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POLYNOMIAL STABILITY OF NON-LINEARLY DAMPED
CONTRACTION SEMIGROUPS

LASSI PAUNONEN AND DAVID SEIFERT

ABSTRACT. We investigate the stability properties of an abstract class
of semi-linear systems. Our main result establishes rational rates of de-
cay for classical solutions assuming a certain non-uniform observability
estimate for the linear part and suitable conditions on the non-linearity.
We illustrate the strength of our abstract results by applying them to a
one-dimensional wave equation with weak non-linear damping and to an
Euler-Bernoulli beam with a tip mass subject to non-linear damping.

1. INTRODUCTION

We consider semi-linear systems of the form
(1.1) i(t) = Az(t) — Bo(B*z(t)),  t>0,

to be solved subject to the initial condition z(0) = zo. Here A is assumed
to be the generator of a contraction semigroup (7'(t)):>0 on a Hilbert space
X, zg € X and B is a bounded linear operator from another Hilbert space
U into X. Furthermore, ¢: U — U is a potentially non-linear map which
satisfies ¢(0) = 0 and is monotone in the sense that

Re{p(u1) — ¢p(uz),ur — ug) >0, uy, ug € U.

These conditions on ¢ allow us to interpret the second summand on the
right-hand side of (1.1) as a non-linear damping term.

We investigate the stability properties of the equation (1.1). Our main
result in Theorem 2.1 establishes a rational decay rate for classical solutions
of (1.1) based on a generalised observability-type condition on the operators
A and B and the additional assumption that

lull?, flull <6,

(12) Re(o(u), u) 2 {1’ ol =

for some § > 0. We illustrate our theoretical results in Section 3 by apply-
ing them to a one-dimensional wave equation with weak non-linear damping,
and to an Euler—-Bernoulli beam with a tip mass subject to non-linear damp-
ing.

Our results augment earlier studies on asymptotic stability with non-
linear damping in [14, 15, 22, 24, 30] by providing rates of decay. They
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in particular generalise analogous results obtained previously in the linear
case [7]. The results in [7] have previously been extended to abstract wave-
type equations with non-linear viscous damping in [3, 4, 5, 29]. Rational and
generalised decay rates for wave equations with non-linear viscous damping
have also been studied in [2, 12, 21], the case of boundary damping in [1,
23, 35, 36, 37]. Exponential stability of wave equations and semigroups
with non-linear damping has been investigated for instance in in [13, 19,
25, 34]. Our results differ from existing work in that we establish rational
decay rates for general abstract systems with non-linear damping based on
a generalised observability property of the linear system. In particular, our
class of operators and the type of damping differ from those considered in
the most closely related references [3, 4, 5, 29].

A function z(-) € C*(Ry; X) is said to be a classical solution of (1.1) if
x(t) € D(A) for all ¢t > 0 and (1.1) holds for all £ > 0. A function z(-) €
C(R4; X) is said to be a generalised solution of (1.1) if there exists a sequence
(zn(-))n>1 of classical solutions of (1.1) such that supyco - [|2(t) —2n(t)|| — 0
as n — oo for all 7 > 0. Note that if ¢ is a linear map then this notion of a
classical solution is consistent with the terminology used for linear abstract
Cauchy problems, while the notion of a generalised solution describes what
would typically be referred to as a mild solution in the linear setting. We
recall, moreover, that in the linear case the mild (or generalised) solution
is given by the semigroup orbit, and that it is a classical solution precisely
when g € D(A).

If z is a classical solution of (1.1), then dissipativity of A gives

%Hfﬂ(lﬁ)ll2 = 2Re(Axz(t) — Bo(B*z(t)), z(t)) < —2Re(d(B"z(t)), Bz(t)).
It follows that
(1.3)  e(@®)® + 2/0 Re(p(B*x(s)), B*z(s)) ds < |z(0)[]*,  ¢>0,

and in particular monotonicity of ¢ implies that any classical solution has
non-increasing norm. Thus [16, Thm. 11.1.5(b)] shows that (1.1) has a
unique classical solution whenever ¢ is locally Lipschitz continuous and xg €
D(A). In fact, by monotonicity of ¢ any two classical solutions z1(-), z2(+)
satisfy

[z2(t) = 21 ()] < [lz2(0) —22(0), ¢ =0,

and by [26, Cor. 3.7] the function [|Z(-)|, too, is non-increasing.

