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Abstract: In this paper we study output regulation of distributed parameter systems with
infinite-dimensional exosystems. The purpose of the paper is to find simple and minimal
conditions on the signal generator under which the solvability of the output regulation problem
can be characterized by the solvability of the regulator equations. We also study the properties
of the dynamic steady state of the closed-loop system and the uniqueness of the solution of
Sylvester operator equations. The presented results have applications in robust regulation of
infinite-dimensional systems.
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1. INTRODUCTION

The topic of this paper is the output regulation theory
for infinite-dimensional linear systems, see Byrnes et al.
[2000], Hämäläinen and Pohjolainen [2010], Paunonen and
Pohjolainen [2010]. In particular we are interested in
extending the theory and the existing main results for
more general exosystems. This generalization allows us to
consider a larger class of reference and disturbance signals
in connection with the problems of output tracking and
disturbance rejection. In many applications, such as in
control of robot arms, disk drive systems, and magnetic
power supplies for proton synchrotrons [Yamamoto, 1993,
and references therein], it is necessary to track nonsmooth
functions with high accuracy. In order to generate such
reference signals, we must in particular consider infinite-
dimensional exosystems.

The novelty of this paper is that — instead of considering
infinite-dimensional exosystems of certain types — we
impose minimal conditions on the signal generator and
study the consequences of such assumptions. In particular
we are interested in the well-known result that for finite-
dimensional and for certain classes of infinite-dimensional
exosystems the solvability of the output regulation prob-
lem can be characterized using the solvability of the regu-
lator equations of the form, see Byrnes et al. [2000]

ΣS = AeΣ +Be (1a)

0 = CeΣ +De. (1b)

Here the operators Ae, Be, Ce, and De are parameters
of the closed-loop system consisting of the plant and
the controller. The operator S is the system operator of
the exosystem generating the reference and disturbance
signals, i.e.,

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)

yref(t) = Fv(t). (2b)

In this paper we consider a very general situation in which
the exosystem is an infinite-dimensional linear system on
a Banach space W and where S generates a strongly
continuous semigroup TS(t).

The main motivation for this study is that the regulator
equations (1) are an important theoretical tool in the study
of the robust output regulation problem, where the control
law is required to achieve output tracking and disturbance
rejection despite uncertainties and perturbations in the
parameters of the plant. Recently, in Paunonen and Pohjo-
lainen [2010] the internal model principle of Francis and
Wonham was generalized to distributed parameter systems
and infinite-dimensional block-diagonal exosystems. The
results presented in the current paper are a crucial step
in further extending the internal model principle for more
general classes of reference and disturbance signals.

In most of the theory concerning control of distributed
parameter systems, the exosystem (2) is assumed to be
a finite-dimensional system on W = Cq. More recently
in Immonen [2007], Hämäläinen and Pohjolainen [2010],
Paunonen and Pohjolainen [2010] the output regulation
problem has been studied for certain types of infinite-
dimensional signal generators on separable Hilbert spaces
and more general Banach spaces. The main purpose of
this paper is to study the problem of output tracking and
disturbance rejection of a distributed parameter system in
the case where we only assume that the signals generated
by the exosystem (2) do not decay asymptotically.

We also study the implications of such nondecay conditions
on the results concerning output regulation and on the
regulator equations (1). In particular we show that if the
semigroup generated by Ae in (1a) is strongly stable, then
a suitable nondecay condition on the semigroup TS(t) can
be used to show that the Sylvester equation (1a) can have
at most one bounded solution Σ.



In Hämäläinen and Pohjolainen [2010], Paunonen and
Pohjolainen [2010] the development of the theory of robust
output regulation made use of the dynamic steady state
of the closed-loop system. More precisely, it was shown
that the asymptotic behavior of the state xe(t) of a stable
closed-loop system satisfies

xe(t) ∼ Σv(t),

for large t. Here Σ is the solution of the Sylvester equa-
tion (1a) and v(t) is the state of the exosystem (2). We will
show that this concept of a dynamic steady state is indeed
well-defined by showing that even if the solution of the
Sylvester equation (1a) might be nonunique, the different
solutions still lead to the same dynamic steady state.

In Section 7 we present some sufficient conditions for
assumptions on the exosystem. In particular we show that
any exosystem generating almost periodic signals and the
exosystem studied in Paunonen and Pohjolainen [2010,
Submitted] satisfy the nondecay conditions.

