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Abstract We study the robustness properties of strong stability of a strongly contin-
uous semigroup on a Hilbert space. We concentrate on a situation where the genera-
tor of the unperturbed semigroup has a finite spectral point on the imaginary axis and
the resolvent operator is polynomially bounded elsewhere on the imaginary axis. As
our main result we present conditions for preservation of the strong stability of the
semigroup under bounded perturbations.

1 Introduction

It is well known that exponential stability of a strongly continuous semigroup T (t) is
preserved under all sufficiently small perturbations of its infinitesimal generator A.
However, robustness properties of nonexponential stability types are considerably
less well-known. In this paper we are interested in strongly stable semigroups, i.e.,
those satisfying

lim
t→∞

�T (t)x�= 0, ∀x ∈ X .

Unlike exponential stablility, strong stability of a semigroup is in general very
sensitive to perturbations, and it may be destroyed even by arbitrarily small per-
turbations. Recently in [10, 11, 12] conditions for preservation of strong stability
were presented for semigroups on Hilbert spaces under suitable assumptions on the
behaviour of the resolvent operator of A on the imaginary axis. The purpose of
this paper is to extend the perturbation results in [10, 11, 12] to a larger class of
strongly stable semigroups. The results have applications in the study of asymp-
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totic behaviour of linear partial differential equations, and in the control of infinite-
dimensional linear systems [13].

The references [10, 11] considered a subclass of strongly stable semigroups
called the polynomially stable semigroups. On a Hilbert space X , the polynomial
stability of T (t) is characterized by the property that the resolvent operator R(λ ,A)
exists and is polynomially bounded on the imaginary axis [4, 5]. The key to study-
ing the robustness properties of polynomial stability in [10, 11] was an observation
that since the stability is not exponential, the size of the perturbation A+BC should
not be measured using the regular operator norms �B� and �C�, but instead with the
graph norms �(−A)β

B� and �(−A
∗)γ

C
∗� for suitable exponents β and γ .

In [12] similar methods were used to study the preservation of strong stabil-
ity for semigroups whose generators have spectrum on the imaginary axis. In
particular, it was assumed that for the unperturbed generator A the intersection
σ(A)∩ iR= {iωk}N

k=1 is finite and the norm of the resolvent R(iω,A) grows at most
polynomially near the points {iωk}N

k=1. It was further assumed that for large |ω| the
norm of �R(iω,A)� of the resolvent operator is uniformly bounded. Under these
assumptions, it was shown that the strong stability of the semigroup is preserved
under a finite rank perturbation A+BC provided that the graph norms

�B�+�(iωk −A)−β0B�, and �C�+�(−iωk −A
∗)−γ0C

∗�

for suitable exponents β0,γ0 ≥ 0 are sufficiently small for every k [12, Sec. 2].
In this paper we study a situation that results from combining the assumptions

in [12] with those in [10, 11]. In particular, we assume A has spectrum on iR, and for
large |ω| the norm �R(iω,A)� of the resolvent operator is polynomially bounded.
The main result in this paper generalizes the conditions for preservation of strong
stability given in [12] by not requiring that the norms �R(iω,A)� are uniformly
bounded for large |ω|. For simplicity, we concentrate on a situation where the op-
erator A has a single spectral point σ(A)∩ iR = {0} on the imaginary axis. The
standing assumptions on the unperturbed semigroup T (t) are summarized below.

Assumption 1 Assume A generates a strongly stable semigroup T (t) on a Hilbert

space X, σ(A)∩ iR= {0}, and there exist α0,α > 0, ω0 > 0, MA ≥ 1 such that

�
�R(iω,A)� ≤ MA|ω|−α0 0 < |ω|≤ 1

�R(iω,A)� ≤ MA|ω|α |ω|≥ ω0.

Because 0 ∈ σ(A), we necessarily have α0 ≥ 1 in Assumption 1. Moreover, since
the semigroup T (t) is uniformly bounded, the Mean Ergodic Theorem [2, Sec. 4.3]
implies that 0 ∈ σp(A)∪ σc(A). However, since 0 ∈ σp(A) would contradict the
strong stability of T (t), we must have 0 ∈ σc(A).

Semigroups satisfying Assumption 1 were studied recently in [3], where it was
shown that the conditions on the growth of the resolvent on iR are closely related to
the nonuniform decay rates of the semigroup T (t). In particular, in [3, Thm. 8.4] it
was shown that Assumption 1 is satisfied, then there exists a constant M ≥ 1 such
that
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�T (t)(−A)α0(1−A)−(α0+α)
x� ≤ M

t
�x� ∀x ∈ X , t > 0.

The result also has a converse counterpart, see [3, Thm. 8.4] for details.
The main result of this paper introduces conditions for preservation of the sta-

bility of T (t) under perturbations of the form A + BC where B ∈ L (Y,X), and
C ∈L (X ,Y ) for a separable Hilbert space Y . Since A is injective and R(A) is dense,
the operator −A has a densely defined inverse (−A)−1. The operators −A and −A

∗

sectorial in the sense of [8], and their fractional powers (−A)β and (−A
∗)γ are well-

defined for all β ,γ ∈ R. We also recall that if (ek)∞
k=1 is an orthonormal basis of Y ,

then B ∈ L (Y,X) is said to be a Hilbert–Schmidt operator if (Bek)∞
k=1 ∈ �2(X). We

consider perturbations whose components B and C satisfy

R(B)⊂ R((−A)β0)∩D((−A)β ), R(C∗)⊂ R((−A
∗)γ0)∩D((−A

∗)γ) (1)

for some β0,β ,γ0,γ ≥ 0, and for which

(−A)−β0B, (−A)β
B, (−A

∗)−γ0C
∗, and (−A

∗)γ
C
∗ are Hilbert–Schmidt. (2)

If Y is finite-dimensional, i.e., if the perturbing operator BC is of finite rank, then
the condition (2) follows immediately from (1). The following theorem is the main
result of this paper. The proof of Theorem 2 is presented in Section 2.