Given (complex) Hilbert spaces X and Y, we write B(X,Y") for the space
of bounded linear operators from X to Y, and we write B(X) for B(X, X).
We denote the domain, kernel, spectrum and resolvent set of a linear oper-
ator A by D(A), Ker A, 0(A), and p(A), respectively. If p and ¢ are two
real-valued quantities we write p < ¢ to express that p < Cq for some con-
stant C' > 0 which is independent of all parameters that are free to vary in
a given situation. We shall also make use of standard ‘big-O’ and ‘little-o’
notation.
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2. POLYNOMIAL STABILITY OF ABSTRACT SEMI-LINEAR SYSTEMS

We now come to our main result. It provides polynomial decay rates for
classical solutions of (1.1) under suitable assumptions on the linear coun-
terpart with ¢ equal to the identity function. We write Ap for the cor-
responding infinitesimal generator A — BB* with domain D(Ap) = D(A).
The second part of the result shows that if ¢ is sufficiently close to linear
near the origin, then the decay rate of classical solutions is determined by
the rate of resolvent growth in the corresponding linear equation. In this
case, even a suboptimal observability inequality (2.1) will, when combined
with a sharp resolvent estimate, lead to the optimal decay rate.

Theorem 2.1. Suppose that ¢ : U — U is monotone, locally Lipschitz
continuous and satisfies ¢(0) = 0, and that (1.2) holds for some § > 0.
Suppose further that there exist 8,7,c, > 0 such that

(2.1) er (I — A)Pag|? < / IB*T(t)wo|?dt, a0 € X.
0

Then iR C p(Ap). Furthermore, all generalised solutions of (1.1) satisfy
|lz(t)|| = 0 as t — oo, and all classical solutions of (1.1) satisfy ||x(t)] =
Ot as t — .

If, in addition, ||(is — Ag) || < 1+ |s|% for some a > 0 and all s € R,
and if there exist v > a/2+ 1 and k,e > 0 such that

(2.2) lo(u) = sull S llul”,  [lul] <e,
then ||z(t)| = O(t~=Y/*) as t — oo for any classical solution of (1.1).

Proof. Let z(-) be a classical solution of (1.1), and suppose there exists
to > 0 such that ||B*z(t)|| < ¢ for all t > ty. Furthermore, let Ls > 0 be
such that ||¢(u)| < Ls||lu| for all w € U with [jul| < 6. Let 7 > 0. For
u € L?(0,7;U) we define

(Fou)(t) = /0 BT( - $)Bu(s)ds,  0<t<nr

Then F, € B(L?(0,7;U)) and

B*T(s)x(t) = B*z(t + s) + (Fr¢(B*z(t + -)))(s), 0<s<T, t>0,
by the variation of parameters formula, and hence

IB T 20070 S 1B + Mz + 6B + Nl 20r)
for all ¢ > 0. For t > t; it follows that

1B O 200 S 1B + 20,
and combining this with (2.1) gives
I = A Pa@)ll S IB st + ey ¢ to

Now let k& € N be such that kr > tg. Using (1.3) and (1.2) it follows that

le(k)|1? — lle((k + )72 =2 /0 "Re(¢(Bx(kr + 5)), B*z(kr + 5)) ds

2 1B 2 (k7 + )2y 2 I — A)Pahr)|2,
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where the implicit constants are independent of k. Noting that x(kt) €
D(A), we may apply the moment inequality [17, Thm. I1.5.34] to obtain

la(kr) | < 1 — A)a(hr)|[ 757 (I — A)Pa(kr) |75
Thus (145)
Jetlr)? = o+ | 2 LD,
where we have used the fact that ||z((k + 1)7)| < ||z(k7)||. Now
I = Az (kr)|| < lz(k7)l| + | Az(kT) — BB 2(k7))|| + | Bll|¢(B 2 (k7))
< (1+ Ls|| BIP) (k)| + [l (k)|
< (1+ Ls || BI*) ll(to) | + Il (to) |
= (1+ Ls|| BIP) |z (to)[| + [| Az (to) — Bé(B*x(to)) |
< 2(1+ Ls[|B*) |z (to) || + [[(1 — A)x(to)|
S I = A)z(to)ll,

where we have used monotonicity of the functions ||z(-)|| and ||Z(-)|]. It
follows that

la((k+ D7) _ ko) _c<ux<<k+1>f>||2>“‘*
|7 = Aa@)? = T = Dal)P T = Aalio)

for some constant ¢ > 0 and all sufficiently large k£ > 1, and hence

I—A)x(t
Jatir)) < =

for all sufficiently large k£ > 1 by [6, Lem. 1.3.4]. By monotonicity of ||z(-)||
we deduce that
[(L = A)z(to) |

