Asymptotic behaviour in the robot rendezvous problem
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Abstract

This paper presents a natural extension of the results obtained by Feintuch and Francis in [5,6] concerning the so-called robot
rendezvous problem. In particular, we revisit a known necessary and sufficient condition for convergence of the solution in terms
of Cesaro convergence of the translates S*zo, k > 0, of the sequence xo of initial positions under the right-shift operator S,
thus shedding new light on questions left open in [5,6]. We then present a new proof showing that a certain stronger ergodic

condition on xg ensures that the corresponding solution converges to its limit at the optimal rate O(til/z) as t — oo. After
considering a natural two-sided variant of the robot rendezvous problem already studied in [5] and in particular proving a
new quantified result in this case, we conclude by relating the robot rendezvous problem to a more realistic model of vehicle

platoons.
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1 Introduction

Consider a situation in which there are countably many
robots (or perhaps ants, beetles, vehicles etc.), indexed
by the integers Z, which at each time ¢t > 0 occupy the
respective positions z(t), k € Z, in the complex plane.
Suppose moreover that, for each k € Z and each time
t > 0, robot k moves in the direction of robot k — 1 with
speed equal to their separation, so that

k() = xp—1(t) — x(t), k€Z,t>0. (1.1)
We propose to investigate whether all of the robots nec-
essarily converge to a mutual meeting, or rendezvous,

point as t — 0o, that is to say whether there exists ¢ € C
such that zx(t) — ¢ as t — oo uniformly in k € Z.

The problem is a natural extension of the corresponding
question for finitely many robots, and in the finite case
it is a simple matter to show that all robots converge ex-
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ponentially fast to the centroid of their initial positions.
However, since the actual rate of exponential conver-
gence tends to zero as the size of the system grows this
leaves open the question whether in the infinite case one
should expect any rate of convergence, or even conver-
gence for all initial constellations. Indeed, it was shown
in [5,6] that in the infinite setting there exist initial con-
figurations of the robots which do not lead to conver-
gence. The aim of this note is to revisit and extend a re-
cent result due to the authors [11] giving a complete and
simple characterisation of which initial configurations do
and which do not lead to convergence. Loosely speaking,
we show that the robots converge to the centroid of their
initial positions whenever this is well-defined in a suit-
able sense, and do not converge otherwise. In addition,
we present a detailed description of the rates of conver-
gence of the robots. Thus our paper serves to further
elucidate the similarities and differences between large
finite systems and infinite systems. For further discus-
sion of the relation between finite and infinite systems
of the general kind considered here, see for instance [3].

Our approach is based on the asymptotic theory of Cp-
semigroups and elements of ergodic theory, and the pa-
per is organised as follows. Our first main result, giving
a characterisation of those initial configurations leading
to convergent solutions of the robot rendezvous prob-
lem, is presented in Section 2. In Section 3 we present
a new proof of a quantified result from [11], which pro-
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vides an optimal estimate of the rate of convergence for
initial configurations satisfying a certain condition, and
in Section 4 we show how similar techniques lead to a
new quantified result in a natural two-sided variant of
the robot rendezvous problem considered in [5]. We con-
clude in Section 5 by describing a more realistic model
which is representative of the general framework studied
in depth in [11].

2 Characterising ‘good’ initial constellations

We begin by introducing some preliminary notions. Let
£>(Z) denote the space of doubly infinite sequences (xy,)
satisfying supycy |zx| < oo, endowed with the supre-
mum norm

[(zx)|| = sup |z, (21) € £7°(Z).
kez

Since we are interested in convergence of the solution
xz(t) = (xk(t)), t > 0, with respect to the norm of
¢>(Z), it is natural to assume that the initial constella-
tion 2o = (2£(0)) is an element of £*°(Z), and we make
this assumption throughout. We let S denote the right-
shift operator on ¢>°(Z), so that S(xr) = (zx—1) for all
(x) € £°(Z).

We say that an initial constellation x( in the robot ren-
dezvous problem is good if there exist ¢, € C, k € Z,
such that the solution z(t), t > 0, of (1.1) satisfies

sup |zx(t) —cx] = 0, t— oo.

kEZ

In the finite case all initial constellations are good, and
the robots all converge to the centroid of their initial
positions. The following result shows that in the infinite
robot rendezvous problem an initial constellation zq is
good if and only if the translates S*z, k > 1, under the
right-shift operator S are Cesaro summable with respect
to the norm of £°°(Z), and that in this case the solution
z(t) of (1.1) converges to this Cesaro limit, which is nec-
essarily a constant sequence, as t — oco. The result was
originally obtained in [11, Theorem 6.1] as a consequence
of a more general result with a lengthy proof. Here we
give a short and direct proof combining the main result
of Feintuch and Francis with elementary facts from er-
godic theory.

