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ASYMPTOTIC BEHAVIOUR OF COUPLED SYSTEMS IN

DISCRETE AND CONTINUOUS TIME

LASSI PAUNONEN AND DAVID SEIFERT

Abstract. This paper investigates the asymptotic behaviour of solu-
tions to certain infinite systems of coupled recurrence relations. In par-
ticular, we obtain a characterisation of those initial values which lead to
a convergent solution, and for initial values satisfying a slightly stronger
condition we obtain an optimal estimate on the rate of convergence. By
establishing a connection with a related problem in continuous time, we
are able to use this optimal estimate to improve the rate of convergence
in the continuous setting obtained by the authors in a previous paper.
We illustrate the power of the general approach by using it to study
several concrete examples, both in continuous and in discrete time.

1. Introduction

Consider a situation in which there are countably many agents, indexed
by the integers Z, such that agent k ∈ Z at time n ≥ 0 is in the position
xk(n) ∈ C. Suppose that the agents’ positions change at each time step
according to the rule

(1.1) xk(n+ 1) = (1− α)xk(n) + αxk−1(n), k ∈ Z, n ≥ 0,

where α ∈ (0, 1) is a fixed constant. Thus agent k changes its position
at each time step by moving from its current position a fraction α of its
current separation from agent k − 1 in the direction of agent k − 1. The
purpose of this paper is to develop general techniques which allow one to
study the asymptotic behaviour of solutions to the above system and similar
more complicated ones. The main questions of interest are (i) which initial
constellations of the agents will lead to convergence of the overall system to
an equilibrium point in a suitable sense, (ii) what is the equilibrium when
it exists and (iii) at what rate does the convergence take place?

In order to be able to answer these questions in a unified manner and also
extend our conclusions to a broader class of examples, we consider the more
general recurrence relation

(1.2) xk(n+ 1) = T0xk(n) + T1xk−1(n), k ∈ Z, n ≥ 0,

where xk(n) ∈ C
m for some given positive integer m and where T0, T1 are

m × m matrices satisfying certain assumptions to be specified below. The
general approach taken in this paper can be viewed as a discrete counterpart
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to the authors’ previous paper [8], in which the corresponding continuous-
time problem is studied. As it turns out, the discrete setting presents its
own challenges and requires new techniques but, in return, leads to optimal
results which can even be used to improve the known results in the con-
tinuous setting. Indeed, this latter fact is one of our main motivations for
studying discrete systems even though they are natural and interesting in
their own right. Our paper can therefore be viewed as a contribution to the
broader study of so called spatially invariant systems; see for instance [1].
More specifically, the introductory example presented above can be viewed
as a discrete counterpart of the so-called robot rendezvous problem studied
in [3, 4], while the main motivating examples for more sophisticated cases
of the general model arise in the study of so-called platoon models; see for
instance [9, 12, 15]. For related works in the study of multi-agent systems
in discrete and continuous time, see for instance [7, 13, 14].

The paper is organised as follows. In Section 2 we present the general
operator-theoretic results required to study our class of systems, culminating
in Theorem 2.7, which gives a complete description of those initial constella-
tions leading to convergent solutions, shows how the limit (when it exists) is
related to the initial constellation and furthermore gives an estimate for the
rate of convergence for certain initial constellations. In particular, the result
answers in the general setting all three questions raised above in the context
of the toy model (1.1). In Section 3 we show explicitly how the general re-
sult can be applied both to this simple example and also to a more complex
one in which the agents’ state vectors consist not only of their positions but
involve also a velocity component. In Section 4 we provide a link between
the discrete and the continuous settings and show how Theorem 2.7 can be
used to improve the main result of [8] in an important special case. Finally,
in Section 5 we apply this improved result to give sharper rates of decay in
the platoon model studied in [9, 12, 15].