<
=01l $ =07

for all sufficiently large ¢t > 0. Next we observe that, for any 6 > || B*||||zol|,
the identity function on U defined by ¢(u) = u for all u € U satisfies our
assumptions with ¢y = 0 and Ls = 1. We deduce that ||Tg(t)(I — Ag)~'|| =
O(t=Y2P)) as t — oo, where (Tg(t))s>0 is the Co-semigroup of contractions
generated by Ap. It follows from [9, Thm. 1.1] that iR C p(Ag). Moreover,
(T'B(t))e>0 is strongly stable in the sense that || T(¢)z| — 0 as ¢ — oo for all
x € X, by a standard density argument. It then follows from [15, Thm. 2.2]
(noting that the result carries over, with the appropriate modifications, to
the setting of complex Hilbert spaces, and that the assumptions of compact
resolvent and approximate observability can be replaced by strong stability
of (Ts(t))e>0) that whenever ¢ satisfies the conditions of our theorem we
have ||z(t)|| = 0 as ¢t — oo for all generalised solutions of (1.1). Hence the
first part of the proof shows that |z(t)|| = Ot Y®) as t — oo for all
classical solutions of (1.1), which completes the proof of the first part of the
result.

Now assume, in addition, that ||(is — Ag)~!|| < 1+ |s|% for some o > 0
and all s € R, and that there exist v > /241 and &,& > 0 such that (2.2)
holds. If a > 23 then the result already follows without any of the additional
assumptions from what has already been proved, so we may assume that
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a < 28. Recall from the first part of the proof that ||z(¢)|| — 0 as t — oo
for all generalised solutions of (1.1), and that ||z(t)|| = Ot~/ %)) as t — oo
for all classical solutions of (1.1). Note also that by [11, Lem. 2.11(c)] the
operator A, = A—kBB* satisfies iR C p(A,) and ||T,(t) A = O(t~1/*) as
t — 00, where (Ty(t))s>0 is the contraction semigroup generated by A,. Let
x(+) be a classical solution of (1.1), and let ¢y > 0 be such that ||B*z(t)|| < e
for all t > tg. We have

@(t) = (A= kBB")z(t) + By(t),  t=>0,

where y(t) = kB*z(t) — ¢(B*z(t)) for all ¢ > 0. Note that, by (2.2) and
boundedness of B, we have ||y(¢)|| < ||z(¢)]]Y for ¢ > to. leen t >0 let
ty = max{tog,t — t9/2} where 6 € (0,1] is to be chosen later, noting that
ty — oo and t — ty — oo as t — oo. The variation of parameters formula
gives

(1) = Tu(t — to)a(to) + Tu(t — to) /t Y Tt — 5)By(s) ds

(2.3) .
+/ T..(t — s)By(s)ds

to

for all ¢ > 9. Since z(t) € D(A) for all t > 0, we have ||T,(t — to)z(to)|| =
O(t='/*) as t — co. Moreover, since ¢ is locally Lipschitz continuous and
Bzx(-) is continuously differentiable, we have ft «(to — s)By(s)ds € D(A)
for all ¢ > ¢y by [8, Cor. 3.1.17]. The second term in (2.3) therefore satisfies

for all t > tg. Now ||T,(t — tg)A Y| = O(t~%%) as t — oo. On the other
hand, we have

To(t — ty) / Y L(te — $)By(s) ds

to

to
< || Tt — to) ALY ’AR/ Ty (tg — s)By(s)ds
to

/ Tt — $)By(s)ds = 2(ty) — Tulty — to)alte), ¢ > fo,

to

by the variation of parameters formula. Thus

HAH [ Tt = 9)ByGs) || < s )] + 14T (00 — o) o)

