
STUDIA MATHEMATICA
Online First version

A non-uniform Datko–Pazy theorem for
bounded operator semigroups
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Lassi Paunonen, David Seifert and Nicolas Vanspranghe

Abstract. We present a non-uniform analogue of the classical Datko–Pazy theorem.
Our main result shows that an integrability condition imposed on orbits originating in
a fractional domain of the generator (as opposed to all orbits) implies polynomial stabil-
ity of a bounded C0-semigroup. As an application of this result we establish polynomial
stability of a semigroup under a certain non-uniform Lyapunov-type condition. We more-
over give a new proof, under slightly weaker assumptions, of a recent result deducing
polynomial stability from a certain non-uniform observability condition.

1. Introduction. Recall that, given a C0-semigroup (T (t))t≥0 of
bounded linear operators on some Banach space, (T (t))t≥0 is said to be
uniformly exponentially stable if there exist constants M,ω > 0 such that
∥T (t)∥ ≤ Me−ωt for all t ≥ 0. The famous Datko–Pazy theorem provides
a necessary and sufficient condition for a C0-semigroup to be uniformly ex-
ponentially stable. We state the result as follows, referring the reader to [1,
Thm. 5.1.2] for both a proof and several further equivalent conditions.

Theorem 1.1. Let (T (t))t≥0 be a C0-semigroup on a Banach space X,
and let 1 ≤ p < ∞. The following are equivalent:

(i) (T (t))t≥0 is uniformly exponentially stable.
(ii) T (·)x ∈ Lp(0,∞;X) for all x ∈ X.

In many applications of semigroup theory, for instance to the study of
energy decay of damped waves, uniform exponential stability is often too
much to hope for and one is instead interested in weaker notions of stability.
One important notion in this context is non-uniform stability, sometimes
called semi-uniform stability. Let (T (t))t≥0 be a C0-semigroup with genera-
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tor A. Recall that the semigroup is said to be bounded if supt≥0 ∥T (t)∥ < ∞,
and a bounded C0-semigroup (T (t))t≥0 is said to be non-uniformly stable
if ∥T (t)(λ − A)−1∥ → 0 as t → ∞ for some, or equivalently all, λ ∈ ρ(A).
When ∥T (t)(λ−A)−1∥ = O(t−α) as t → ∞ for some α > 0 one also speaks
of polynomial stability of the semigroup. For a general overview of various
notions of stability, and their relevance to damped waves, we refer the reader
to the survey article [6].

Our main result, Theorem 2.1, is a non-uniform analogue of Theorem 1.1
for bounded C0-semigroups. It establishes polynomial as opposed to uni-
form exponential stability of the semigroup by requiring the integrability
assumption in condition (ii) to hold only for elements of the domain of a
fractional power associated with the generator. In Theorem 2.3 we moreover
establish a variant of our main result in which the integrability condition for
semigroup orbits is replaced by an integrability condition for weak orbits. In
Section 3 we give a sufficient condition for polynomial stability in terms of a
non-uniform Lyapunov condition. Finally, in Section 4, we use Theorem 2.1
to prove polynomial stability of a semigroup under a certain non-uniform
observability condition motivated by the study of (abstract) damped wave
equations.

We use standard notation. In particular, if X is an (always complex)
Banach space and A : D(A) ⊆ X → X is a linear operator, where D(A) is
the domain of A, we denote the resolvent set of A by ρ(A). If Y is another
Banach space, the set of bounded linear operators from X to Y is denoted
by B(X,Y ), and we write B(X) for B(X,X). We moreover make use of
standard ‘big-O’ and ‘little-o’ notation, and for real-valued quantities p and
q, we write p ≲ q if p ≤ Kq for some constant K > 0 which is independent
of all the parameters that are free to vary in the given situation. We let
C+ = {λ ∈ C : Reλ > 0} and R+ = [0,∞).

2. Non-uniform Datko–Pazy theorems. Our main result is the fol-
lowing non-uniform version of Theorem 1.1.

Theorem 2.1. Let (T (t))t≥0 be a bounded C0-semigroup on a Banach
space X, with generator A. Furthermore, let 1 ≤ p < ∞ and β > 0, and sup-
pose that T (·)x ∈ Lp(0,∞;X) for all x ∈ D((−A)β). Then iR ⊆ ρ(A) and

(2.1) ∥T (t)A−1∥ = O
(
t−1/(pβ)

)
, t → ∞.

Moreover, if X is a Hilbert space then ∥T (t)x∥ = o(t−1/(pβ)) as t → ∞ for
all x ∈ D(A).