The notation we use is more or less standard throughout. Thus, given a
complex Banach space X, the norm on X will typically be denoted by ‖ ·‖X
or simply by ‖ · ‖. In particular, for m ∈ N and 1 ≤ p ≤ ∞, we let ℓp(Cm)
denote the space of doubly infinite sequences (xk) such that xk ∈ C

m for
all k ∈ Z and

∑

k∈Z ‖xk‖
p < ∞ if 1 ≤ p < ∞ and supk∈Z ‖xk‖ < ∞ if

p = ∞. Here and in all that follows we endow the finite-dimensional space
C
m with the standard Euclidean norm and we consider X = ℓp(Cm) with

the norm given for x = (xk) by ‖x‖X = (
∑

k∈Z ‖xk‖
p)1/p if 1 ≤ p < ∞ and

‖x‖ = supk∈Z ‖xk‖ if p = ∞. With respect to this norm X is a Banach
space for 1 ≤ p ≤ ∞ and a Hilbert space when p = 2. We write B(X) for
the space of bounded linear operators on X, and given T ∈ B(X) we write
Ker(T ) for the kernel and Ran(T ) for the range of A. Moreover, we let σ(T )
denote the spectrum of T and ρ(T ) = C \ σ(T ) the resolvent set of T . We
write σp(T ) for the point spectrum and σap(T ) for the approximate point
spectrum of T . For λ ∈ ρ(T ) we write R(λ, T ) for the resolvent operator
(λ − T )−1. Asymptotic notation, such as O, o and ≍, is used in the usual
way. Finally, we denote by D the open unit disc {λ ∈ C : |λ| < 1}.
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2. The discrete-time system

We begin by introducing the general system to be studied. Given p with
1 ≤ p ≤ ∞, let X = ℓp(Cm). We may write (1.2) together with an initial
condition in the form

(2.1)

{

x(n+ 1) = Tx(n), n ≥ 0,

x(0) = x0 ∈ X,

where x(n) = (xk(n)) and Tx = (T0xk + T1xk−1) for all x = (xk) ∈ X. We
assume in what follows that

(2.2) T1R(λ, T0)T1 = φT (λ)T1, λ ∈ ρ(T0),

for some rational function φT : ρ(T0) → C which we call the characteristic

function of our system. The existence of a characteristic function is crucial
to all that follows and will reduce several key questions about the solutions
of (2.1) to questions about the characteristic function of the system. As will
become apparent in Section 3 below, the assumption that a characteristic
function should exist is less restrictive than it may appear and in particular
is satisfied in a number of important examples.

Remark 2.1. It is straightforward to show that a characteristic function
exists whenever rank(T1) = 1. Moreover, a standard argument involving
Neumann series shows that if (2.2) holds then for |λ| > ‖T0‖ we have

|φT (λ)| ≤
‖T1‖

|λ| − ‖T0‖
,

and in particular |φT (λ)| → 0 as |λ| → ∞. Note finally that the set of poles
of φT is contained in σ(T0), but the inclusion may be strict.

Since the solution of (2.1) is given by x(n) = T nx0, n ≥ 0, our aim
in this section is to investigate the asymptotic properties of the orbits of
the operator T . In order to prepare the ground for the main result of this
section, Theorem 2.7 below, we begin with a series of preliminary results,
the first few of which are taken more or less directly from [8]. The first result
gives a complete description of the spectrum of the operator T .

Theorem 2.2. Let X = ℓp(Cm) for some m ∈ N and some p satisfying

1 ≤ p ≤ ∞, and let T ∈ B(X) be as above. Then

σ(T ) \ σ(T0) =
{

λ ∈ ρ(T0) : |φT (λ)| = 1
}

.

Moreover, the following hold:

(a) If 1 ≤ p < ∞, then σ(T ) \ σ(T0) ⊂ σap(T ) \ σp(T ).

(b) If p = ∞, then σ(T ) \ σ(T0) ⊂ σp(T ) and, given λ ∈ σ(T ) \ σ(T0),

(2.3) Ker(λ− T ) =
{

(φT (λ)
kx0) : x0 ∈ Ran(R(λ, T0)T1)

}

.

In particular, dimKer(λ− T ) = rank(T1) for all λ ∈ σ(T ) \ σ(T0).

Furthermore, for λ ∈ σ(T ) \ σ(T0) the range of λ− T is dense in X if and

only if 1 < p < ∞.

Proof. See [8, Theorem 2.3]. �
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Remark 2.3. As observed in [8, Remark 2.4], the points in σ(T0) can lie
either in σ(T ) or outside it.

The next result establishes a useful bound for the norm of the resolvent
operator in the neighbourhood of singular points.