Theorem 1 In the robot rendezvous problem (1.1), an
initial constellation xo = (x(0)) is good if and only if
there exists ¢ € C such that

1 n
sup |~ Zxk,j(O) —c| =0, n—oo, (2.1)
j=1

keZ

and if this is the case then

sup |z (t) — ¢| — 0,
keZ

t — oo. (2.2)

Proof. Let T denote the Cy-semigroup generated by
S — 1, so that T'(t) = exp(¢(S — I)) for ¢t > 0. Then the
operators T'(t), t > 0, are uniformly bounded in operator
norm and the solution of (1.1) is given by x(t) = T(¢)xo,
t > 0. It follows from [5, Theorem 3] that for initial con-
stellations xy which lie in the range of S — I we have
|zk(t)] — 0 as t — oo uniformly in k € Z. Since the
semigroup 7" is uniformly bounded, the same conclusion
holds for all initial constellations in the closure Y of this
range. Next observe that the kernel Z of S — I consists
precisely of all constant sequences, and that such se-
quences are fixed by the semigroup. Let X denote the
space of all initial constellations in £°°(Z) which can be
written (uniquely) as the sum of an element of Y and
an element of Z. Then by the above observations all el-
ements of X are good. By [1, Proposition 4.3.1] the ele-
ments of X are also precisely those initial constellations
x¢ for which the Cesaro means

1 t
7/ T(s)zods, t>0,
tJo

converge in the norm of £*°(Z) to a limit as ¢ — 0.
Since this is the case for any good initial constellation, X
in fact coincides with the set of all good constellations.
Moreover, it is clear that if zo =y + 2 € X withy € Y
and z € Z being the constant sequence with entry ¢ € C,
then (2.2) holds. To finish the proof it suffices to observe
that by [8, Section 2.1, Theorem 1.3] the set X also
coincides with the set of all initial constellations xq for
which (2.1) is satisfied. |

It may be shown that condition (2.1) is satisfied for a
wide range of initial constellations gy = (zx(0)), for in-
stance whenever x(0) = ¢ + yg, k € Z, where |yi| — 0
as k — 4oo. In particular, the set of good initial con-
stellation is stable under perturbations by sequences
which converge to zero. Thus Theorem 1 strengthens [5,
Lemma 2]. The result furthermore reveals the underlying
reason for why the construction given in [5, Section 3.5]
leads to an initial constellation xg which is not good and
in particular gives a simple way of constructing other ex-
amples, for instance by taking x¢ = (z) to have entries
xp = 0 for £ > 0 and, for k£ < 0, alternating blocks of
zeros and ones having lengths which increase at suitable
rates. Perhaps the most important contribution of The-
orem 1 to the theory developed in [5] is the observation
that the correct topology in which Cesaro convergence of
translates needs to be studied is not the topology of con-
vergence in each entry but the norm topology of £>°(Z).

We observe in passing that, even though it is argued in
[5,6] that the above setting for the robot rendezvous is



the most realistic, the problem can also be studied with
initial constellations lying in ¢?(Z), 1 < p < oo; see [11,
Theorem 6.1]. The upshot is that for 1 < p < oo the
only possible rendezvous point is the origin, and that all
initial constellations are good if 1 < p < oo but not when
p = 1. The latter statement is an immediate consequence
of the well-known fact that the right-shift operator S is
mean ergodic on ¢?(Z) if and only if 1 < p < oc.

3 A quantified result

The following result is a quantified refinement of Theo-
rem 1 and gives an estimate on the rate of convergence for
initial constellations xy which satisfy a slightly stronger
condition than (2.1). The result was originally obtained
in [11, Theorem 6.1]. However, whereas the proof given
in [11] relies on direct estimates involving Stirling’s for-
mula, we present here a new and more elegant proof. In
what follows, given two sequences (an)n>1 and (by)n>1
of non-negative numbers, we write a,, = O(b,,) asn — oo
if there exists a constant C' > 0 such that a,, < Cb,, for
all sufficiently large n > 1, and we use a similar notation
for functions of a real variable.

Theorem 2 In the robot rendezvous problem (1.1), if
2o = (xx(0)) is a good initial constellation such that

1 n
sup |-~ ;xk_j(()) —c n— oo, (3.1)

keZ

= O(nil),

for some c € C, then

sup |zk(t) — | = O(t_l/z), t — 0.
kEZ

Proof. As in the proof of Theorem 1, let T denote the
Cy-semigroup generated by S — I, and recall that the set
of good constellations consists precisely of those initial
constellations which can be written (uniquely) as the
sum of a constant sequence and an element of the closure
of the range of S — I. It follows from [9, Theorem 5] that
condition (3.1) in fact characterises those initial constel-
lations o which can be written as the sum of a constant
sequence and an element of the range, as opposed to the
closure of the range, of S — I. Since constant sequences
lie in the kernel of S — I and consequently are fixed by
the semigroup T, the result will follow if we can estab-
lish that || T(t)(S —I)|| = O(t~/?) as t — oo. Note first
that, given € € (0, 1), this property holds for S—1TI and T
if and only if it holds for (S — I') and the Cy-semigroup
T. generated by this operator. It is shown in [4, Theo-
rem 1.2] that for the latter pair the required property is
satisfied if and only if there exist 8 € (0, 1) such that the
operator
eS-NH+1-p
Qﬂ,a = 1— ﬁ

is power-bounded. Since (Qy/2,1/2 = S is a contraction,
and in particular power-bounded, the proof is complete.
a