Proof. The operator (I − A)−β maps X bijectively onto D((−A)β), so
the assumption that T (·)x ∈ Lp(0,∞;X) for all x ∈ D((−A)β) is equivalent
to requiring that T (·)(I − A)−βx ∈ Lp(0,∞;X) for all x ∈ X. Hence x 7→
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T (·)(I − A)−βx is a well-defined linear map from X into Lp(0,∞;X), and
it is straightforward to verify that its graph is closed. By the closed graph
theorem there exists a constant K > 0 such that

(2.2)
∞�

0

∥T (t)(I −A)−βx∥p dt ≤ Kp∥x∥p, x ∈ X.

Thus, letting M = supt≥0 ∥T (t)∥, we have

t∥T (t)(I −A)−βx∥p =
t�

0

∥T (t− s)T (s)(I −A)−βx∥p ds ≤ KpMp∥x∥p

for all x ∈ X and t > 0, and hence ∥T (t)(I − A)−β∥ = O(t−1/p) as t → ∞.
It follows from the moment inequality [2, Prop. 3.1] that ∥T (t)(I −A)−1∥ =
O(t−1/(pβ)) as t → ∞, and hence iR ⊆ ρ(A) by [3, Thm. 1.1]. Now (2.1)
follows since the operator (I−A)A−1 is bounded, and the final claim follows
from [4, Thm. 2.4].

Remarks 2.2. (a) The conclusion of Theorem 2.1 implies in particular
that the semigroup (T (t))t≥0 is strongly stable in the sense that ∥T (t)x∥ → 0
as t → ∞ for all x ∈ X. This follows from a standard density argument using
boundedness of the semigroup.

(b) There is a straightforward partial converse of Theorem 2.1. Indeed,
if ∥T (t)A−1∥ = O(t−α) as t → ∞ for some α > 0 and if β > 0, then
T (·)x ∈ Lp(0,∞;X) for all x ∈ D((−A)β) provided that p > (αβ)−1. We
leave open whether stronger converse statements hold.

(c) If we replace the assumption that T (·)x ∈ Lp(0,∞;X) for all x ∈
D((−A)β) by the quantified estimate in (2.2), then we may extend the range
of permissible values of p in Theorem 2.1 to (0,∞).

Our next result is a non-uniform version of [12, Thm. 1.1]; see also [9].
Here we replace the integrability condition for orbits by a weak integrability
condition but we nevertheless obtain the same conclusion in the Hilbert space
setting; see Remark 2.4 below for a slightly less sharp version of the result
on general Banach spaces.

Theorem 2.3. Let (T (t))t≥0 be a bounded C0-semigroup on a Hilbert
space X, with generator A. Furthermore, let 1 ≤ p < ∞ and β > 0, and
suppose that

(2.3)
∞�

0

|⟨T (t)x, y⟩|p dt < ∞, x ∈ D((−A)β), y ∈ X.

Then iR ⊆ ρ(A) and

(2.4) ∥T (t)A−1∥ = O(t−1/(pβ)), t → ∞.

Furthermore, ∥T (t)x∥ = o(t−1/(pβ)) as t → ∞ for all x ∈ D(A).
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Proof. Let µ ∈ ρ(A) be fixed. Arguing as in the proof of Theorem 2.1,
this time applying the closed graph theorem twice, we see that there exists
a constant K > 0 such that

(2.5)
∞�

0

|⟨T (t)(µ−A)−βx, y⟩|p dt ≤ Kp∥x∥p∥y∥p, x, y ∈ X.

Let λ ∈ C+. Using boundedness of the semigroup (T (t))t≥0 and the integral
representation of the resolvent, we have

(2.6) |⟨(λ−A)−1(µ−A)−βx, y⟩| ≤
∞�

0

e−(Reλ)t|⟨T (t)(µ−A)−βx, y⟩|dt

for all x, y ∈ Y . Suppose first that p ∈ (1,∞) and let q ∈ (1,∞) denote
the Hölder conjugate of p. Applying Hölder’s inequality in (2.6) and then
using (2.5) we obtain the estimate

(2.7) |⟨(λ−A)−1(µ−A)−βx, y⟩| ≤ K∥x∥ ∥y∥
(qReλ)1/q

, x, y ∈ X,

which implies that ∥(λ − A)−1(µ − A)−β∥ ≤ K(Reλ)−1/q for all λ ∈ C+.
Similarly, if p = 1 we obtain ∥(λ−A)−1(µ−A)−β∥ ≤ K for all λ ∈ C+. Now
for λ ∈ ρ(A) and n ∈ N the resolvent identity gives

(2.8) (λ−A)−1 =
n−1∑
k=0

(µ−λ)k(µ−A)−(k+1)+(µ−λ)n(λ−A)−1(µ−A)−n.