Proposition 2.4. Fix 1 ≤ p ≤ ∞ and m ∈ N. If λ ∈ ρ(T0) is such that

|φT (λ)| 6= 1, then
∣

∣

∣

∣

‖R(λ, T )‖ −
‖R(λ, T0)T1R(λ, T0)‖

|1− |φT (λ)||

∣

∣

∣

∣

≤ ‖R(λ, T0)‖.

In particular, for λ0 ∈ ρ(T0) such that |φT (λ0)| = 1 we have

‖R(λ, T )‖ ≍
1

|1− |φT (λ)||

as λ → λ0 in the region {λ ∈ ρ(T0) : |φT (λ)| 6= 1}.

Proof. See [8, Proposition 2.5]. �

The most important consequence of this result for our present purposes
is the following observation. Following [8], we call the even integer n = nT

appearing in this result the resolvent growth parameter. Here we let

ΩT =
{

λ ∈ ρ(T0) : |φT (λ)| = 1
}

.

Lemma 2.5. Fix 1 ≤ p ≤ ∞ and m ∈ N, and suppose 0 ∈ ΩT ⊂ D ∪ {1}.
Then there exists an even integer n with 2 ≤ n ≤ 2m such that 1−|φT (e

iθ)| ≍
|θ|n as θ → 0.

Proof. The result follows by an argument analogous to the proof of [8,
Lemma 2.6] by considering polynomials in sin θ and cos θ, and by using
the fact that sin θ ∼ θ as θ → 0. �

We now restrict our attention to systems in which σ(T0) = {1 − α} and
the characteristic function φT is of the specific form

(2.4) φT (λ) =
αk

(λ− 1 + α)k
, λ ∈ C \ {1− α},

where α ∈ (0, 1) and k ∈ N are given constants. As shall become apparent,
even this class is large enough to contain many natural applications; see for
instance Section 3. It follows from Theorem 2.2 that in this case

(2.5) σ(T ) \ {1− α} =
{

λ ∈ C : |λ− α+ 1| = α
}

and that the resolvent growth parameter is nT = 2. The next theorem estab-
lishes that under the above assumptions the operator T is power-bounded,
which is to say that supn≥0 ‖T

n‖ < ∞. Note that even though this result is
an analogue of [8, Theorem 3.1 and Lemma 3.2] the method of proof used
there does not, to the knowledge of the authors, transfer to the discrete
setting considered here.

Proposition 2.6. Let X = ℓp(Cm) for some m ∈ N and some p satisfying

1 ≤ p ≤ ∞, and let T ∈ B(X) be as above. Then T is power-bounded.
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Proof. We begin by observing that σ(T ) ⊂ D ∪ {1} and that, by the same
argument as in [8, Section 2], the resolvent operator has the explicit form

R(λ, T )x =

(

R(λ, T0)xk +
∞
∑

ℓ=0

φ(λ)ℓR(λ, T0)T1R(λ, T0)xk−ℓ−1

)

for λ ∈ C with |λ| > 1 and x = (xk) ∈ X. Writing Rλ as a shorthand for
R(λ, T0) when |λ| > 1, it follows from the functional calculus for bounded
operators that

T nx =

(

T n
0 xk +

∞
∑

ℓ=0

(

1

2πi

∮

Γ
λnφ(λ)ℓRλT1Rλ dλ

)

xk−ℓ−1

)

, n ≥ 0,

where Γ is any piecewise smooth and positively oriented contour containing
the closed unit disc in its interior. In particular,

(2.6) ‖T n‖ ≤ ‖T n
0 ‖+

1

2π

∞
∑

ℓ=0

∥

∥

∥

∥

∮

Γ
λnφ(λ)ℓRλT1Rλ dλ

∥

∥

∥

∥

, n ≥ 0.

Moreover, T0 has spectral radius 1 − α ∈ (0, 1) and in particular is power-
bounded, so in order to show that T is power-bounded it remains only to
obtain a uniform bound over n ≥ 0 for the series on the right-hand side.