2. MATHEMATICAL PRELIMINARIES

If X and Y are Banach spaces and A : X → Y is a
linear operator, we denote by D(A) the domain of A.
The space of bounded linear operators from X to Y is
denoted by L(X,Y ). If A : X → X, then σ(A), σp(A),
σc(A) and ρ(A) denote the spectrum, the point spectrum,
the continuous spectrum and the resolvent set of A,
respectively. For λ ∈ ρ(A) the resolvent operator is given
byR(λ,A) = (λI −A)−1. The dual pair on a Banach space
and the inner product on a Hilbert space are both denoted
by 〈·, ·〉.
In this paper we consider a linear system

ẋ(t) =Ax(t) +Bu(t) + w(t), x(0) = x0 ∈ X
y(t) =Cx(t) +Du(t)

where x(t) ∈ X is the state of the system, y(t) ∈ Y is
the output, and u(t) ∈ U the input. The spaces X, U and
Y are general Banach spaces. Here w(t) ∈ X denotes the
disturbance signal to the state of the plant. We assume
that A : D(A) ⊂ X → X generates a C0-semigroup on
X and the other operators are bounded, B ∈ L(U,X),
C ∈ L(X,Y ), D ∈ L(U, Y ).

The reference signal yref(t) to be tracked and distur-
bance signal w(t) are generated using a possibly infinite-
dimensional exosystem

v̇(t) = Sv(t) v(0) = v0 ∈W (3a)

yref(t) = Fv(t) (3b)

w(t) = Ev(t) (3c)

on a Banach space W . We assume S generates a strongly
continuous semigroup TS(t) on W and that E ∈ L(W,X)
and F ∈ L(W,Y ).

The dynamic feedback controller on a Banach space Z is
of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z
u(t) =Kz(t)

where e(t) = y(t) − yref(t) is the regulation error, the
operator G1 : D(G1) ⊂ Z → Z generates a C0-semigroup
on Z, G2 ∈ L(Y,Z) and K ∈ L(Z,U).

The closed-loop system consisting of the plant and the
controller is a linear system on the space Xe = X × Z
with state xe(t) = (x(t), z(t))T . This system is described
by equations

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 =

[
x0
z0

]
(4a)

e(t) = Cexe(t) +Dev(t), (4b)

where Ce = [C DK], De = −F ,

Ae =

[
A BK
G2C G1 + G2DK

]
and Be =

[
E
−G2F

]
and the operator Ae : D(A)×D(G1) ⊂ Xe → Xe generates
a C0-semigroup Te(t) on Xe.

We remark that the results studied in this paper are
represented using only the parameters of the closed-loop
system. Therefore they continue to hold for any type of
controller which can be written with the plant in the
closed-loop form similar to (4). These include, for example,
control laws incorporating state feedback.

3. THE MOTIVATING PROBLEM: OUTPUT
REGULATION

The main control problem studied in this paper is stated
as follows.

The Output Regulation Problem. Choose the parameters
(G1,G2,K) of the error feedback controller in such a way
that the following are satisfied:

(a) The closed-loop system operator Ae generates a
strongly stable semigroup on Xe;

(b) For all initial states v0 ∈ W and xe0 ∈ Xe the
output of the plant tracks the reference signal yref(t)
asymptotically, i.e.,

lim
t→∞

‖y(t)− yref(t)‖ = 0.

As we already discussed in the introduction, it is well-
known that in the case of finite-dimensional and cer-
tain infinite-dimensional exosystems the solvability of
the output regulation problem can be characterized us-
ing the solvability of the so-called regulator equations,
see Byrnes et al. [2000], Hämäläinen and Pohjolainen
[2010], Paunonen and Pohjolainen [2010]. In this paper we
study the same result for more general infinite-dimensional
exosystems. We now state the basic form of this theorem,
and in the next section we discuss the minimal conditions
under which the theorem remains valid.

Theorem 1. Assume that the controller (G1,G2,K) is such
that Ae generates a strongly stable C0-semigroup on Xe

and that the Sylvester equation

ΣS = AeΣ +Be (5)

has a solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂ D(Ae).
Then the following are equivalent:

(a) The controller (G1,G2,K) solves the output regula-
tion problem.

(b) The solution Σ of the Sylvester equation (5) satisfies

CeΣ +De = 0. (6)

Together the operators equations (5) and (6) are com-
monly known as the regulator equations.



4. A NONDECAY CONDITION FOR THE
EXOSYSTEM

In this section we present general conditions under which
the characterization of the solvability of the output reg-
ulation problem presented in Theorem 1 remains valid.
It turns out that for a general exosystem on a Banach
space W , it is sufficient to assume that regardless of the
choice of the operator F , the exosystem (3) may not gen-
erate reference signals that decay to zero asymptotically.
This is precisely the content of the next definition.