< [|Az(tg) — Bo(B"x(to))ll + | By(to) || + [[Ti(to — to) Ax(to) |l
S (o) ||+ [lz(to) ™ + | Axz(to)]]

for all ¢ > t9, where we have used contractivity of (Tx(t)):>0 and the fact
that both [|z(-)|| and ||Z(-)|| are non-increasing functions. Thus the second
term in (2.3) satisfies

T,{(t—tg)/teTH(tg—S)By(s)ds — 0%, t— o0,

to
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The third and final term in (2.3) satisfies

t ¢
/ T.(t —s)By(s)ds = / T..(t — s)Byp(s) ds,
to 0
where yg(t) = 0 for t € [0,t9) and yp(t) = y(t) for t > ty. By [27, Lem. 2.2.6]
the input maps ®; € B(L?*(0,t;U), X) of the system (A — kBB*, B, B¥),
defined by ®,u = fg T,.(t — s)Bu(s)ds for t > 0 and u € L%(0,t;U), have
uniformly bounded operator norms; see also [16, Thm. 6.5.6], [31, Cor. 6.1].
Since [ly()|| < [|=(t)||” for all t > ty, and since ||z(t)|| = Ot YPA)) as
t — oo by the first part of the result, we deduce that
ds t—1tp

t 2 t
Ty (t — 5)By(s)d 24 </ <
| [ ne=omens| < [erass [ s < o

for all t > tq. It follows that the three terms in (2.3) are of order O(t~ /%),
O(t=%*) and O(t~*), respectively, as t — oo, where p = v/(28) — 0/2. If
B < avy/(a+2) weset @ = 1. Then u > 1/a, so the third term decays at least
as fast as the first two, and we obtain ||z(t)|| = O(t~"/%) as t — oo, which
is what we wanted to prove. On the other hand, if 5 > ay/(a + 2) we set
0 = ay/(f(a+2)). Then 6 € (0,1) and the rate is determined by the second
and third terms, which decay at the same speed, giving ||z(t)| = O(t~1/(27#)
as t — oo, where 0 = (a4 2)/(27y). The latter estimate is strictly worse
than the one we wish to prove. On the other hand, since v > a/2 4+ 1 by
assumption, we have o € (0,1) and hence this decay rate is strictly better
than the estimate ||z(t)|| = O(t~'/(?%)) as t — oo coming from the first part
of the result. In this second case, we may therefore repeat the argument with
B replaced by of8. As above, we find that if 08 < ay/(a+2) then ||z(t)|| =
O(t~Y*) as t — oo and the proof is complete, while if o8 > avy/(a + 2)
then [|z(t)]| = Ot~/ (29°A) as t — co. If necessary we may now iterate this
process, terminating after k& > 0 repetitions if 0¥ < ay/(a + 2), giving the
desired the rate ||z(t)|| = O(t~1/*) as t — oo, and otherwise replacing o*3
by o**+13. Since o*3 < avy/(a + 2) for all sufficiently large k& > 0 by virtue
of the fact that o € (0,1), the process must eventually terminate yielding
|z(t)|| = O(t~/*) as t — oo, as required. O

Remarks 2.2. (a) If (2.2) holds then necessarily ¢(0) = 0, so this condition
can be omitted whenever we assume (2.2). It moreover follows from (2.2)
that ¢ is differentiable at zero, with derivative D¢(0) = kI, and that
Re(p(u),u) = |Jul|? for all u € U of sufficiently small norm. The latter
implies that whenever we are assuming (2.2) we need only verify the
second part of (1.2).

(b) The class of functions ¢: U — U to which the Theorem 2.1 can be
applied includes radial functions defined by ¢(0) = 0 and

o(u) = (|lul) 7 p “S U\ {0},

where 1 : Ry — R, is a non-decreasing and locally Lipschitz continuous
function satisfying ¢(0) = 0. Then ¢ is monotone and locally Lipschitz
continuous, and (1.2) holds provided there exists § > 0 such that ¢(r) 2
r for 0 < r < . Furthermore, if ¢ is twice continuously differentiable
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with ¢/(0) > 0 a simple estimate using Taylor’s theorem shows that (2.2)
holds with x = ¢/(0) for some £ > 0 and some v > 2. A concrete example
is the function 1 defined by ¥ (r) = tanh(r) for » > 0. In this case, there
exists £ > 0 such that (2.2) holds for K = 1 and v = 3.