Note first that our assumptions imply the existence of constant m × m
matrices C1, . . . , C2m−2 such that

RλT1Rλ =
1

(λ− 1 + α)2m

2m−2
∑

j=0

Cjλ
j , λ ∈ C \ {1− α},

and hence

∞
∑

ℓ=0

∥

∥

∥

∥

∮

Γ
λnφ(λ)ℓRλT1Rλ dλ

∥

∥

∥

∥

≤

2m−2
∑

j=0

‖Cj‖

∞
∑

ℓ=0

∣

∣

∣

∣

∮

Γ

αkℓλn+j

(λ− 1 + α)kℓ+2m
dλ

∣

∣

∣

∣

,

for all n ≥ 0. Now fix j with 1 ≤ j ≤ 2m − 2. Letting Dλ denote differen-
tiation with respect to λ, a simple application of Cauchy’s integral formula
shows that, for n ≥ 0,

1

2π

∞
∑

ℓ=0

∣

∣

∣

∣

∮

Γ

αkℓλn+j

(λ− 1 + α)kℓ+2m
dλ

∣

∣

∣

∣

=

∞
∑

ℓ=0

αkℓ

∣

∣

[

Dkℓ+2m−1
λ λn+j

]

λ=1−α

∣

∣

(kℓ+ 2m− 1)!

≤
1

α2m−1

n+j
∑

ℓ=0

(

n+ j

ℓ

)

αℓ(1− α)n+j−ℓ,

and by the binomial theorem the right-hand side equals α−(2m−1). Combin-
ing these estimates with (2.6) gives

‖T n‖ ≤ ‖T n
0 ‖+

1

α2m−1

2m−1
∑

j=0

‖Cj‖, n ≥ 0,

and hence T is power-bounded, as required. �
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We conclude this section with one of our main results, which gives a
detailed description of the asymptotic behaviour of solutions to (2.1). Note
first though that differentiating (2.2) shows that

−T1R(1, T0)
2T1 = φ′

T (1)T1.

For the function φT defined in (2.4) we have φ′
T (1) 6= 0, and hence in this case

the operator T1R(1, T0) restricts to an isomorphism from Ran(R(1, T0)T1)
onto Ran(T1). In what follows we write L for the inverse of this isomorphism.

Theorem 2.7 below is analogous to [8, Theorem 4.3]. Note however that
the rates of convergence obtained here are in general slightly sharper than
those obtained in [8] and in particular involve no logarithmic factors. Indeed

the rates are optimal in the sense that if n−1/2 were replaced by some rn > 0,
n ≥ 1, with rn = o(n−1/2) as n → ∞, then the statement would become
false. We obtain this strengthened result as a consequence of a theorem due
to Dungey [2]. In what follows, if X = ℓp(Cm) for some m ∈ N and some
p satisfying 1 ≤ p ≤ ∞, we let S denote the right-shift operator defined by
Sx = (xk−1) for x = (xk) ∈ X and we let

Y =
{

x0 ∈ X : lim
n→∞

x(n) exists
}

,

where x(n), n ≥ 0, is the solution of (2.1).

Theorem 2.7. Let X = ℓp(Cm) for some m ∈ N and some p satisfying

1 ≤ p ≤ ∞, and consider the operator T ∈ B(X) defined as above. Define

the operator M ∈ B(X) by M(xk) = (T1R(1, T0)xk), and let the operator L
and the space Y be as above.

(a) Given x0 ∈ X, we have x0 ∈ Y if and only if there exists y0 ∈
Ran(T1) such that for the constant sequence y with entry y0 is an

element of X and we have

(2.7)

∥

∥

∥

∥

1

n

n
∑

k=1

SkMx0 − y

∥

∥

∥

∥

X

→ 0, n → ∞.

Moreover, if this is the case then ‖x(n) − z‖X → 0 as n → ∞,

where z ∈ X is the constant sequence with entry Ly0. In particular,

Y = X if and only if 1 < p < ∞ and if 1 ≤ p < ∞ the only possible

candidate for y and z is 0.
(b) If x0 ∈ X is such that the convergence in (2.7) is like O(n−1) as

n → ∞, then

(2.8) ‖x(n)− z‖X = O
(

n−1/2
)

, n → ∞,

where z is as above.

(c) For all x0 ∈ X we have

(2.9) ‖x(n + 1)− x(n)‖X = O
(

n−1/2
)

, n → ∞.

Furthermore, the rates in (2.8) and (2.9) are optimal.