If n ∈ N satisfies n > β, then

∥(λ−A)−1(µ−A)−n∥ ≤ ∥(µ−A)−(n−β)∥ ∥(λ−A)−1(µ−A)−β∥
for all λ ∈ ρ(A). It follows from our previous estimates that for all s ∈ R
there exists Cs > 0 such that, for λ = r + is with r ∈ (0, 1), we have
∥(λ − A)−1∥ ≤ Csr

−1/q when p > 1 and ∥(λ − A)−1∥ ≤ Cs when p = 1. In
particular, for λ = r + is with s ∈ R fixed and r ∈ (0, 1) sufficiently small
we obtain |λ − is| ∥(λ − A)−1∥ < 1, so is ∈ ρ(A) by a standard Neumann
series argument.

We now establish an estimate for the resolvent of A along the imaginary
axis. Modifying the choice of µ ∈ ρ(A) if necessary we may use the penul-
timate displayed estimate in [10, proof of Lem. 3.2] (noting that there is a
missing exponent α in the denominator on the right-hand side) to see that
there exists a constant R ≥ 2 such that

(2.9) ∥(λ−A)−1∥ ≲ |λ|β(1 + ∥(λ−A)−1(µ−A)−β∥)
for all λ ∈ C such that 0 < Reλ < 1 and |λ| ≥ R. If p > 1 we thus obtain

∥(λ−A)−1∥ ≲ |λ|β
(
1 +

K

(Reλ)1/q

)
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for 0 < Reλ < 1 and |λ| ≥ R, and hence ∥(λ−A)−1∥ ≲ r−1/q|s|β for λ = r+
is with r ∈ (0, 1), s ∈ R and |λ| ≥ R. Setting r = c|s|−pβ for sufficiently small
c > 0 we deduce that there exists s0 > 0 such that |λ− is| ∥(λ−A)−1∥ ≤ 1/2
for all s ∈ R with |s| ≥ s0, and hence by another Neumann series argument
we obtain the resolvent estimate ∥(is−A)−1∥ ≲ |s|pβ for such values of s ∈ R.
On the other hand, if p = 1 then (2.9) combined with our earlier estimate
for ∥(λ−A)−1(µ−A)−β∥ yields ∥(λ−A)−1∥ ≲ |λ|β for all λ ∈ C such that
0 < Reλ < 1 and |λ| ≥ R. It follows by continuity that ∥(is−A)−1∥ ≲ |s|β
for all s ∈ R of sufficiently large absolute value. We have thus proved that
∥(is − A)−1∥ = O(|s|pβ) as |s| → ∞ for 1 ≤ p < ∞. Both of the remaining
claims now follow from [4, Thm. 2.4].

Remark 2.4. If we merely assume X to be a Banach space, and re-
place (2.3) by the condition

∞�

0

|⟨T (t)x, x∗⟩|p dt < ∞, x ∈ D((−A)β), x∗ ∈ X∗,

where X∗ denotes the dual space of X and ⟨·, ·⟩ is now the dual pairing
between X and X∗, then essentially the same argument as above shows that
iR ⊆ ρ(A) and ∥(is−A)−1∥ = O(|s|pβ) as |s| → ∞ for 1 ≤ p < ∞. It follows
from [3, Thm. 1.5] that

∥T (t)A−1∥ = O

((
log(t)

t

)1/(pβ))
, t → ∞.

Note that this estimate is worse by a logarithmic factor than (2.4) obtained
for the Hilbert space case.

3. A non-uniform Lyapunov-type condition. Let (T (t))t≥0 be a C0-
semigroup on a Hilbert space X, with generator A. The classical Lyapunov
stability result states that the semigroup (T (t))t≥0 is uniformly exponentially
stable if and only if there exists a non-negative self-adjoint operator P ∈
B(X) such that the Lyapunov equation