(c) If in addition to the assumptions made in the first part of Theorem 2.1 we
assume that ¢ is globally Lipschitz continuous and satisfies Re{¢(u), u) 2
|u||? for all u € U, then a slight adaptation of the proof yields uniform
polynomial decay of the form

12(0)[| p(ay
< - 7 >
for all classical solutions of (1.1), where || - [|pc4) denotes the graph

norm of A. This conclusion is analogous to earlier results showing that
exponential stability may be preserved under global growth conditions
on the non-linear damping; see for instance [23].

As a simple consequence of Theorem 2.1 we obtain the following improve-
ment of [11, Thm. 4.4] and [28, Thm. 4.2] in the linear case. Both of these
earlier results include the assumption that 8 € (0, 1], and in [11, Thm. 4.4]
the further assumption that D(A) = D(A*) is added. Our present approach
requires neither. As before, we assume that A is the generator of a contrac-
tion semigroup (7'(t)):>0 on a Hilbert space X, and that B € B(U, X) for
some other Hilbert space U. Moreover, we let Ag = A — BB* with domain
D(Ap) = D(A), and we let (T’B(t)):>0 denote the contraction semigroup on
X generated by Ap.

Corollary 2.3. Suppose that there exist 8, 7,cr > 0 such that
er||(I — A)Pagl? < / | B*T (t)z0]|? dt, xg € X.
0

Then iR C p(Ag), || Te(t)x|| — 0 ast — oo for all x € X, and || Tp(t)x| =
o(t=1/ )Y as t — oo for all x € D(A).

Proof. Applying Theorem 2.1 with ¢: U — U taken to be the identity map
we obtain iR C p(Ap) and |[Tp(t)zo| = Ot V") as t — oo for all
xo € D(A). Since the semigroup (Tp(t))t>0 is contractive and D(A) is
dense in X a simple approximation argument shows that || 7z(¢)zo|| — 0 as
t — oo for all zg € X. Moreover, an application of the uniform boundedness
theorem yields | T5(t) A5 || = Ot~ Y/?9) ast — oo, and hence ||Tp(t)zo| =
o(t=1/ () as t — oo for all zg € D(A) by [10, Thm. 2.4]. O

We conclude this section by showing that resolvent estimates for A along
the imaginary axis provide a sufficient condition for the observability esti-
mate (2.1) to hold, at least in the special case when A is skew-adjoint and
has uniform spectral gap.

Proposition 2.4. Suppose that A is skew-adjoint and that o(A) consists
of simple and uniformly separated eigenvalues. Suppose further that iR C
p(Ag) and that ||(is — Ag) || < 1+ |s|* for some a > 0 and all s € R.
Then there exist T,c; > 0 such that (2.1) holds with 8 = a/2.
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Proof. Let us denote the eigenvalues of A by isg, k > 1, where s € R for all
k. By assumption there exists 6 > 0 such that |s; — s;| > d for all j,k > 1
with j # k. Let 8 = /2. By [11, Prop. 5.1] we have
]

1+ |sgl?

for all £ > 1 and = € Ker(isp — A). For k > 1, let e, be a normalised
eigenvector corresponding to the eigenvalue is;. Then {ey : £ > 1} is an
orthonormal basis for X, and it follows from (2.4) that (1+|sx|?)?||B*ex||? >

1 for all £k > 1. Let 7 > 2x/§. It follows from Ingham’s inequality [6,
Prop. 1.5.2] that

/ | BT ()02 dt = /
0 0

[e.e]

2 D lwos en) Pl B e

(2.4) 1B ]| 2

2
dt

m .
Z e“’“t<xo, er)B* ey,
k=1

i
I

(I = A) o, e) P(L+ [si|*)7 (| B e

M

k=1
2D NI = A)Pag, e = (1 — A)Pao
k=1
for all g € X, and the proof is complete. O

Remarks 2.5. (a) The estimate in (2.4) is sometimes referred to as a wave-
packet condition. The above proof shows that, under a uniform spectral
gap condition, we may pass from a resolvent estimate for Ap to a wave-
packet condition and thence to an observability estimate. In [11, Sect. 3]
it is shown, conversely, that even without the spectral gap condition gen-
eral wavepacket conditions of this kind can be used to obtain resolvent
estimates for Ap, which in turn imply decay rates for classical orbits of
the damped semigroup (T5(t))>0-

(b) By applying more sophisticated versions of Ingham’s inequality such
as [6, Cor. 1.5.4] we may weaken the uniform gap condition to allow for
a degree of repetition and clustering in the eigenvalues of A.