Proof. Observe that x(n) = T nx0, n ≥ 0, so all of the statements can be
understood as statements about the orbits of the operator T . We show
first that Y = X0 ⊕ X1, where X0 = Ker(I − T ) and X1 denotes the
closure in X of Ran(I − T ). Indeed, it is clear that X0 ⊂ Y and that
X0 ∩ X1 = {0}. Note also that T is power-bounded by Proposition 2.6
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and that by (2.5) we have σ(T ) ∩ T = {1}. It follows from the Katznelson-
Tzafriri theorem [5, Theorem 1] that ‖T n(I − T )‖ → 0 as n → ∞, and in
particular Ran(I − T ) ⊂ Y . Since T is power-bounded, it follows from a
straightforward approximation argument that X1 ⊂ Y . Hence X0⊕X1 ⊂ Y .
Now suppose conversely that x0 ∈ Y . Then by definition the orbit T nx0,
n ≥ 0, converges in norm to a limit, and in particular the Cesàro averages

1

n

n
∑

k=1

T kx0, n ≥ 1,

also converge in norm. It follows for instance from [6, Theorem 1.3 of Sec-
tion 2.1] that x0 ∈ X0 ⊕X1. Hence Y = X0 ⊕X1, as required. The above
argument also shows that if x0 ∈ Y then ‖x(n) − Px0‖X → 0 as n → ∞,
where P is the projection from Y onto X0 along X1.

In order to obtain the quantified statements, observe that by [2, Theo-

rem 1.2] we have ‖T n(I − T )‖ = O(n−1/2) as n → ∞ if and only if the
operator Q ∈ B(X) defined by

Q =
T − β

1− β

is power-bounded for some β ∈ (0, 1). However, a simple calculation shows
that since the characteristic function of T is given by

φT (λ) =
αk

(λ− 1 + α)k
, λ ∈ C \ {1− α},

for some α ∈ (0, 1) and k ∈ N, the operator Q has an associated character-
istic function given by

φQ(λ) =
γk

(λ− 1 + γ)k
, λ ∈ C \ {1− γ},

where γ = α/(1 − β). Thus if β ∈ (0, 1 − α), or equivalently γ ∈ (0, 1),
it follows from another application of Proposition 2.6 that Q is power-
bounded, and hence ‖T n(I − T )‖ = O(n−1/2) as n → ∞. In particular,

‖T nx‖X = O(n−1/2) as n → ∞ for all x ∈ Ran(I − T ). Optimality of
this rate follows straightforwardly from [10, Theorem 2.4], since by Propo-
sition 2.4, Lemma 2.5 and the fact that the resolvent growth parameter is
nT = 2 we have ‖R(eiθ, T )‖ ≍ |θ|−2 as θ → 0.

Thus it remains only to establish the characterisation of the elements of Y
and of X0 ⊕Ran(I − T ) in terms of the stated Cesàro conditions. However,
both of these characterisations follow directly from [8, Theorem 4.3]. Indeed,
let A ∈ B(X) be given by A = T − I, so that Ax = (A0xk + A1xk−1) for
all x = (xk) ∈ X, where A0 = T0 − I and A1 = T1. A simple calculation
shows that A admits a characteristic function φA, which satisfies φA(λ) =
φT (λ+1) for all λ ∈ C\{−α}. Noting that φA(0) = φT (1) = 1, the required
statements now follow immediately from the corresponding statements in
[8, Theorem 4.3]. �

Remark 2.8. Instead of appealing to Dungey’s theorem [2, Theorem 1.2]
in order to obtain a rate of decay for ‖T n(I − T )‖ as n → ∞, it would
also be possible to use the results in [10, 11] together with Proposition 2.4
and Lemma 2.5 above in order to obtain similar estimates. These estimates
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would, however, involve logarithmic terms unless p = 2, and hence would be
weaker than the results obtained by means of Dungey’s theorem.

3. Examples of discrete-time systems

In this section we apply Theorem 2.7 to two simple but illustrative ex-
amples. The first of these is the example introduced in (1.1). In this case
m = 1, T0 = 1 − α and T1 = α, where α ∈ (0, 1) is a given constant. It is
clear that

σ(T ) =
{

λ ∈ C : |λ− 1 + α| = α
}

,

and a trivial calculation shows that the associated operator T admits the
characteristic function

φT (λ) =
α

λ− 1 + α
, λ ∈ C \ {1− α}.

In particular, as a direct consequence of Theorem 2.7 we obtain the following
result about the asymptotic behaviour of solutions to (1.1).