⟨PAx, y⟩+ ⟨Px,Ay⟩ = −⟨x, y⟩, x, y ∈ D(A),

is satisfied; see for instance [7, Cor. 6.5.1]. The following result shows that in
the Hilbert space setting the integrability condition in Theorem 2.1 is equiv-
alent to a non-uniform Lyapunov-type equation when p = 2. In Corollary 3.3
below we combine this result with Theorem 2.1 to show that this non-uniform
Lyapunov-type condition implies polynomial stability of the semigroup. Here
and elsewhere we regard the domain of an operator as a normed space with
respect to the graph norm. We refer to the space of bounded conjugate-linear
functionals on a normed space as its antidual.
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Proposition 3.1. Let (T (t))t≥0 be a bounded C0-semigroup on a Hilbert
space X, with generator A, and let β > 0. The following are equivalent:

(i) T (·)x ∈ L2(0,∞;X) for all x ∈ D((−A)β).
(ii) There exists a bounded linear operator P from D((−A)β) into its anti-

dual such that ⟨Px, x⟩β ≥ 0 for all x ∈ D((−A)β) and

(3.1) ⟨PAx, y⟩β + ⟨Px,Ay⟩β = −⟨x, y⟩, x, y ∈ D((−A)β+1),

where ⟨·, ·⟩β denotes the antiduality pairing for D((−A)β).

Furthermore, the operator P in (ii) is unique and is determined by

(3.2) ⟨Px, y⟩β =

∞�

0

⟨T (t)x, T (t)y⟩ dt, x, y ∈ D((−A)β).

Proof. Suppose that (i) holds. Then by Theorem 2.1 and Remark 2.2(a)
the semigroup (T (t))t≥0 is strongly stable. Furthermore, since (−A)β is an
isomorphism from D((−A)β) onto X, applying the Cauchy–Schwarz inequal-
ity and applying the closed graph theorem as in the proof of Theorem 2.1
we see that there exists a constant K > 0 such that

∞�

0

|⟨T (t)x, T (t)y⟩|dt ≤ K∥(−A)βx∥ ∥(−A)βy∥, x, y ∈ D((−A)β).

Thus if we define P by the formula in (3.2) then P is indeed a bounded linear
operator from D((−A)β) into its antidual, and it is clear that ⟨Px, x⟩β ≥ 0
for all x ∈ D((−A)β). Let x, y ∈ D((−A)β+1). Then

⟨PAx, y⟩β =

∞�

0

⟨T (t)Ax, T (t)y⟩ dt =
∞�

0

〈
d

dt
T (t)x, T (t)y

〉
dt,

and similarly

⟨Px,Ay⟩β =

∞�

0

〈
T (t)x,

d

dt
T (t)y

〉
dt.

Using strong stability of (T (t))t≥0 we deduce that

⟨PAx, y⟩β + ⟨Px,Ay⟩β = lim
τ→∞

τ�

0

d

dt
⟨T (t)x, T (t)y⟩ dt = −⟨x, y⟩,

as required.
Now suppose, conversely, that (ii) holds and let V (x) = ⟨Px, x⟩β for

x ∈ D((−A)β). Then V (x) ≥ 0 for all x ∈ D((−A)β) and, since P is
assumed to be a bounded operator from D((−A)β) into its antidual, there
exists a constant K > 0 such that

V (x) ≤ K∥(I −A)βx∥2, x ∈ D((−A)β).
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Now let x ∈ D((−A)β+1). Then

T (·)x ∈ C1
(
R+, D((−A)β)

)
) ∩ C

(
R+, D((−A)β+1)

)
,

so
d

dt
V (T (t)x) = ⟨PAT (t)x, T (t)x⟩β + ⟨PT (t)x,AT (t)x⟩β = −∥T (t)x∥2

for all t ≥ 0 by (3.1). Hence
τ�

0

∥T (t)x∥2 dt = V (x)− V (T (τ)x) ≤ V (x) ≤ K∥(I −A)βx∥2

for all τ > 0, and thus T (·)x ∈ L2(0,∞;X). Since D((−A)β+1) is dense in
D((−A)β), an approximation argument yields T (·)x ∈ L2(0,∞;X) for all
x ∈ D((−A)β), so (i) holds.

It remains, finally, to show that the operator P in (ii) is unique and is
determined by (3.2). Suppose that P is as in (ii) and let x, y ∈ D((−A)β+1).
Then using (3.1) we have

d

dt
⟨PT (t)x, T (t)y⟩β = −⟨T (t)x, T (t)y⟩, t ≥ 0,

and therefore

(3.3) ⟨Px, y⟩β = ⟨PT (t)x, T (t)y⟩β +

t�

0

⟨T (s)x, T (s)y⟩ ds, t ≥ 0.