Combining Proposition 2.4 with Theorem 2.1 gives the following result.

Corollary 2.6. Suppose that A is skew-adjoint, o(A) consists of simple and
uniformly separated eigenvalues, and that iR C p(Ag) and ||(is — Ap) ™Y <
1+ |s|® for some a > 0 and all s € R. Suppose further that ¢ : U — U
is monotone and locally Lipschitz continuous and that (1.2) holds for some
d > 0. Then all generalised solutions of (1.1) satisfy ||x(t)|]] — 0 as t — oo,
and all classical solutions of (1.1) satisfy ||z(t)|| = O(t~Y%) as t — .

3. APPLICATIONS TO NON-LINEARLY DAMPED EVOLUTION EQUATIONS

In this section we illustrate the strength of our main result in two concrete
applications, namely a one-dimensional wave equation with weak non-linear
damping and an Euler—Bernoulli beam with a tip mass subject to non-linear
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damping. In both cases the eigenvalues are simple and uniformly separated,
so we may apply Corollary 2.6. We emphasise, however, that our main
result, Theorem 2.1, is applicable much more generally provided one is able
to obtain a non-uniform observability estimate as in (2.1). For an interesting
potential application in a setting where there is no uniform spectral gap we
refer the reader to the system studied in [32], which models the dynamics
of small-amplitude water waves.

3.1. The wave equation with weak non-linear damping. Consider
the wave equation on the unit interval subject to weak non-linear damping,
namely

Ut (T,1) = Uge (2, 1) + b(2 (/b Jue(s,t)d ) x € (0,1), t>0,

to be solved subject to the boundary conditions u(0,t) = w(1,t) = 0 for
all t > 0 and the initial conditions u(-,0) € H}(0,1), u:(-,0) € L?(0,1).
Here the function b € L%(0,1;R) models the presence of weak (distributed)
damping and the function ¢ : C — C is potentially non-linear. We may
formulate the problem in the form of (1.1) for the state variable x(t) =
(u(-,t),u(+, 1)), t >0, by setting X = H}(0,1) x L?*(0,1), U = C, choosing
A to be the operator defined by A(u,v) = (v,u”) for all (u,v) in the do-
main D(A) = (H?(0,1) N H(0,1)) x H}(0,1) and defining B € B(U, X) by
Bz = (0,b(-)z) for all z € C. We denote the (rescaled) Fourier sine series
coefficients of b by

1
by, = / b(x) sin(nrx) dz, n>1.
0

Proposition 3.1. Consider the system (1.1) for the weakly damped wave
equation as above, and suppose there exists B > 0 such that |b,| = n=b for
all n > 1. Suppose further that ¢ : U — U is monotone and locally Lips-
chitz continuous, and that (1.2) holds for some § > 0. Then all generalised
solutions of (1.1) satisfy ||z(t)|| — 0 as t — oo, and all classical solutions
satisfy |z(t)|| = Ot~ as t — co.

Proof. The operator A is skew-adjoint, and its spectrum consists of the
simple eigenvalues i7n for n € Z\ {0}, which are uniformly separated. As in
the proof of [11, Cor. 6.3], our assumption on the decay of the Fourier sine
series coefficients of b implies that iR C p(Ap) and ||(is— Ag)~'|| < 1+]s|??
for all s € R. The result now follows from Corollary 2.6. O

Remarks 3.2. (a) Note that in the particular case where ¢ is the iden-
tity map on C, so that (1.2) holds for § = 1, Proposition 3.1 is sharp
in the sense that if limsup,,_,., n°|b,| > 0 then for any function r :
R, — (0,00) such that r(t) = o(t~'/(#)) as t — oo there exists a clas-
sical solution such that [|z(t)|| # O(r(t)) as ¢ — oo. Indeed, if this
is not the case then an application of the uniform boundedness princi-
ple gives ||Tp(t)A5'|| = O(r(t)) as t — co. On the other hand, since
lim sup,,_, ., n?|bn| > 0 it follows from [11, Prop. 5.1] that

I(is — Ap) |

0

lim sup
|s|—o0
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Now [11, Prop. 5.3] implies that limsup,_,. t"/®?||T(t) A5 > 0,
yielding the required contradiction.