Corollary 3.1. Let X = ℓp(C) for some p satisfying 1 ≤ p ≤ ∞, and

consider the solution x(n), n ≥ 0, of the system (1.1) with initial data

x0 ∈ X.

(a) The solution converges to a limit in the norm of X if and only if

there exists c ∈ C such that for the constant sequence y with entry c
is an element of X and we have

(3.1)

∥

∥

∥

∥

1

n

n
∑

k=1

Skx0 − y

∥

∥

∥

∥

X

→ 0, n → ∞.

Moreover, if this is the case then ‖x(n) − y‖X → 0 as n → ∞. In

particular, all initial vectors x0 lead to convergence if and only if

1 < p < ∞, and if 1 ≤ p < ∞ then the only possible candidate for c
is 0.

(b) If x0 ∈ X is such that the convergence in (3.1) is like O(n−1) as

n → ∞, then

(3.2) ‖x(n)− y‖X = O
(

n−1/2
)

, n → ∞,

where y is as above.

(c) For all x0 ∈ X we have

(3.3) ‖x(n + 1)− x(n)‖X = O
(

n−1/2
)

, n → ∞.

Furthermore, the rates in (3.2) and (3.3) are optimal.

Note that in the above example the operator T is in fact a contraction.
Moreover, the operators T0 and T1 commute in this example, which makes
the problem simpler and, at least in principle, makes it possible to use more
direct techniques. Our second example is more representative of the general
situation in Theorem 2.7 in the sense that, in general, the operators T0 and
T1 do not commute and the operator T is not a contraction. Indeed, suppose
now that m = 2 and that

T0 =

(

1 1
β0 β1

)

and T1 =

(

0 −1
0 0

)

,
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where β0, β1 ∈ C are fixed parameters. The corresponding discrete-time
system arises for instance if one considers agents whose state vectors xk(n)
are of the form

xk(n) =

(

d− dk(n)
vk(n)

)

, k ∈ Z, n ≥ 0,

where dk(n) denotes the separation between agent k and agent k−1 at time
n, d is a specified target separation, and vk(n) is the velocity of agent k at
time n. This system is precisely of the form (2.1) for the operators T0 and
T1 specified above provided that

vk(n+ 1) = β0yk(n) + β1vk(n), k ∈ Z, n ≥ 0,

where yk(n) = d−dk(n) is the discrepancy between the target separation and
the actual separation of agents k and k− 1 at time n. Thus the parameters
β0, β1 can be understood as feedback control parameters which should be
chosen so as to make the resulting system stable in an appropriate sense.
Letting α0 = −β0 and α1 = 1− β1, we observe that the operator T admits
the characteristic function φT (λ) = α0/p(λ − 1) for p(λ − 1) 6= 0, where
p(λ) = λ2 + α1λ + α0. Now fix α0 ∈ (0, 1) and set α1 = 2α

1/2
0 . Then

σ(T0) = {1 − α} and φT is of the form (2.4) with k = 2 and α = α
1/2
0 . A

simple application of Theorem 2.7 now gives the following result. Note that
the asymptotic behaviour is determined solely by the initial discrepancies
and is independent of the initial velocities.

Corollary 3.2. Let X = ℓp(C2) for some p satisfying 1 ≤ p ≤ ∞, and

consider the solution x(n), n ≥ 0, of the system (2.1) for T as above and

with initial data x0 ∈ X.

(a) The solution converges to a limit in the norm of X if and only if

there exists c ∈ C such that for the constant sequence y with entry c
is an element of ℓp(C) and we have

(3.4)

∥

∥

∥

∥

1

n

n
∑

k=1

Sky0 − y

∥

∥

∥

∥

ℓp(C)

→ 0, n → ∞,

where y0 = (yk(0)) ∈ ℓp(C) is the vector of initial discrepancies.

Moreover, if this is the case then ‖x(n)−z‖X → 0 as n → ∞, where

z ∈ X is given by

z =

(

. . . ,

(

c
−αc/2

)

,

(

c
−αc/2

)

, . . .

)

.

In particular, all initial vectors x0 lead to convergence if and only if

1 < p < ∞, and if 1 ≤ p < ∞ then the only possible candidate for c
is 0.

(b) If y0 ∈ ℓp(C) is such that the convergence in (3.4) is like O(n−1) as
n → ∞, then

(3.5) ‖x(n)− z‖X = O
(

n−1/2
)

, n → ∞,

where z is as above.