Theorem 2. Let Assumption 1 be satisfied and let β0,β ,γ0,γ ≥ 0 be such that α0 =
β0+γ0 and α = β +γ . There exists δ > 0 such that if B∈L (Y,X) and C ∈L (X ,Y )
satisfy (1) and (2) and

�B�+�(−A)−β0B�+�(−A)β
B�< δ , �C�+�(−A

∗)−γ0C
∗�+�(−A

∗)γ
C
∗�< δ ,

then σ(A+BC) ⊂ C− ∪ {0} and 0 ∈ σc(A+BC). Moreover, the semigroup gener-

ated by A+BC is strongly stable and A+BC satisfies the resolvent growth condi-

tions in Assumption 1.

It should also be noted that if the exponents satisfy β0,γ0 ≥ α0 and β ,γ ≥ α , then
the stability of the semigroup is preserved even if the perturbation does not satisfy
the condition (2). Indeed, the uniform boundedness of the perturbed semigroup can
then be proved similarly as in [10, Proof of Thm. 5].

In this paper we also consider the robustness of stability of T (t) under pertur-
bations A+B where B ∈ L (X) commutes with A. In this situation the analysis for
preservation of stability becomes particularly simple. The proof of Theorem 3 is
presented in Section 3.

Theorem 3. Let Assumption 1 be satisfied. There exists δ > 0 such that if B∈L (X)
commutes with A and satisfies R(B)⊂ R((−A)α0)∩D((−A)α) and

�B�+�(−A)−α0B�+�(−A)α
B�< δ ,
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then σ(A+B) ⊂ C− ∪{0} and 0 ∈ σc(A+B). Moreover, the semigroup generated

by A+B is strongly stable and A+B satisfies the resolvent growth conditions in

Assumption 1.

If X and Y are Banach spaces and A : X → Y is a linear operator, we denote
by D(A), R(A), and N (A) the domain, the range, and the kernel of A, respec-
tively. The space of bounded linear operators from X to Y is denoted by L (X ,Y ).
If A : D(A)⊂ X → X , then σ(A), σp(A), σc(A) and ρ(A) denote the spectrum, the
point spectrum, the continuous spectrum and the resolvent set of A, respectively.
For λ ∈ ρ(A) the resolvent operator is given by R(λ ,A) = (λ −A)−1. The inner
product on a Hilbert space is denoted by �·, ·�.

2 Robustness of Stability with Respect to Perturbations A+BC

In this section we present the proof of Theorem 2. In the first part, we study the
change of the spectrum of A under the perturbation A + BC. Subsequently, the
preservation of stability is completed by showing that the perturbed semigroup is
uniformly bounded.

2.1 The Change of the Spectrum of A

The following result concerns the change of the spectrum of A under perturbations
satisfying the assumptions of Theorem 2. However, Theorem 4 does not require
(−A)−β0B, (−A)β

B, (−A
∗)−γ0C

∗, and (−A
∗)γ

C
∗ to be Hilbert–Schmidt operators.

Theorem 4. Assume Y is a Banach space, let Assumption 1 be satisfied and let

β0,β ,γ0,γ ≥ 0 be such that α0 = β0 + γ0 and α = β + γ . There exists δ > 0 such

that if B ∈ L (Y,X) and C ∈ L (X ,Y ) satisfy R(B)⊂ R((−A)β0)∩D((−A)β ) and

R(C∗)⊂ R((−A
∗)γ0)∩D((−A

∗)γ) and

�B�+�(−A)−β0B�+�(−A)β
B�< δ , �C�+�(−A

∗)−γ0C
∗�+�(−A

∗)γ
C
∗�< δ ,

then σ(A+BC) ⊂ C− ∪ {0} and 0 /∈ σp(A+BC). In particular, under the above

conditions we have supλ∈C+\{0} �(I −CR(λ ,A)B)−1�< ∞.

In the proof of Theorem 4 we use the Sherman–Morrison–Woodbury formula
given in the following lemma.

Lemma 1. Let λ ∈ ρ(A), B ∈ L (Y,X), C ∈ L (X ,Y ). If 1 ∈ ρ(CR(λ ,A)B), then

λ ∈ ρ(A+BC) and

R(λ ,A+BC) = R(λ ,A)+R(λ ,A)B(I −CR(λ ,A)B)−1
CR(λ ,A).
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Throughout the paper we use the operators

Λ0 = (−A)(1−A)−1 ∈ L (X) and Λ∞ = (1−A)−1 ∈ L (X).

Both Λ0 and Λ∞ are sectorial, and for β0,β > 0 we have Λ β0
0 = (−A)β0(1−A)−β0 ,

and Λ β
∞ = (1 − A)−β [8, Prop. 3.1.9]. We also have R(Λ β0

0 ) = R((−A)β0) and
R(Λ β

∞ ) =D((−A)β ), and Λ β0
0 and Λ β

∞ have inverses Λ−β0
0 = (1−A)β0(−A)−β0 and

Λ−β
∞ = (1−A)β with domains D(Λ−β0

0 ) =R((−A)β0) and D(Λ−β
∞ ) =D((−A)β ),

respectively. We also define

Λ(α0,α) = Λ α0
0 Λ α

∞ = (−A)α0(1−A)−(α0+α) ∈ L (X).

The operator Λ(α0,α) is injective, and sectorial by [3, Prop. 3.10] and the identity
�
(−A)

α0
α0+α (1−A)−1�α0+α

= (−A)α0(1−A)−(α0+α). The most important compo-
nent in the proof of Theorem 4 is the following fundamental property introduced
recently in [3].