(b) Note that since b € L*(0, 1;R) we must have (b,),>1 € £2, so necessarily
B > 1/2 in Proposition 3.1. On the other hand, every 5 > 1/2 can be
achieved, for instance by considering the function b whose Fourier sine
series coefficients are b, = n~? for n > 1. We refer the interested reader
to [11, Rem. 6.4] for a discussion on the possibility of achieving these
decay rates by means of functions b that possess additional regularity.

3.2. The SCOLE model with non-linear damping. In this section we
analyse the stability of the SCOLE model [20, 33], which consists of an
FEuler-Bernoulli beam equation coupled with an ODE modelling the dy-
namics of a tip mass. The system has the form

p(:v)utt(l'at) = _(El(x)umz(xat))xm T e (07 1)7 t >0,
mug(1,t) — (Elugy )2 (1,t) = —é1(ug(1, 1), uge (1,1)), t >0,
Juxtt(l,t) + EI(l)Uxx(l,t) = —¢2(ut(1,t),umt(1,t)), t> 0,

to be solved subject to the boundary conditions u(0,t) = u,(1,t) = 0 for all
t > 0 and the initial conditions u(-,0) € H2(0,1), u(-,0) € L?(0,1), where
H?(0,1) = {u € H?*(0,1) : uw(0) = «/(0) = 0}. In this model, w(x,t) is
the deflection of the beam at x € [0, 1] and time ¢ > 0, EI € C*([0,1]) and
p € C*([0,1]) are the (uniformly positive) flexural rigidity and mass density
of the beam, respectively, and m,J > 0 are, respectively, the mass and
moment of inertia of the tip mass. Finally, the two functions ¢1, ¢o: C2 — C
describe the non-linear effects of the boundary condition at z = 1. We
assume that there exist a,b > 0 and ¢ € C?([0, 1]) such that ¢(0) = 0 and

2(1 - a)plz) — (p(@)C(2)) < —b,
BI(@)(1 —a—2¢(@)) + 3 (FI@)((@) < b

for all x € [0,1]. Note that these conditions are in particular satisfied if
EI and p are constant functions, in which case we may take ((x) = 2z for
0<x<1.

We may formulate the problem in the form of (1.1) for the state variable
z(t) = (u(- ), ur(-, 1), ue(1,t), uze(1,¢)), t > 0, by setting X = Hz(0,1) x
L?(0,1) x C?, U = C?, defining the operator A by

)
A(u,v, A\, 1) = (v, —p~ HE") ,m~ Y (Bl (1), =T EI(1)u" (1))
for all (u,v, A\, u) in the domain

D(A) = {(u,v, A\, p) € H'(0,1) x H(0,1) x C* 1 v(1) = A, V(1) = pu},

the operator B € B(U, X ) by B(\, 1) = (0,0, A, p) for all (A, u) € U, and the
map ¢: U — U by ¢(\, p) = (m~ L1 (A, i), J Lo\, ) for all (A, ) € U.
Note that ¢ is locally Lipschitz continuous if and only if both ¢; and ¢2 are
locally Lipschitz continuous. The function ¢ is monotone for instance if ¢
is independent of the second variable, ¢ is independent of the first variable
and both of the maps A — ¢1(\,0) and p — ¢2(0, 1) are monotone. We
obtain the following polynomial stability result.
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Proposition 3.3. Consider the system (1.1) for the SCOLE model with
non-linear damping as above. Suppose that ¢: U — U 1is monotone and
locally Lipschitz continuous, and that (1.2) holds for some 6 > 0. Then all
generalised solutions of (1.1) satisfy ||x(t)|| — 0 as t — oo, and all classical
solutions satisfy | z(t)|| = O(t~1/?) as t — oo.

Proof. By [20, Prop. 1.1] the operator A is skew-adjoint, has compact re-
solvent, and its eigenvalues are simple. In addition, it follows from [20,
Prop. 1.2] that the eigenvalues of A are uniformly separated. Finally, iR C
p(Ap) and |(is — Ap)~Y| < 1+ s% for s € R by [18, Thm. 3.1] and [9,
Prop. 1.3], so result follows from Corollary 2.6. O
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