Since (i) holds, we see, as in the proof of the implication from (i) to (ii),
that the semigroup (T (t))t≥0 is strongly stable, and hence T (t)x, T (t)y → 0
with respect to the graph norm on D((−A)β) as t → ∞. It follows from
continuity of P that ⟨PT (t)x, T (t)y⟩β → 0 as t → ∞. Thus letting t → ∞
in (3.3) shows that (3.2) holds for all x, y ∈ D((−A)β+1), and hence for all
x, y ∈ D((−A)β) by density.

Remark 3.2. Note that boundedness of the semigroup (T (t))t≥0 is not
needed for the implication from (ii) to (i).

Proposition 3.1 is a natural non-uniform analogue of the classical Lya-
punov stability result found for instance in [8, Lem. 4], which can be com-
bined with Theorem 1.1 in order to recover the characterisation of exponen-
tial stability stated at the start of the section. Here we obtain the following
non-uniform analogue of this result.

Corollary 3.3. Let (T (t))t≥0 be a bounded C0-semigroup on a Hilbert
space X, with generator A. Suppose that for some β > 0 there exists
a bounded linear operator P from D((−A)β) into its antidual such that
⟨Px, x⟩β ≥ 0 for all x ∈ D((−A)β) and (3.1) holds. Then

(3.4) ∥T (t)x∥ = o(t−α), t → ∞,
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for all x ∈ D(A), where α = (2β)−1. Conversely, if (3.4) holds for some
α > 0 and all x ∈ D(A), then for every β > 2α−1 there exists a bounded
linear operator P from D((−A)β) into its antidual such that ⟨Px, x⟩β ≥ 0
for all x ∈ D((−A)β) and (3.1) holds.

Proof. The first implication follows immediately from Proposition 3.1
and Theorem 2.1. Conversely, if (3.4) holds for some α > 0, then we have
∥T (t)(I −A)−1∥ = O(t−α) as t → ∞ by the uniform boundedness principle,
and hence iR ⊆ ρ(A) and ∥T (t)A−1∥ = O(t−α) as t → ∞ as in the proof
of Theorem 2.1. It follows from Remark 2.2(b) that T (·)x ∈ L2(0,∞;X) for
all x ∈ D((−A)β) for β > 2α−1. Now Proposition 3.1 gives the result.

4. An observability condition for polynomial stability. In this
final section we show how Theorem 2.1 can be used to deduce polynomial
stability of a semigroup from an observability-type condition. We begin by
proving the following auxiliary result.

Lemma 4.1. Let (T (t))t≥0 be a bounded C0-semigroup on a Banach space
X, with generator A, and let Y be another Banach space. Furthermore, let
1 ≤ p < ∞ and let C ∈ B(D(A), Y ), where D(A) is endowed with the graph
norm. Suppose there exists p ∈ [1,∞) such that for every x ∈ D(A) the map
t 7→ ∥T (t)x∥p is absolutely continuous on (0,∞), with

(4.1)
d

dt
∥T (t)x∥p ≤ −∥CT (t)x∥p

for almost all t ∈ (0,∞), and suppose in addition that there exist constants
K,β, τ > 0 such that

(4.2) ∥(I −A)−βx∥p ≤ K

τ�

0

∥CT (t)x∥p dt, x ∈ D(A).

Then iR ⊆ ρ(A) and

∥T (t)A−1∥ = O
(
t−1/(pβ)

)
, t → ∞.

Moreover, if X is a Hilbert space then ∥T (t)x∥ = o(t−1/(pβ)) as t → ∞ for
all x ∈ D(A).

Proof. It follows from (4.1) that (T (t))t≥0 is contractive and

(4.3)
t�

0

∥CT (s)x∥p ds ≤ ∥x∥p − ∥T (t)x∥p ≤ ∥x∥p

for all x ∈ D(A) and t ≥ 0. By the monotone convergence theorem, CT (·)x ∈
Lp(0,∞;X) for every x ∈ D(A), and

	∞
0 ∥CT (t)x∥p dt ≤ ∥x∥p. Moreover, for

k ∈ Z+ and t ∈ [kτ, (k + 1)τ) condition (4.2) and boundedness of (T (t))t≥0
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imply that

∥T (t)(I −A)−βx∥p ≤ ∥(I −A)−βT (kτ)x∥p ≤ K

(k+1)τ�

kτ

∥CT (s)x∥p ds

for all x ∈ D(A). Integrating over [kτ, (k + 1)τ) we obtain
(k+1)τ�

kτ

∥T (t)(I −A)−βx∥p dt ≤ Kτ

(k+1)τ�

kτ

∥CT (t)x∥p dt

for all x ∈ D(A) and k ∈ Z+. Summing over all k ∈ Z+ gives
∞�

0

∥T (t)(I −A)−βx∥p dt ≤ Kτ

∞�

0

∥CT (t)x∥p dt ≤ Kτ∥x∥p

for all x ∈ D(A), and a density argument yields T (·)(I−A)−βx ∈ Lp(0,∞;X)
for all x ∈ X. Hence T (·)x ∈ Lp(0,∞;X) for all x ∈ D((−A)β), so the lemma
follows from Theorem 2.1.