Theorem 5. If Assumption 1 is satisfied, then

sup
λ∈C+\{0}

�R(λ ,A)Λ(α0,α)�< ∞.

Proof. See the proof of Theorem 8.4 in [3]. ��

Lemma 2. Let Y be a Banach space and let β0,β ,γ0,γ ≥ 0. There exists MΛ ≥ 1
such that

�Λ−β0
0 Λ−β

∞ B� ≤ MΛ

�
�(−A)−β0B�+�(−A)β

B�
�

�(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗� ≤ MΛ
�
�(−A

∗)−γ0C
∗�+�(−A

∗)γ
C
∗�
�

whenever B ∈ L (Y,X) and C ∈ L (X ,Y ) satisfy R(B) ⊂ R((−A)β0)∩D((−A)β )
and R(C∗)⊂ R((−A

∗)γ0)∩D((−A
∗)γ).

Proof. We begin by proving the first estimate. If β0 = β = 0, the claim is clearly
true. Let β0,β ≥ 0 be such that β0 + β > 0. We have from [8, Prop. 3.1.9] that
D((−A)β0+β ) = D((1 − A)β0+β ). The operator (1 − A)β0+β is a closed opera-
tor (its inverse is bounded) from the Banach space XA = (D((−A)β0+β ),�·�+
�(−A)β0+β ·�) to X . Since (1−A)β0+β is defined on all of XA, we have from the
Closed Graph Theorem [6, Thm. B.6] that (1−A)β0+β ∈ L (XA,X), which implies
that there exists M

� ≥ 1 such that

�(1−A)β0+β
x� ≤ M

�
�
�x�+�(−A)β0+β

x�
�
, ∀x ∈ D((−A)β0+β ).

If B ∈ L (Y,X) is such that R(B) ⊂ R((−A)β0)∩D((−A)β ), then for every
y ∈ Y we have (−A)−β0By ∈ D((−A)β0+β ) and
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�Λ−β0
0 Λ−β

∞ By�= �(1−A)β0+β (−A)−β0By�

≤ M
�
�
�(−A)−β0By�+�(−A)β0+β (−A)−β0By�

�

= M
�
�
�(−A)−β0By�+�(−A)β

By�
�

Since y ∈ Y was arbitrary, choosing MΛ = M
� concludes the proof of the first es-

timate. Because (Λ−γ0
0 )∗ = (1−A

∗)γ0(−A
∗)−γ0 and (Λ−γ

∞ )∗ = (1−A
∗)γ , the second

estimate can be proved analogously by replacing A with A
∗. ��

Lemma 3. Let Assumption 1 be satisfied and let β0,γ0 ≥ 0 be such that β0+γ0 =α0.

There exists δ � > 0 such that if B ∈ L (Y,X) and C ∈ L (X ,Y ) satisfy R(B) ⊂
R((−A)β0) and R(C∗)⊂ R((−A

∗)γ0) and

�B�+�(−A)−β0B�< δ �
and �C

∗�+�(−A
∗)−γ0C

∗�< δ �,

then 0 ∈ σ(A+BC)\σp(A+BC).

Proof. Choose 0 ≤ β1 ≤ β0 and 0 ≤ γ1 ≤ γ0 in such a way that β1 + γ1 = 1.
Assume �(−A)−β1B� < 1 and �(−A

∗)−γ1C
∗� < 1. Since 0 ≤ γ1 ≤ 1, we have

R(−A) ⊂ R((−A)γ1) ⊂ X , which implies D((−A)−γ1) = X due to the fact that
0 ∈ σc(A). Because of this, the operator C(−A)−γ1 has a unique bounded extension
Cγ1 ∈ L (X ,Y ) with norm �Cγ1�= �(−A

∗)−γ1C
∗�< 1.

Because �(−A)−β1BCγ1�≤�(−A)−β1B��Cγ1�< 1, the operator I−(−A)−β1BCγ1
is boundedly invertible, and

(A+BC)x =−(−A)β1(I − (−A)−β1BCγ1)(−A)γ1x

for all x ∈ D(A+BC) = D(A). Since (−A)β1 and (−A)γ1 are injective and at least
one of them is not surjective, the operator A+BC is injective but not surjective. This
implies 0 ∈ σ(A+BC)\σp(A+BC).

Finally, The Moment Inequality [8, Prop. 6.6.4] implies that there exists δ � > 0
such that �(−A)−β1B� < 1 and �(−A

∗)−γ1C
∗� < 1 are satisfied whenever �B�+

�(−A)−β0B�< δ � and �C�+�(−A
∗)−γ0C

∗�< δ �. ��

Proof of Theorem 4. Let β0,β ,γ0,γ ≥ 0 be such that β0 + γ0 = α0 and β + γ = α .
By Theorem 5 we can define M1 > 0 by

M1 = sup
λ∈C+\{0}

�R(λ ,A)Λ(α0,α)�< ∞.

Let 0 < c < 1, and let MΛ ≥ 1 be as in Lemma 2. We choose

δ = min
� √

c√
M1MΛ

,δ �
�
> 0,

where δ � > 0 is from Lemma 3. Let B ∈ L (Y,X) and C ∈ L (X ,Y ) be such that
R(B)⊂ R((−A)β0)∩D((−A)β ) and R(C∗)⊂ R((−A

∗)γ0)∩D((−A
∗)γ), and
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�B�+�(−A)−β0B�+�(−A)β
B�< δ

�C
∗�+�(−A

∗)−γ0C
∗�+�(−A

∗)γ
C
∗�< δ .

