisfied on XQ

and D(AQ), respectively. This implies λ ∈ ρ(AQ) and
R(λ) = R(λ,AQ). This concludes that ρ(A) ⊂ ρ(AQ), or
equivalently σ(AQ) ⊂ σ(A).

If ρ(A)∩iR 6= ∅, we also have ρ(AQ)∩iR 6= ∅. This im-
plies that the isometric semigroup (TQ(t))t≥0 extends to an
isometric group on XQ [4, Lem. IV.2.19]. By Stone’s The-
orem [4, Thm. II.3.24] its generator AQ is a skew-adjoint
operator. In particular, σ(AQ) ⊂ iR.

Remark 8. It should be noted that if the condition
ρ(A) ∩ iR 6= ∅ is not satisfied, then either σ(AQ) = iR
and (TQ(t))t≥0 extends to an isometric group on XQ, or

σ(AQ) = C− [4, Lem. IV.2.19]. However, even in the latter
case it is still possible to extend (TQ(t))t≥0 to an isometric

group on a larger space X̃Q, see [1, p. 67] and references
therein.

Equation (10) in the proof of the previous theorem also
establishes the following relationship between the resolvent
operators of A and AQ.

Lemma 9. For all λ ∈ ρ(A) we have

R(λ,AQ)j(x) = j(R(λ,A)x) x ∈ X.

The fact that AQ is a skew-adjoint operator enables us
to use the well-known spectral theory of skew-adjoint and
self-adjoint operators [7, 8] in the study of the properties
of the semigroup (T (t))t≥0. First of all, Theorem 7 can
be used to show the stability of the semigroup (T (t))t≥0
in the case where the entire imaginary axis belongs to the
resolvent set of A.

Theorem 10. If (T (t))t≥0 is uniformly bounded and
σ(A) ∩ iR = ∅, then (T (t))t≥0 is strongly stable.

Proof. By Theorem 7 we have iR ⊂ ρ(A) ⊂ ρ(AQ). The
spectral theory of skew-adjoint operators implies that this
is only possible if XQ = {0}. This, on the other hand,
only possible if N (Q) = X. By Lemma 4 we conclude
that (T (t))t≥0 is strongly stable.

3. The Arendt-Batty-Lyubich-Vũ Theorem

In this section we present a proof for the Arendt-Batty-
Lyubich-Vũ Theorem. In addition, we also show a de-
tailed spectral relationship between the operators A and
AQ. The following lemma is needed in the proofs. In a
more general form this result is known as the Mean Er-
godic Theorem [9, 4, 10].

Lemma 11. Let (S(t))t≥0 be a uniformly bounded semi-
group on a Hilbert space Y with infinitesimal generator
AS. Then

Y = N (AS)⊕R(AS). (11)

If N (AS) = {0}, then for all y ∈ Y we have

lim
t→∞

1

t

∫ t

0

S(s)yds = 0. (12)

Proof. Since Y is a Hilbert space, Theorem 2.25 in [10]
shows that (11) holds.

For y ∈ R(AS), we have that

1

t

∫ t

0

S(s)yds =
1

t

∫ t

0

S(s)ASzds =
1

t
(S(t)z − z).

Combining this with the uniform boundedness of (S(t))t≥0
we see that (12) holds for y ∈ R(AS). By assumption and
(11) this set is dense in Y . By the uniform boundedness

of (S(t))t≥0 we have that the operators y 7→ 1
t

∫ t
0
S(s)yds

are uniformly bounded. Combining these observations, we
conclude that (12) holds for all y ∈ Y .

For the purpose of proving the ABLV Theorem, the most
essential of our spectral results is that the point spectrum
of AQ coincides with σp(A) ∩ iR.

Theorem 12. The point spectrum of AQ satisfies
σp(AQ) = σp(A) ∩ iR.

Proof. We will first show that σp(A) ∩ iR ⊂ σp(AQ). Let
iω ∈ σp(A) ∩ iR and let x ∈ D(A) be such that x 6= 0
and (A− iωI)x = 0. We have from Lemma 6 that j(x) ∈
D(AQ) and

AQj(x) = j(Ax) = iωj(x).

It only remains to show that j(x) 6= 0. We have that
T (t)x = eiωtx for all t ≥ 0. This immediately implies that

‖T (t)x‖ = ‖x‖ 6→ 0 as t→∞.