In the next result we suppose that A is the generator of a C0-semigroup
(T (t))t≥0 of contractions on a Hilbert space X and that B ∈ B(U,X), where
U is another Hilbert space. Then the operator AB = A−BB∗ with domain
D(AB) = D(A) generates a C0-semigroup (TB(t))t≥0 of contractions on X.
We may think of (TB(t))t≥0 as a ‘damped’ version of the semigroup (T (t))t≥0.
We refer the reader to [5] for an in-depth study of the asymptotic behaviour
of semigroups (TB(t))t≥0 arising in this way (also under much milder as-
sumptions on the operator B). The following result establishes polynomial
decay of orbits (TB(t)x)t≥0 for x ∈ D(AB) under a certain non-uniform ob-
servability condition; see [5, Sec. 4]. This generalises [5, Thm. 4.4], which
included the additional assumption that D(A) = D(A∗).

Theorem 4.2. Let (T (t))t≥0 be a C0-semigroup of contractions on a
Hilbert space X, with generator A, and let U be another Hilbert space. Let
B ∈ B(U,X) and let (TB(t))t≥0 be the C0-semigroup of contractions on X
generated by the operator AB = A − BB∗ with domain D(AB) = D(A).
Suppose there exist constants K, τ > 0 and β ∈ (0, 1] such that

(4.4) ∥(I −A)−βx∥2 ≤ K

τ�

0

∥B∗T (t)x∥2 dt, x ∈ X.

Then ∥TB(t)x∥ = o(t1/(2β)) as t → ∞ for all x ∈ D(AB).

Proof. We begin by recalling from [5, Lem. 4.3] that

(4.5)
τ�

0

∥B∗T (t)x∥2 dt ≲
τ�

0

∥B∗TB(t)x∥2 dt, x ∈ X.
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Since the semigroup (T (t))t≥0 is assumed to be contractive, D((I − A∗)β)
coincides with the complex interpolation space between X and D(A∗) =
D(I − A∗) with parameter β ∈ (0, 1] by [11, Cor. 4.30], and D((I − A∗

B)
β)

coincides with the complex interpolation space between X and D(A∗
B), in

both cases with equivalent norms. Since BB∗ is a bounded linear operator
on X, the spaces D(A∗) and D(A∗

B) are equal and their norms are equivalent.
It follows that D((I − A∗)β) = D((I − A∗

B)
β) with equivalent norms, and

hence ∥(I −A∗)βx∥ ≲ ∥(I −A∗
B)

βx∥ for all x ∈ D((I −A∗)β). Thus

∥(I −AB)
−βx∥ = sup

y∈X\{0}

|⟨x, (I −A∗
B)

−βy⟩|
∥y∥

= sup
y∈D((I−A∗

B)β)\{0}

|⟨x, y⟩|
∥(I −A∗

B)
βy∥

≲ sup
y∈D((I−A∗)β)\{0}

|⟨x, y⟩|
∥(I −A∗)βy∥

= sup
y∈X\{0}

|⟨x, (I −A∗)−βy⟩|
∥y∥

= ∥(I −A)−βx∥

for all x ∈ X. Combining this estimate with (4.4) and (4.5) we obtain

∥(I −AB)
−βx∥2 ≲

τ�

0

∥B∗TB(t)x∥2 dt, x ∈ X.

Furthermore, for x ∈ D(AB) the map t 7→ ∥TB(t)x∥2 is differentiable on
(0,∞), and dissipativity of A yields

d

dt
∥TB(t)x∥2 ≤ −2∥B∗TB(t)x∥2, t > 0.

Hence the result follows from Lemma 4.1 applied to the semigroup (TB(t))t≥0

with p = 2, Y = U and C =
√
2B∗.

We refer the reader to [5, Prop. 4.7] for an illustration of how Theorem 4.2
can be applied to a class of damped second-order systems which includes
certain damped wave, beam and plate equations.
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