Let x,y ∈ Y be such that �x� = �y� = 1. Then Bx ∈ R((−A)β0)∩D((−A)β ) and
C
∗
y ∈ R((−A

∗)γ0)∩D((−A
∗)γ), and using Λ γ0

0 Λ γ
∞Λ β0

0 Λ β
∞ = Λ α0

0 Λ α
∞ = Λ(α0,α) we

get

|�CR(λ ,A)Bx,y�|= |�Λ γ0
0 Λ γ

∞R(λ ,A)Λ β0
0 Λ β

∞Λ−β0
0 Λ−β

∞ Bx,(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗
y�|

= |�R(λ ,A)Λ(α0,α)Λ
−β0
0 Λ−β

∞ Bx,(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗
y�|

≤ �R(λ ,A)Λ(α0,α)��Λ−β0
0 Λ−β

∞ B��x��(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗��y�

≤ M1M
2
Λ

�
�(−A)−β0B�+�(−A)β

B�
��

�(−A
∗)−γ0C

∗�+�(−A
∗)γ

C
∗�
�

≤ M1M
2
Λ δ 2 ≤ c.

This shows that �CR(λ ,A)B� = sup�x�=�y�=1|�CR(λ ,A)Bx,y�| ≤ c < 1 for all λ ∈
C+ \ {0}. The Sherman–Morrison–Woodbury formula in Lemma 1 therefore con-
cludes that σ(A + BC) ⊂ C− ∪ {0}. We also have 0 ∈ σ(A + BC) \ σp(A + BC)
directly from Lemma 3. Finally, a standard Neumann series argument shows that
for every λ ∈C+ \{0} we have �(I−CR(λ ,A)B)−1� ≤ 1/(1−c), which concludes
the final claim of the theorem. ��

2.2 Preservation of Uniform Boundedness

To show the preservation of strong stability of T (t), we in particular need to show
that the perturbed semigroup is uniformly bounded. For this we use the conditions
in the following theorem (the proof can be found in [7, Thm. 2]).

Theorem 6. Let A generate a semigroup T (t) on a Hilbert space X and let σ(A)⊂
C−. The semigroup T (t) is uniformly bounded if and only if for all x,y ∈ X we have

sup
ξ>0

ξ
� ∞

−∞

�
�R(ξ + iη ,A)x�2 +�R(ξ + iη ,A)∗y�2�

dη < ∞.

The following two lemmata are used in the proof of Theorem 2.

Lemma 4. Assume A generates a uniformly bounded semigroup on a Hilbert space

X. If Y is a separable Hilbert space and if B̃ ∈ L (Y,X) is a Hilbert–Schmidt oper-

ator, then

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)B̃�2

dη < ∞, sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)∗B̃�2

dη < ∞.

Proof. By [14, Rem. 3.2] there exists M > 0 such that
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sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)x�2

dη ≤ M�x�2, sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)∗x�2

dη ≤ M�x�2

for all x ∈ X . If Y is a Hilbert space with an orthonormal basis (ek)∞
k=1 ⊂ Y and if

(B̃ek)∞
k=1 ∈ �2(X), then

∞

∑
k=1

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)B̃ek�2

dη ≤ M

∞

∑
k=1

�B̃ek�2 < ∞.

Moreover, for every R ∈ L (X) we have �RB̃�2 ≤ ∑∞
k=1�RB̃ek�2. Together these

properties imply

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)B̃�2

dη ≤
∞

∑
k=1

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)B̃ek�2

dη < ∞.

The second claim can be shown analogously. ��
Lemma 5. Let Assumption 1 be satisfied, let β0,β ,γ0,γ ≥ 0 satisfy α0 = β0 + γ0
and α = β + γ , and let B ∈ L (Y,X) and C ∈ L (X ,Y ) be such that R(B) ⊂
R((−A)β0)∩D((−A)β ) and R(C∗) ⊂ R((−A

∗)γ0)∩D((−A
∗)γ). Then there ex-

ist constants M0,M∞ ≥ 1 (depending on B and C) such that

�R(λ ,A)B��CR(λ ,A)� ≤ M0�R(λ ,A)Λ−β0
0 Λ−β

∞ B�1−β0/α0

×�R(λ ,A)∗(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗�1−γ0/α0

for λ ∈ C+ \{0} with |Imλ |≤ 1, and

�R(λ ,A)B��CR(λ ,A)� ≤ M∞�R(λ ,A)Λ−β0
0 Λ−β

∞ B�1−β/α

×�R(λ ,A)∗(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗�1−γ/α

for λ ∈ C+ \{0} with |Imλ |≥ 1.

Proof. Assume β0,β ,γ0,γ > 0. The remaining cases are simpler and can be handled
similarly as in [12, Lem. 19]. In the proof of [3, Thm. 8.4] it was shown that

sup
|ω|≤1

�R(iω,A)Λ α0
0 �< ∞, and sup

|ω|≥1
�R(iω,A)Λ α

∞ �< ∞.

Since T (t) is uniformly bounded, the Hille–Yosida Theorem shows that there exists
M̃ ≥ 1 such that |Reλ |�R(λ ,A)� ≤ M̃ for all λ ∈ C+. Using this and the resolvent
identity R(λ ,A) = R(iω,A)+(iω −λ )R(λ ,A)R(iω,A) we have that for every λ =
ξ + iω with ξ > 0 and |ω|≥ 1 we have

�R(λ ,A)Λ α
∞ � ≤ �R(iω,A)Λ α

∞ �+ |ξ |�R(λ ,A)��R(iω,A)Λ α
∞ �

≤ (1+ M̃)�R(iω,A)Λ α
∞ �,

and if ξ > 0 and 0 < |ω|≤ 1, we have
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�R(λ ,A)Λ α0
0 � ≤ �R(iω,A)Λ α0

0 �+ |ξ |�R(λ ,A)��R(iω,A)Λ α0
0 �

≤ (1+ M̃)�R(iω,A)Λ α0
0 �.