Examples of initial constellations 2o = (x1(0)) satisfying
condition (3.1) include sequences with x;(0) = ¢ + yg,
k € Z, where ), ., |yx| < co. In particular, the set of
initial constellations satisfying condition (3.1) is stable
under perturbations by sequences which are absolutely
summable. Furthermore, it follows from the results in
[11] not only that there cannot be a rate of convergence
which holds for all initial constellations xy but also that
the rate t—1/2 is optimal for those initial constellations
2o which satisfy (3.1). This is in stark contrast to the case
of finitely many robots, where all initial constellations
lead to exponentially fast convergence to the centroid
of the initial positions, albeit at decreasing exponential
rates as the number of robots grows. As pointed out in
the context of Theorem 1, Theorem 2 also carries over
to the fP-case with 1 < p < o0; see [11, Theorem 6.1] for
details.

4 The symmetric case

A natural variant of the robot rendezvous problem con-
sidered so far is the symmetric case in which each robot’s
motion is influenced by both of its neighbours according
to the ordinary differential equations

keZ,t>0.
(4.1)
As before, we follow [5] and consider this problem for

initial constellations zg lying in £°°(Z). It was shown in
[5, Theorem 4] that the solution of (4.1) satisfies

(Zh-1(t) + zppa (1) — 21(t),

[N

T (t) =

sup |zx(t)] = 0,
keZ

t — 00, (4.2)

whenever the vector z lies in the range of (S+571)—1.
Here S~1, the inverse operator of S, is the left-shift op-
erator on £*°(Z) given by S~1(zx) = (2x+1). The follow-
ing theorem presents an extended and quantified version
of [5, Theorem 4]. The result is an analogue of Theo-
rems 1 and 2, giving also a characterisation of good ini-
tial constellations for the symmetric problem.

Theorem 3 In the symmetric robot rendezvous problem
(4.1), an initial constellation xo = (x(0)) is good if and
only if there exists ¢ € C such that




and if this is the case then

sup |z (t) — ¢| = 0,
kEeZ

t — oo. (4.4)

Furthermore, if the convergence in (4.3) is like O(n=1)
as n — oo, then the convergence in (4.4) is like O(t™1)
ast — oo.

Proof. The natural operator to consider is now %(S +
S~—1) — I rather than S — I. Straightforward resolvent
estimates show that this operator generates a bounded
analytic Cy-semigroup, and it then follows from [1, The-
orem 3.7.19] and the fact that the solution of (4.1) is
precisely the orbit of this semigroup that

sup |z (t)| = O(t_l),
keZ

t — oo,

whenever the initial constellation x( lies in the range
of £(S+ 57') — I. By an analogous argument to the
one given in the proof of Theorem 2 together with a
straightforward computation, decay in (4.3) like O(n~1)
as n — oo characterises those initial constellations xq
which can be written (uniquely) as the sum of an element
of this range and the constant sequence with entry c,

which is fixed by the semigroup. The result now follows.
O

5 Further extensions

We mention in closing that Theorems 1 and 2 are in fact
special cases of a much more general theoretical appa-
ratus developed in [11]. As an example of the more real-
istic models that the general framework allows, suppose
that each robot, or vehicle, k& € Z has associated with
it not only a position x; but also a velocity vx and an
acceleration ay. We suppose that we can control the ac-
celeration of each vehicle by means of a direct feedback
control taking the form
dk(t) = clyk(t) + szk(t) + 03ak(t), keZ,t>0,

where yp = xp — x1_1 denotes the separation of vehicle
k from vehicle k¥ — 1 and where ¢y, ¢, c3 € C are con-
trol parameters we are free to choose. It is natural to ask
whether we can choose the control parameters in such a
way that, as t — oo, all vehicles come to rest at a mutual
meeting point. More generally, one might ask whether
it is possible to steer the vehicles towards pre-specified
target separations from one another, and questions of
this kind have been studied in the control-theory litera-

ture for various types of vehicle platoons; see for instance
[2,7,12].

Asisshown in [11, Theorem 5.1], it is possible once again
to characterise the good initial constellations in terms
of a Cesaro condition (which, surprisingly, involves only

the vehicles’ initial deviations from the target separa-
tions, not their initial velocities or accelerations) and
also to give a quantified result of the form of Theorem 2.
This time, however, the estimates are less straightfor-
ward and moreover [11, Theorem 5.1] involves a loga-
rithmic term in the estimate for the rate of convergence
which was conjectured in [11, Remark 5.2(a)] to be un-
necessary. It is shown in our recent paper [10] how the
argument outlined in the proof of Theorem 2 above can
be extended to the more general setting of [11], thus in
particular removing the logarithm in the platoon model.
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