We therefore have from Lemma 4 that x /∈ N (Q) and thus
j(x) 6= 0.
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To prove the converse inclusion, we will first show that
σp(AQ) is a subset of the imaginary axis. To this end,
let λ ∈ σp(AQ) and let x ∈ D(AQ) be such that x 6= 0
and (AQ − λI)x = 0. In this case we also have TQ(t)x =
eλtx and since the semigroup (TQ(t))t≥0 is isometric by
Corollary 5, we have

‖x‖Q = ‖TQ(t)x‖Q = eReλt‖x‖Q, ∀t ≥ 0.

Since x 6= 0 this can only be satisfied if Reλ = 0, and thus
σp(AQ) ⊂ iR.

It remains to show that σp(AQ) ⊂ σp(A). To this end,
let ω ∈ R be such that iω /∈ σp(A). We will show that this
implies N (AQ − iωI) = {0}, or equivalently iω /∈ σp(AQ).

Since A − iωI is the infinitesimal generator of the uni-
formly bounded semigroup (e−iωtT (t))t≥0 on the Hilbert
space X, and since it is by assumption injective, Lemma
11 shows that

lim
t→∞

1

t

∫ t

0

e−iωsT (s)xds = 0, ∀x ∈ X. (13)

For xQ ∈ N (AQ − iωI) and ε > 0 choose an x ∈ X/N (Q)
such that ‖xQ − j(x)‖Q < ε/2. This is possible since
X/N (Q) is ‖·‖Q-dense in XQ. By (13) there exists a tε > 0
such that ∥∥∥∥ 1

tε

∫ tε

0

e−iωsT (s)xds

∥∥∥∥
X

<
ε

2‖Q1/2‖
.

The fact that (AQ − iωI)xQ = 0 implies e−iωtTQ(t)xQ =
xQ, and thus

1

tε

∫ tε

0

e−iωsTQ(s)xQds =
1

tε

∫ tε

0

xQds = xQ.

Using this we get

‖xQ‖Q =

∥∥∥∥ 1

tε

∫ tε

0

e−iωsTQ(s)xQds

∥∥∥∥
Q

≤
∥∥∥∥ 1

tε

∫ tε

0

e−iωsTQ(s)(xQ − j(x))ds

∥∥∥∥
Q

+

∥∥∥∥ 1

tε

∫ tε

0

e−iωsTQ(s)j(x)ds

∥∥∥∥
Q

≤ 1

tε

∫ tε

0

‖e−iωsTQ(s)(xQ − j(x))‖Qds

+

∥∥∥∥j ( 1

tε

∫ tε

0

e−iωsT (s)xds

)∥∥∥∥
Q

=
1

tε

∫ tε

0

‖xQ − j(x)‖Qds

+

∥∥∥∥Q1/2

(
1

tε

∫ tε

0

e−iωsT (s)xds

)∥∥∥∥
X

<
ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary we must have xQ = 0. Since
xQ was an arbitrary element of N (AQ− iωI) we find that
iω /∈ σp(AQ). This concludes that σp(AQ) ⊂ σp(A).

Using the spectral theory of skew-adjoint operators and
the above relationship between the eigenvalues of A and
AQ we can easily prove the ABLV Theorem.

Theorem 13. If (T (t))t≥0 is a uniformly bounded semi-
group such that σp(A) ∩ iR = ∅ and the intersection
σ(A) ∩ iR is countable, then (T (t))t≥0 is strongly stable.

Proof. The fact that σ(A) ∩ iR is countable implies that
ρ(A) ∩ iR 6= ∅, and since σ(AQ) ⊂ σ(A) ∩ iR by Theo-
rem 7, we have that also σ(AQ) must be countable. All
isolated spectral points of a skew-adjoint operator are
eigenvalues [11, Sec. V.3.5]. Since AQ is skew-adjoint
and has a countable spectrum, σ(AQ) must consist of
eigenvalues of AQ and their accumulation points. How-
ever, if λ ∈ σp(AQ), then Theorem 12 would imply
λ ∈ σp(A) ∩ iR = ∅, which is impossible. This concludes
that σp(AQ) = ∅, and

σ(AQ) = σp(AQ) = ∅.