Finally, if ω = 0, we can use α0 ≥ 1 to estimate

�R(λ ,A)Λ α0
0 �= �R(ξ ,A)(−A)(1−A)−1Λ α0−1

0 �

≤ (1+ |ξ |�R(ξ ,A)�)�(1−A)−1��Λ α0−1
0 � ≤ (1+M

�)�(1−A)−1��Λ α0−1
0 �.

These estimates conclude that we can define M1,M2 > 0 by

M1 = sup
λ∈C+\{0}
|Im(λ )|≤1

�Λ α0
0 R(λ ,A)�< ∞ and M2 = sup

λ∈C+\{0}
|Im(λ )|≥1

�Λ α
∞ R(λ ,A)�< ∞.

Denote B(β0,β ) = Λ−β0
0 Λ−β

∞ B and C̃(γ0,γ) = (Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗. For λ ∈ C+ \{0}
with |Imλ |≤ 1 we can use the Moment Inequality [8, Prop. 6.6.4] to estimate (de-
noting Rλ = R(λ ,A) for brevity)

�Rλ B�= �Λ β0
0 Λ β

∞ Rλ Λ−β0
0 Λ−β

∞ B� ≤ �Λ β
∞��Λ β0

0 Rλ B(β0,β )�

≤ M
��Λ β

∞��Rλ B(β0,β )�
1−β0/α0�Λ α0

0 Rλ B(β0,β )�
β0/α0

≤ M
�
M

β0/α0
1 �Λ β

∞��B(β0,β )�
β0/α0�Rλ B(β0,β )�

1−β0/α0

and using �CRλ�= �R
∗
λC

∗� we get

�CRλ�= �(Λ γ0
0 )∗(Λ γ

∞)
∗
R
∗
λ (Λ

−γ0
0 )∗(Λ−γ

∞ )∗C∗� ≤ �Λ γ
∞��(Λ ∗

0 )
γ0R

∗
λC̃(γ0,γ)�

≤ M
���Λ γ

∞��R
∗
λC̃(γ0,γ)�

1−γ0/α0�(Λ α0
0 )∗R

∗
λC̃(γ0,γ)�

γ0/α0

≤ M
��
M

γ0/α0
1 �Λ γ

∞��C̃(γ0,γ)�
γ0/α0�R

∗
λC̃(γ0,γ)�

1−γ0/α0 ,

where M
�,M�� ≥ 1 follow from the Moment Inequality [8, Prop. 6.6.4], and are in-

dependent of B, C, and λ . We have β0 + γ0 = α0 by assumption and if we choose

M0 = M
�
M

��
M1�Λ β

∞��B(β0,β )�
β0/α0�Λ γ

∞��C̃(γ0,γ)�
γ0/α0 ,

then the first estimate in the lemma is concluded.
On the other hand, for λ ∈ C+ \{0} with |Imλ |≥ 1 we have

�Rλ B�= �Λ β0
0 Λ β

∞ Rλ Λ−β0
0 Λ−β

∞ B� ≤ �Λ β0
0 ��Λ β

∞ Rλ B(β0,β )�

≤ M
����Λ β0

0 ��Rλ B(β0,β )�
1−β/α�Λ α

∞ Rλ B(β0,β )�
β/α

≤ M
���

M
β/α
2 �Λ β0

0 ��B(β0,β )�
β/α�Rλ B(β0,β )�

1−β/α

and
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�CRλ�= �(Λ γ0
0 )∗(Λ γ

∞)
∗
R
∗
λ (Λ

−γ0
0 )∗(Λ−γ

∞ )∗C∗� ≤ �Λ γ0
0 ��(Λ ∗

∞)
γ
R
∗
λC̃(γ0,γ)�

≤ M
�����Λ γ0

0 ��R
∗
λC̃(γ0,γ)�

1−γ/α�(Λ α
∞ )∗R

∗
λC̃(γ0,γ)�

γ/α

≤ M
����

M
γ/α
2 �Λ γ0

0 ��C̃(γ0,γ)�
γ/α�R

∗
λC̃(γ0,γ)�

1−γ/α

where again M
���,M���� ≥ 1 follow from the Moment Inequality [8, Prop. 6.6.4], and

are independent of B, C, and λ . If we choose (and use β + γ = α)

M0 = M
���

M
����

M2�Λ β0
0 ��B(β0,β )�

β/α�Λ γ0
0 ��C̃(γ0,γ)�

γ/α ,

we arrive at the second estimate in the lemma. ��

Proof of Theorem 2. Let δ > 0 be as in Theorem 4. Assume B ∈ L (Y,X) and
C ∈ L (X ,Y ) satisfy R(B) ⊂ R((−A)β0)∩D((−A)β ), R(C∗) ⊂ R((−A

∗)γ0)∩
D((−A

∗)γ), �B�+ �(−A)−β0B�+ �(−A)β
B� < δ , and �C�+ �(−A

∗)−γ0C
∗�+

�(−A
∗)γ

C
∗� < δ , and assume (−A)−β0B, (−A)β

B, (−A
∗)−γ0C

∗ and (−A
∗)γ

C
∗

are Hilbert–Schmidt operators. By Theorem 4 we can choose MD ≥ 1 such that
�(I −CR(λ ,A)B)−1� ≤ MD for all λ ∈ C+ \ {0}. We begin the proof by showing
that the semigroup generated by A+BC is uniformly bounded.