(c) For all x0 ∈ X we have

(3.6) ‖x(n + 1)− x(n)‖X = O
(

n−1/2
)

, n → ∞.
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Furthermore, the rates in (3.2) and (3.3) are optimal.

More sophisticated models of this type, perhaps involving acceleration,
could be handled in an analogous way. We return indirectly to one particular
such example in Section 5 below.

4. From discrete to continuous time

In this section we turn to the continuous-time analogue of (2.1) studied
in [8] and in particular we show how Theorem 2.7 can be used to sharpen
the main result [8, Theorem 4.3] in an important special case. Indeed, let
X = ℓp(Cm) for some m ∈ N and some p satisfying 1 ≤ p ≤ ∞, and consider
the abstract Cauchy problem

(4.1)

{

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ X,

where Ax = (A0xk + A1xk−1) for all x = (xk) ∈ X for suitable m × m
matrices A0 and A1. Here we assume that A1 6= 0 and, analogously to
our treatment of the discrete-time system, that the operator A admits a
characteristic function φA satisfying

A1R(λ,A0)A1 = φA(λ)A1, λ ∈ ρ(A0).

Systems of this type, and in particular the asymptotic behaviour of solutions
of (4.1), are studied in detail in [8]. We restrict ourselves here to the im-
portant special case in which σ(A0) = {−ζ} and the characteristic function
has the form

(4.2) φA(λ) =
ζk

(λ+ ζ)k
, λ ∈ C \ {−ζ},

for some ζ > 0 and some k ∈ N. It follows from the general results in [8]
that in this case

σ(A) \ {−ζ} =
{

λ ∈ C : |λ+ ζ| = ζ
}

,

and moreover the semigroup generated by the operator A is uniformly
bounded. From these facts together with certain resolvent bounds analo-
gous to Proposition 2.4, the authors obtained in [8, Theorem 4.3] an as-
ymptotic result for the solutions of (4.1). The proof of this result relied on
recent results in the theory of non-uniform stability of C0-semigroups. We
now present an improved version of this result for the special case intro-
duced above, where the characteristic function has the form given in (4.2).
The proof uses Theorem 2.7 for the discrete-time setting together Dungey’s
result [2, Theorem 1.2], which also establishes a connection between the
rates in the continuous and the discrete setting. Note that, by the same
argument as in the discrete setting, there exists an isomorphism L mapping
Ran(A1) onto Ran(A−1

0 A1) which is the inverse of the restriction of A1A
−1
0

to Ran(A−1
0 A1). We also define

Y =
{

x0 ∈ X : lim
t→∞

x(t) exists
}

,

where x(t), t ≥ 0, is the solution of (4.1)
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Theorem 4.1. Let X = ℓp(Cm) for some m ∈ N and some p satisfying

1 ≤ p ≤ ∞, and consider the operator A ∈ B(X) defined as above. Define

the operator M ∈ B(X) by M(xk) = (A1A
−1
0 xk), and let the operator L and

the space Y be as above.

(a) Given x0 ∈ X, we have x0 ∈ Y if and only if there exists y0 ∈
Ran(A1) such that for the constant sequence y with entry y0 is an

element of X and we have

(4.3)

∥

∥

∥

∥

1

n

n
∑

k=1

SkMx0 − y

∥

∥

∥

∥

X

→ 0, n → ∞.

Moreover, if this is the case then ‖x(t)− z‖X → 0 as t → ∞, where

z ∈ X is the constant sequence with entry Ly0. In particular, Y = X
if and only if 1 < p < ∞ and if 1 ≤ p < ∞ the only possible candidate

for y and z is 0.
(b) If x0 ∈ X is such that the convergence in (4.3) is like O(n−1) as

n → ∞, then

(4.4) ‖x(t)− z‖X = O
(

t−1/2
)

, t → ∞,

where z is as above.

(c) For all x0 ∈ X we have

(4.5) ‖ẋ(t)‖X = O
(

t−1/2
)

, t → ∞.

Furthermore, the rates in (4.4) and (4.5) are optimal.