A skew-adjoint operator can have empty spectrum only if
XQ = {0}. By construction this is only possible if Q =
0, and N (Q) = X. Finally, N (Q) = X together with
Lemma 4 concludes that (T (t))t≥0 is strongly stable.

If ρ(A) ∩ iR 6= ∅, then combining the previous results
also leads to the inclusion

σc(AQ) ⊂ σc(A) ∩ iR.

Indeed, this is a direct consequence of the observation that
due to Lemma 11 we must have σ(A)∩iR ⊂ σp(A)∪σc(A),
and of the spectral relationships in Theorems 7 and 12.
The following corollary collects the relationships between
the spectra of AQ and A. The description of the spectrum
of AQ is now complete, because for a skew-adjoint operator
we have σ(AQ) = σp(AQ) ∪ σc(AQ).

Corollary 14. If T (t) is uniformly bounded and ρ(A) ∩
iR 6= ∅, then

σ(AQ) ⊂ σ(A) ∩ iR
σp(AQ) = σp(A) ∩ iR
σc(AQ) ⊂ σc(A) ∩ iR.

4. The Arendt-Batty-Lyubich-Vũ Theorem for
Discrete Semigroups

In this section we use the Lyapunov approach to present
a proof for the Arendt-Batty-Lyubich-Vũ Theorem for dis-
crete semigroups [10, Thm. 2.18]. By a discrete semigroup
we mean a family (An)n∈N of operators, where A ∈ L(X)
and N = 0, 1, 2, . . .. We denote the unit circle of C
by T, and call the semigroup (An)n∈N power bounded if
supn∈N‖An‖ <∞.

Theorem 15 (Arendt-Batty-Lyubich-Vũ Theorem). Let
(An)n∈N be a power bounded discrete semigroup on a
Hilbert space. If σp(A) ∩ T = ∅ and if the intersection
σ(A) ∩ T is countable, then (An)n∈N is strongly stable.
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We prove Theorem 15 using similar steps as in the proof
of Theorem 1. Most notably, we use solutions of Lya-
punov equations to construct a discrete limit isometric
group (AnQ)n∈Z and use its properties in the proving the
strong stability of (An)n∈N. Because of the same approach,
most of the techniques used in this section are direct coun-
terparts of the ones in Sections 2 and 3.

Lyapunov equations can be used in characterizing the
strong stability of a discrete semigroup in the following
way.

Theorem 16 ([6, Thm. 3.5]). Let (An)n∈N be a power
bounded discrete semigroup on a Hilbert space X. Then
(An)n∈N is strongly stable if and only if the (unique) pos-
itive solutions Qr of the Lyapunov equations

r2〈Ax1, QrAx2〉 − 〈x1, Qrx2〉 = −〈x1, x2〉, (14)

with r ∈ (0, 1), and x1, x2 ∈ X, satisfy

lim
r↑1

(1− r)〈x,Qrx〉 = 0, x ∈ X.

We begin the proof of Theorem 15 by constructing the
limit isometric group. We have from [6] that if (An)n∈N
is power bounded such that ‖An‖ ≤ M for some M > 0
and for all n ∈ N, then for every r ∈ (0, 1) the equation
(14) has a bounded, self-adjoint, non-negative solution Qr
satisfying

〈x,Qrx〉 =

∞∑
k=0

‖rkAkx‖2. (15)

Moreover, the norm of Qr satisfies ‖Qr‖ ≤M2/(2(1− r)).
Similarly as in Section 2, Theorem A.3.39 in [5] implies

that there exists a sequence {rn}n∈N ⊂ (0, 1) with rn ↑ 1
and a self-adjoint non-negative operator Q such that

〈x1, Qx2〉 = lim
n→∞

(1− rn)〈x1, Qrnx2〉 (16)

for all x1, x2 ∈ X.

Lemma 17. The operator Q has the following properties.

〈Ax1, QAx2〉 − 〈x1, Qx2〉 = 0, x1, x2 ∈ X, (17)

‖Q 1
2Anx‖ = ‖Q 1

2x‖, x ∈ X,n ∈ N, (18)

N (Q) = {x ∈ X | lim
n→∞

Anx = 0}. (19)

Proof. Equation (17) follows from multiplying equation
(14) (with r = rn) by 1 − rn and using (16). We now
have

‖Q 1
2Ax‖2 =

√
〈Ax,QAx〉 =

√
〈x,Qx〉 = ‖Q 1

2x‖,

which further implies ‖Q 1
2Anx‖ = ‖Q 1

2An−1x‖ = · · · =

‖Q 1
2x‖ for n ∈ N.