Let x ∈ X and denote Rλ = R(ξ + iη ,A) and Dλ = I −CR(ξ + iη ,A)B. Using
the Sherman–Morrison–Woodbury formula in Lemma 1 and the scalar inequality
(a+b)2 ≤ 2(a2 +b

2) for a,b ≥ 0 we get

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A+BC)x�2

dη = sup
ξ>0

ξ
� ∞

−∞
�Rλ x+Rλ BD

−1
λ CRλ x�2

dη

≤ 2sup
ξ>0

ξ
� ∞

−∞

�
�Rλ x�2 +�Rλ B�2�D

−1
λ �2�CRλ�2�x�2�

dη

≤ 2sup
ξ>0

ξ
� ∞

−∞
�Rλ x�2

dη +2M
2
D
�x�2 sup

ξ>0
ξ
� ∞

−∞
�Rλ B�2�CRλ�2

dη .

Similarly, using �(Rλ BD
−1
λ CRλ )

∗�= �Rλ BD
−1
λ CRλ� ≤ MD�Rλ B��CRλ� we get

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A+BC)∗x�2

dη = sup
ξ>0

ξ
� ∞

−∞
�R

∗
λ x+(Rλ BD

−1
λ CRλ )

∗
x�2

dη

≤ 2sup
ξ>0

ξ
� ∞

−∞
�R

∗
λ x�2

dη +2M
2
D
�x�2 sup

ξ>0
ξ
� ∞

−∞
�Rλ B�2�CRλ�2

dη .

In both cases the first supremums are finite by Theorem 6. Because of this, The-
orem 6 implies that in order to show that the semigroup generated by A+BC is
uniformly bounded, it is sufficient to prove that

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)B�2�CR(ξ + iη ,A)�2

dη < ∞. (3)
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Let M0,M∞ ≥ 1 be as in Lemma 5 and denote B(β0,β ) =Λ−β0
0 Λ−β

∞ B and C̃(γ0,γ) =

(Λ−γ0
0 )∗(Λ−γ

∞ )∗C∗. If (ek)∞
k=1 is an orthonormal basis of Y , then as in the proof of

Lemma 2 we can see that

�B(β0,β )ek�2 ≤ 2M
2
Λ

�
�(−A)−β0 Bek�2 +�(−A)β

Bek�2
�
,

�C̃(γ0,γ)ek�2 ≤ 2M
2
Λ
�
�(−A

∗)−γ0C
∗
ek�2 +�(−A

∗)γ
C
∗
ek�2� .

Since (−A)−β0B, (−A)β
B, (−A

∗)−γ0C
∗, and (−A

∗)γ
C
∗ are Hilbert–Schmidt by as-

sumption, the above estimates imply that also B(β0,β ) and C̃(γ0,γ) are Hilbert–Schmidt.
Assume β0,β ,γ0,γ > 0. The remaining cases are simpler and can be handled

similarly as in [12, Lem. 19]. By assumption, we have 1− β0/α0 + 1− γ0/α0 =
2− (β0 + γ0)/α0 = 1. If we choose q = 1/(1−β0/α0) and r = 1/(1− γ0/α0), then
the Hölder inequality and Lemma 4 imply that

sup
ξ>0

ξ
� 1

−1
�R(ξ + iη ,A)B�2�CR(ξ + iη ,A)�2

dη

≤ M
2
0 sup

ξ>0
ξ
� 1

−1
�R(ξ + iη ,A)B(β0,β )�

2(1− β0
α0

)�R(ξ + iη ,A)∗C̃(γ0,γ)�
2(1− γ0

α0
)
dη

≤ M
2
0

�
sup
ξ>0

ξ
� −1

−1
�R(ξ + iη ,A)B(β0,β )�

2
dη

�
q
�

sup
ξ>0

ξ
� −1

−1
�R(ξ + iη ,A)∗C̃(γ0,γ)�

2
dη

�
r

is finite. Moreover, 1 − β/α + 1 − γ/α = 2 − (β + γ)/α = 1, and if we choose
q = 1/(1−β/α) and r = 1/(1− γ/α), then by the Hölder inequality and Lemma 4

sup
ξ>0

ξ
�

|η |≥1
�R(ξ + iη ,A)B�2�CR(ξ + iη ,A)�2

dη

≤ M
2
∞ sup

ξ>0
ξ
�

|η |≥1
�R(ξ + iη ,A)B(β0,β )�

2(1− β
α )�R(ξ + iη ,A)∗C̃(γ0,γ)�

2(1− γ
α )

dη

≤ M
2
∞

�
sup
ξ>0

ξ
�

|η |≥ 1
�R(ξ + iη ,A)B(β0,β )�

2
dη

�
q
�

sup
ξ>0

ξ
�

|η |≥ 1
�R(ξ + iη ,A)∗C̃(γ0,γ)�

2
dη

�
r

is finite. Combining the above estimates yields

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)B�2�CR(ξ + iη ,A)�2

dη

≤ sup
ξ>0

ξ
� 1

−1
�R(ξ + iη ,A)B�2�CR(ξ + iη ,A)�2

dη

+ sup
ξ>0

ξ
�

|η |≥1
�R(ξ + iη ,A)B�2�CR(ξ + iη ,A)�2

dη < ∞.
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This concludes (3), and thus the semigroup generated by A + BC is uniformly
bounded.

Since the perturbed semigroup is uniformly bounded and X is a Hilbert space, the
Mean Ergodic Theorem [2, Sec. 4.3] shows that σ(A+BC)∩ iR ⊂ σp(A+BC)∪
σc(A+BC). In addition, by Theorem 4 we have that σp(A+BC)∩ iR = ∅, 0 ∈
σ(A+BC), and iR\{0} ⊂ ρ(A+BC). We must therefore have σ(A+BC)∩ iR =
σc(A+BC)∩ iR= {0}. Since the set σ(A+BC)∩ iR= {0} finite and since we have
σp(A+BC)∩ iR=∅, the Arent–Batty–Lyubich–Vũ Theorem [1, 9] concludes that
the semigroup generated by A+BC is strongly stable.