Proof. All of the statements are contained in [8, Theorem 4.3], except for
the sharper rates of convergence without logarithms, which require us to
show that the C0-semigroup (T (t))t≥0 generated by A satisfies ‖AT (t)‖ =

O(t−1/2) as t → ∞. For ε > 0, let Tε = εA+I. A straightforward calculation
shows that Tε admits the characteristic function

φTε
(λ) = φA

(

ε−1(λ− 1)
)

=

(

εζ

λ− 1 + εζ

)k

, λ ∈ C \ {1− εζ}.

Now fix ε0 ∈ (0, ζ−1) and let α = ε0ζ and T = Tε0 . Then T has characteristic
function of the form given in (2.4) and hence Theorem 2.7 implies that

‖T n(I − T )‖ = O(n−1/2) as n → ∞. By the implication (i) =⇒ (v) of
[2, Theorem 1.2] (with n = 1) we see that the C0-semigroup (Tε0(t))t≥0

generated by Aε0 = ε0A satisfies ‖Aε0Tε0(t)‖ = O(t−1/2) as t → ∞, from
which the result follows immediately. �

Remark 4.2. By removing the logarithmic factor present in [8, Theo-
rem 4.3] in the above special case, Theorem 4.1 gives a partial answer to
the question raised in [8, Remark 4.14(b)]. It remains open whether, as was
conjectured in [8, Remark 4.14(b)], the logarithmic factor can always be
removed in the more general setting of [8, Theorem 4.3], where the resolvent
growth parameter may be different from 2, but the above result certainly
makes this seem plausible.



12 LASSI PAUNONEN AND DAVID SEIFERT

5. An example in continuous time

In this final section we return to an important example studied for is-
ntance in [9, 12, 15], the so-called platoon model. This can be viewed as
a continuous-time analogue of the system considered in Corollary 3.2 but
with agents’ accelerations taken into account as well as their positions and
velocities. Specifically, the state vector of agent k now takes to form

xk(t) =





yk(t)
vk(t)− v
ak(t)



 , k ∈ Z, t ≥ 0,

where yk(t) = dk − dk(t) denotes the discrepancy between the agent-specific

target separation dk between agents k and k − 1 and their actual distance
dk(t) at time t, vk(t) is the velocity of agent k at time t, v the target
velocity of the entire platoon, and ak(t) is the acceleration of agent k at
time t. In particular, we now have m = 3 in (4.1). For details on the general
platoon model, see for instance [8, Section 5] and also [9, 12, 15]. We restrict
ourselves here to the particular case in which the matrices A0 and A1 are
given by

A0 =





0 1 0
0 0 1

−α0 −α1 −α2



 and A1 =





0 −1 0
0 0 0
0 0 0





with α0 = ζ3, α1 = 3ζ2 and α2 = 3ζ for some ζ > 0. Then σ(A0) = {−ζ}
and the corresponding operator A admits a characteristic function of the
form given in (4.2) with k = 3. The following result, obtained here as
an immediate consequence of Theorem 4.1, is an improved version of [8,
Theorem 5.1].

Corollary 5.1. Let X = ℓp(C3) for some p satisfying 1 ≤ p ≤ ∞, and

consider the solution x(t), t ≥ 0, of the system (4.1) for A as above and

with initial data x0 ∈ X.

(a) The solution converges to a limit in the norm of X if and only if

there exists c ∈ C such that for the constant sequence y with entry c
is an element of ℓp(C) and we have

(5.1)

∥

∥

∥

∥

1

n

n
∑

k=1

Sky0 − y

∥

∥

∥

∥

ℓp(C)

→ 0, n → ∞,

where y0 = (yk(0)) ∈ ℓp(C) is the vector of initial discrepancies.

Moreover, if this is the case then ‖x(t)− z‖X → 0 as t → ∞, where

z ∈ X is given by

z =



 . . . ,





c
−ζc/3

0



 ,





c
−ζc/3

0



 , . . .



 .

In particular, all initial vectors x0 lead to convergence if and only if

1 < p < ∞, and if 1 ≤ p < ∞ then the only possible candidate for c
is 0.
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(b) If y0 ∈ ℓp(C) is such that the convergence in (5.1) is like O(n−1) as
n → ∞, then

(5.2) ‖x(t)− z‖X = O
(

t−1/2
)

, t → ∞,

where z is as above.

(c) For all x0 ∈ X we have

(5.3) ‖ẋ(t)‖X = O
(

t−1/2
)

, t → ∞.

Furthermore, the rates in (5.2) and (5.3) are optimal.
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