The inclusion “⊃” in (19) follows from (18) and N (Q) =

N (Q
1
2 ), and the converse inclusion can be shown as in the

proof of [6, Thm. 3.4].

The next step in constructing the limit isometric group
is the construction of the space XQ with the norm ‖·‖Q.
The definitions are identical to the ones in the continu-
ous time case, and consequently the properties of XQ =

X/N (Q)
‖·‖Q

and ‖·‖Q are identical to those presented in
Section 2.

We define a linear operator A0 : X/N (Q) → X/N (Q)
by

A0j(x) = j(Ax) ∀x ∈ X.

Using (18) in Lemma 17 we have that

‖A0j(x)‖2Q = ‖j(Ax)‖2Q = ‖Q1/2Ax‖2X
= ‖Q1/2x‖2X = ‖j(x)‖2Q

for all x ∈ X. Therefore A0 is a unitary operator on
X/N (Q), and it has a unique unitary extension AQ ∈
L(XQ). The discrete group (AnQ)n∈Z is called the limit
isometric group.

As in Section 2.1 we can show that the spectrum
of the operator AQ satisfies σ(AQ) ⊂ σ(A) ∩ T and
R(λ,AQ)j(x) = j(R(λ,A)x) for all λ ∈ ρ(A) and x ∈ X.
Indeed, since AQ is a unitary operator, its spectrum satis-
fies σ(AQ) ⊂ T [7, Thm. 10.5-1]. The inclusion σ(AQ) ⊂
σ(A) can now be proved as in Lemma 7, since for all x ∈ X
we have

‖R(λ)j(x)‖2Q = ‖j(R(λ,A)x)‖2Q = ‖Q1/2R(λ,A)x‖2

= lim
n→∞

(1− rn)

∞∑
k=0

‖rknAkR(λ,A)x‖2

≤ ‖R(λ,A)‖2 · lim
n→∞

(1− rn)

∞∑
k=0

‖rknAkx‖2

= ‖R(λ,A)‖2‖Q1/2x‖2 = ‖R(λ,A)‖2‖j(x)‖2Q.

In order to prove Theorem 15 we need a version of
Lemma 11 for discrete semigroups.

Lemma 18. Let (Bn)n∈N be a power bounded discrete
semigroup on a Hilbert space Y . Then

Y = N (I −B)⊕R(I −B). (20)

If N (I −B) = {0}, then for all y ∈ Y we have

lim
N→∞

1

N

N−1∑
k=0

Bny = 0. (21)

Proof. Since Y is a Hilbert space, Theorem 2.9 and Corol-
lary 2.11 in [10] imply that (20) holds.

Now assume N (I − B) = {0}. For y ∈ R(I − B) we
have

1

N

N−1∑
k=0

Bky =
1

N

N−1∑
k=0

Bk(I −B)z =
1

N
(z −BNz)→ 0
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as N → ∞ since (Bn)n∈N is power bounded. Thus (21)
holds for all y ∈ R(I−B). By assumption and (20) this set
is dense in Y . By the power boundedness of (Bn)n∈N we

have that the operators y 7→ 1
N

∑N−1
k=0 B

ky are uniformly
bounded with respect to N . Combining these observations
we can conclude that (21) holds for all y ∈ Y .

As in the continuous time case, we have that the point
spectrum of AQ coincides with σp(A) ∩ T.

Theorem 19. The point spectrum of AQ satisfies
σp(AQ) = σp(A) ∩ T.

Proof. The inclusion σp(A) ∩ T ⊂ σp(AQ) can be proved
similarly as in the proof of Theorem 12. To prove the
converse inclusion, we again note that σp(AQ) ⊂ T since
AQ is a unitary operator. It therefore remains to show
that σp(AQ) ⊂ σp(A). To this end, let µ ∈ T be such that
µ /∈ σp(A). We will show that this implies N (AQ − µI) =
{0}, or equivalently µ /∈ σp(AQ).