It remains to show that the resolvent operator R(λ ,A+BC) satisfies

sup
0<|ω|≤1

|ω|α0�R(iω,A+BC)�< ∞ and sup
|ω|≥1

|ω|−α�R(iω,A+BC)�< ∞. (4)

The Sherman–Morrison–Woodbury formula in Lemma 1 implies that

�R(iω,A+BC)�= �R(iω,A)+R(iω,A)B(I −CR(iω,A)B)−1
CR(iω,A)�

≤ �R(iω,A)�+�R(iω,A)B��(I −CR(iω,A)B)−1��CR(iω,A)�
≤ �R(iω,A)�+MD�R(iω,A)B��CR(iω,A)�

for all ω ∈R\{0}. Since β0/α0 + γ0/α0 = 1, for 0 < |ω|≤ 1 the previous estimate
together with Lemma 5 and Assumption 1 imply

|ω|α0�R(iω,A+BC)� ≤ |ω|α0�R(iω,A)�+ |ω|α0MD�R(iω,A)B��CR(iω,A)�

≤ |ω|α0�R(iω,A)�+MDM0�B(β0,β )�
β0/α0�C̃(γ0,γ)�

γ0/α0 |ω|α0�R(iω,A)�

≤ MA +MDM0�B(β0,β )�
β0/α0�C̃(γ0,γ)�

γ0/α0MA < ∞.

Since the bound is independent of ω , this concludes the first part of (4). On the other
hand, if |ω|≥ 1, then we similarly have

|ω|−α�R(iω,A+BC)� ≤ |ω|−α�R(iω,A)�+ |ω|−α
MD�R(iω,A)B��CR(iω,A)�

≤
�

1+MDM∞�B(β0,β )�
β/α�C̃(γ0,γ)�

γ/α
�
|ω|−α�R(iω,A)�

≤
�

1+MDM∞�B(β0,β )�
β/α�C̃(γ0,γ)�

γ/α
�

MA,

since β/α + γ/α = 1. This concludes the proof. ��

3 Robustness of Stability with Respect to Perturbations

Commuting with A

In this section we prove Theorem 3. We begin with an auxiliary lemma.
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Lemma 6. Let Assumption 1 be satisfied. There exists δ � > 0 such that if B ∈L (X)
commutes with A, satisfies R(B)⊂ R((−A)α0), and �B�+�(−A)−α0B�< δ �, then

0 ∈ σc(A+B).

Proof. Since α0 ≥ 1, we have R(B)⊂ R((−A)α0)⊂ R(A). Assume B is such that
�A

−1
B� < 1. Then the operator I +A

−1
B is boundedly invertible and (A+B)x =

A(I +A
−1

B)x for all x ∈ D(A+B) = D(A). Since A is injective, we have that 0 /∈
σp(A+B). Moreover, R(A+B) = R(A) �= X and R(A+B) = R(A) = X . This
concludes that 0 ∈ σc(A+B) if �A

−1
B� < 1. If α0 = 1, we can choose δ � = 1 and

the proof is concluded. On the other hand, if α0 > 1, the Moment Inequality [8,
Prop. 6.6.4] implies that there exists M

� ≥ 1 (independent of B) such that

�A
−1

B�= �(−A)−1
B� ≤ M

��B�1−1/α0�(−A)−α0B�1/α0

≤ M
�(max{�B�,�(−A)−α0B�})1−1/α0(max{�B�,�(−A)−α0B�})1/α0

≤ M
� max{�B�,�(−A)−α0B�}≤ M

�(�B�+�(−A)−α0B�).

In this situation we can therefore choose δ � = 1/M
� > 0. ��

Proof of Theorem 3. We can define M1 = supλ∈C+\{0}�R(λ ,A)Λ(α0,α)�<∞ by The-
orem 5. Since Λ−1

(α0,α) = Λ−α0
0 Λ−α

∞ , by Lemma 2 there exists MΛ ≥ 1 such that

�Λ−1
(α0,α)B� ≤ MΛ

�
�(−A)−α0B�+�(−A)α

B�
�

for all B ∈ L (X) satisfying R(B) ⊂ R((−A)α0)∩D((−A)α). Let 0 < c < 1 and
choose δ = min

�
c

M1MΛ
,δ �

�
> 0, where δ � > 0 is from Lemma 6. Let B ∈ L (X)

satisfy R(B)⊂R((−A)α0)∩D((−A)α) and �B�+�(−A)−α0B�+�(−A)α
B�< δ .

We then have from Lemma 6 that 0 ∈ σc(A+B). Moreover, for every λ ∈C+ \{0}
we have

�BR(λ ,A)�= �BΛ−1
(α0,α)Λ(α0,α)R(λ ,A)� ≤ �Λ−1

(α0,α)B��R(λ ,A)Λ(α0,α)�

≤ MΛ
�
�(−A)α

B�+�(−A)−α0B�
�

M1 < M1MΛ δ ≤ c < 1.

Because of this, I −BR(λ ,A) is invertible for all λ ∈ C+ \{0} and a standard Neu-
mann series argument shows that �(I −BR(λ ,A))−1� ≤ 1/(1− c). Since

R(λ ,A+B) = R(λ ,A)(I −BR(λ ,A))−1 = (I −BR(λ ,A))−1
R(λ ,A),

this in particular concludes that σ(A+BC)⊂ C− ∪{0}.
To prove the uniform boundedness of the semigroup generated by A + B, let

x ∈ X and denote Dλ = I −BR(ξ + iη ,A) for λ = ξ + iη . As we saw above, there
exists MD ≥ 1 such that �D

−1
λ � ≤ MD for all λ ∈ C+ \ {0}. Using R(λ ,A+B) =

D
−1
λ R(λ ,A) = R(λ ,A)D−1

λ we get
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sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A+B)x�2

dη = sup
ξ>0

ξ
� ∞

−∞
�D

−1
λ R(ξ + iη ,A)x�2

dη

≤ M
2
D

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)x�2

dη < ∞,

and

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A+B)∗x�2

dη = sup
ξ>0

ξ
� ∞

−∞
�D

−∗
λ R(ξ + iη ,A)∗x�2

dη

≤ M
2
D

sup
ξ>0

ξ
� ∞

−∞
�R(ξ + iη ,A)∗x�2

dη < ∞.