The operator µA is a power bounded and by assumption
we have N (I − µA) = N (µ(µI −A)) = N (µI −A) = {0}
since |µ|2 = 1. From Lemma 18 we have that

lim
N→∞

1

N

N−1∑
k=0

µkAkx = 0, ∀x ∈ X. (22)

Let xQ ∈ N (AQ − µI) and ε > 0. Choose x ∈ X/N (Q)
such that ‖xQ − j(x)‖Q < ε/2. This is possible since
X/N (Q) is ‖·‖Q-dense in XQ. By (22) there exists a Nε ∈
N such that ∥∥∥∥∥ 1

Nε

Nε−1∑
k=0

µkAkx

∥∥∥∥∥
X

<
ε

2‖Q1/2‖
.

The equation (AQ − µI)xQ = 0 implies

µAQxQ = µµxQ = |µ|2xQ = xQ

and thus µnAnQxQ = xQ for all n ∈ N. Using this we get

‖xQ‖Q =

∥∥∥∥∥ 1

Nε

Nε−1∑
k=0

xQ

∥∥∥∥∥
Q

=

∥∥∥∥∥ 1

Nε

Nε−1∑
k=0

µkAkQxQ

∥∥∥∥∥
Q

≤

∥∥∥∥∥ 1

Nε

Nε−1∑
k=0

µkAkQ(xQ − j(x))

∥∥∥∥∥
Q

+

∥∥∥∥∥ 1

Nε

Nε−1∑
k=0

µkAkQj(x)

∥∥∥∥∥
Q

≤ 1

Nε

Nε−1∑
k=0

‖µkAkQ(xQ − j(x))‖Q +

∥∥∥∥∥j
(

1

Nε

Nε−1∑
k=0

µkAkx

)∥∥∥∥∥
Q

=
1

Nε

Nε−1∑
k=0

‖xQ − j(x)‖Q +

∥∥∥∥∥Q 1
2

(
1

Nε

Nε−1∑
k=0

µkAkx

)∥∥∥∥∥
Q

<
ε

2
+
ε

2
= ε,

where we have used the fact that µAQ is unitary. Because
ε > 0 was arbitrary we must have xQ = 0. Since xQ was an
arbitrary element of N (AQ−µI) we find that µ /∈ σp(AQ).
This concludes σp(AQ) ⊂ σp(A).

We can now prove the Arendt-Batty-Lyubich-Vũ Theo-
rem for discrete semigroups.

Proof of Theorem 15. Since σ(A) ∩ T is countable and
σ(AQ) ⊂ σ(A) ∩ T, we have that also σ(AQ) must be
countable. The spectral theorem for unitary operators [7,
Thm 10.5-4] implies that all isolated points in σ(AQ) are
eigenvalues of AQ. Since AQ is unitary and has a count-
able spectrum, σ(AQ) must consist of eigenvalues of AQ
and their accumulation points. However, if we would have
µ ∈ σp(AQ), then Theorem 12 implies µ ∈ σp(A)∩T = ∅.
This concludes that σp(AQ) = ∅, and

σ(AQ) = σp(AQ) = ∅.

A unitary operator can have empty spectrum only if
XQ = {0}. By construction this is only possible if Q = 0,
and N (Q) = X. Finally, N (Q) = X together with (19)
concludes that (An)n∈N is strongly stable.

We conclude this section by presenting properties of the
spectrum of the limit isometric group. Let Y be a Hilbert
space. If (Bn)n∈N with B ∈ L(Y ) is a power bounded
discrete semigroup and µ ∈ T, then also ((µB)n)n∈N is
power bounded. If µ /∈ σp(B), or equivalently

{0} = N (µI −B) = N (µ(I − µB)) = N (I − µB)

(since |µ|2 = 1), Lemma 11 implies that

R(I − µB) = R(µ(I − µB)) = R(µI −B)

is dense in Y . This implies that the spectrum of a power
bounded operator satisfies σ(B)∩T ⊂ σp(B)∪σc(B). Us-
ing this and the previous spectral results leads to the fol-
lowing spectral inclusions.

Corollary 20. If (An)n∈N is power bounded, then the
spectra of A and AQ satisfy

σ(AQ) ⊂ σ(A) ∩ T
σp(AQ) = σp(A) ∩ T
σc(AQ) ⊂ σc(A) ∩ T.
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