Theorem 6 concludes that the semigroup generated by A+B is uniformly bounded.
Since σ(A+B)⊂C−∪{0} and 0 ∈ σc(A+B), the Arent–Batty–Lyubich–Vũ The-
orem [1, 9] further implies that the semigroup generated by A+B is strongly stable.

It remains to prove that the resolvent operator R(λ ,A+B) satisfies the conditions
in Assumption 1. For all iω ∈ iR\{0} we have an estimate

�R(iω,A+B)�= �R(iω,A)(I −BR(iω,A))−1� ≤ MD�R(iω,A)�,

which together with Assumption 1 immediately implies

sup
0<|ω|≤1

|ω|α0�R(iω,A+B)� ≤ MD sup
0<|ω|≤1

|ω|α0�R(iω,A)�< ∞

sup
|ω|≥1

|ω|−α�R(iω,A+B)� ≤ MD sup
|ω|≥1

|ω|−α�R(iω,A)�< ∞.

This concludes the proof. ��

4 A Diagonal Example

In this section we present an example on perturbation of a strongly stable semigroup
T (t) generated by a diagonal operator. Let X = �2(C) and define

Ax =
−1

∑
k=−∞

1
k
�x,ek�ek +

∞

∑
k=1

�
− 1

kα + ik
�
�x,ek�ek,

D(A) =
�

x ∈ X

���
∞

∑
k=1

|k|2|�x,ek�|2 < ∞
�

where {ek}k∈Z are the natural basis vectors of X and α > 0. The operator A generates
a strongly stable semigroup T (t) and satisfies σ(A)∩ iR = {0} ⊂ σc(A). Since for
0 < |ω| ≤ 1 we have �R(iω,A)� = dist(iω,σ(A))−1 = |ω|−1, and �R(iω,A)� =
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O(|ω|α) for large |ω|, the conditions of Assumption 1 are satisfied for α0 = 1 and
α > 0.

For β ≥ 0 fractional domains of −A are given by

D((−A)β ) =
�

x ∈ X

���
∞

∑
k=1

|k|2β |�x,ek�|2 < ∞
�
,

and for x∈D((−A)β ) we have an estimate (since |−1/k
α + ik|2 = 1/k

2α +k
2 ≤ 2k

2)

�(−A)β
x�2 =

−1

∑
k=−∞

1
|k|2β |�x,ek�|2 +

∞

∑
k=1

����−
1

kα + ik

����
2β

|�x,ek�|2

≤
−1

∑
k=−∞

|�x,ek�|2 +2β
∞

∑
k=1

k
2β |�x,ek�|2.

On the other hand, for β0 ≥ 0 we have

R((−A)β0) =
�

x ∈ X

���
−1

∑
k=−∞

|k|2β0 |�x,ek�|2 < ∞
�
,

and for every x ∈ R((−A)β0) we can estimate

�(−A)−β0x�2 =
−1

∑
k=−∞

|k|2β0 |�x,ek�|2 +
∞

∑
k=1

����−
1

kα + ik

����
−2β0

|�x,ek�|2

≤
−1

∑
k=−∞

|k|2β0 |�x,ek�|2 +
∞

∑
k=1

|�x,ek�|2

since |−1/k
α + ik|2 = 1/k

2α + k
2 ≥ 1 for all k ∈ N. Because

A
∗
x =

−1

∑
k=−∞

1
k
�x,ek�ek +

∞

∑
k=1

�
− 1

kα − ik
�
�x,ek�ek

with domain D(A∗) = D(A), we similarly have

�(−A
∗)γ

x�2 ≤
−1

∑
k=−∞

|�x,ek�|2 +2γ
∞

∑
k=1

k
2γ |�x,ek�|2

�(−A
∗)−γ0x�2 ≤

−1

∑
k=−∞

|k|2γ0 |�x,ek�|2 +
∞

∑
k=1

|�x,ek�|2.

We consider the preservation of the strong stability of T (t) under a rank one
perturbations A+�·,c�b with b,c ∈ X . Theorem 2 together with the earlier estimates
implies that the semigroup generated by the A+ �·,c�b is strongly stable if for some
β0,β ,γ0,γ ≥ 0 satisfying β0 + γ0 = 1 and β + γ = α the weighted norms
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−1

∑
k=−∞

|k|2β0 |�b,ek�|2 +
∞

∑
k=1

k
2β |�b,ek�|2 and

−1

∑
k=−∞

|k|2γ0 |�c,ek�|2 +
∞

∑
k=1

k
2γ |�c,ek�|2

are finite and sufficiently small.

5 Conclusions

In this paper we have studied the preservation of strong stability of a semigroup T (t)
under perturbations of its generator A. The results have applications in the study of
the asymptotic behaviour of linear partial differential equations. We have limited
our attention to a situation where the generator A has a single finite spectral point
on the imaginary axis. However, the techniques in [12] can be used to extend the
results in this paper to the case where A has a finite number of spectral points on iR,
and the resolvent operator �R(iω,A)� is polynomially bounded for large |ω|.

Acknowledgement: The author is grateful to Yuri Tomilov for suggesting the ex-
tension of Theorem 2 from finite rank perturbations to perturbations where B and C

are Hilbert–Schmidt operators.
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