Definition 2. The exosystem (3) is said to satisfy the
nondecay condition if for all Q ∈ L(W,Y ) and all v0 ∈ W
we have

QTS(t)v0
t→∞−→ 0 ⇒ QTS(t0)v0 = 0 ∀t0 ≥ 0. (7)

We will now show that Theorem 1 is true for exosystems
satisfying the nondecay condition in Definition 2. For this
we follow the treatment presented in Hämäläinen and
Pohjolainen [2010], Paunonen and Pohjolainen [2010], and
use the concept of the dynamic steady state to study
the asymptotic behaviours of the state of the closed-loop
system and of the regulation error.

4.1 The Dynamic Steady State

In this section we show that the solution of the Sylvester
equation (5) can be used to express the state of the
closed-loop system and the corresponding regulation error
e(t) = y(t)− yref(t). These formulas can be used to study
the asymptotic behaviours of the state of the closed-loop
system and of the regulation error and to ultimately prove
Theorem 1 at the end of the section.

Theorem 3. Let Σ ∈ L(W,Xe) be a solution of the
Sylvester equation (5). Then for all initial states xe0 ∈ Xe

and v0 ∈ W and for all t ≥ 0 the state of the closed-loop
system and the regulation error can be written as

xe(t) = Te(t)(xe0 − Σv0) + Σv(t) (8)

e(t) = CeTe(t)(xe0 − Σv0) + (CeΣ +De)v(t). (9)

Proof. If Σ(D(S)) ⊂ D(Ae) and if the Sylvester equa-
tion (5) is satisfied, we have for any v ∈ D(S) and for all
t > s

Te(t− s)BeTS(s)v = Te(t− s)(ΣS −AeΣ)TS(s)v

= − Te(t− s)AeΣTS(s)v + Te(t− s)ΣSTS(s)v

=
d

ds
(Te(t− s)ΣTS(s)v) .

Integrating both sides of this equation from 0 to an
arbitrary t > 0 gives∫ t

0

Te(t− s)BeTS(s)vds = ΣTS(t)v − Te(t)Σv. (10)

Since the operators on both sides of this equation are in
L(W,Xe) and since D(S) is dense in W , we have that (10)
holds for all v ∈W and t > 0.

For all xe0 ∈ Xe and v0 ∈W the mild state of the closed-
loop system is given by

xe(t) = Te(t)xe0 +

∫ t

0

Te(t− s)BeTS(s)v0ds.

We can now use (10) to conclude that

xe(t) = Te(t)xe0 + ΣTS(t)v0 − Te(t)Σv0
= Te(t)(xe0 − Σv0) + ΣTS(t)v0.

The regulation error is therefore given by

e(t) = Cexe(t) +Dev(t)

= CeTe(t)(xe0 − Σv0) + (CeΣ +De)v(t).

2

The formula (8) also allows us to describe the asymptotic
behavior of a stable closed-loop system. Indeed, if the
closed-loop system is strongly stable, then the first term
on the right-hand side of (8) decays to zero for all initial
states of the closed-loop system and the signal generator.
Therefore the state of a strongly stable closed-loop system
behaves asymptotically as

xe(t) ∼ Σv(t).

For this reason, we call the mapping t 7→ Σv(t) a dy-
namic steady state of the closed-loop system. Likewise,
for a strongly stable closed-loop system the formula (9)
analogously shows that the asymptotic behavior of the
regulation error is given by

e(t) ∼ (CeΣ +De)v(t). (11)

This expression also shows very clearly that the role of
the regulation constraint (6) in Theorem 1 is to force the
asymptotic behaviour of the regulation error to be zero.

The above properties of the dynamic steady state of
the closed-loop system are summarized in the following
corollary.

Corollary 4. Assume that the closed-loop system is strong-
ly stable and that Σ ∈ L(W,Xe) is a solution of the
Sylvester equation (5). Then for all initial states xe0 ∈ Xe

and v0 ∈ W of the closed-loop system and the signal
generator the state of the closed-loop system and the
regulation error satisfy

lim
t→∞

‖xe(t)− Σv(t)‖ = 0 (12a)

lim
t→∞

‖e(t)− (CeΣ +De)v(t)‖ = 0. (12b)

So far we have not needed any assumptions on the ex-
osystem generating the reference and disturbance signals.
These will become necessary in the last step of the proof of
Theorem 1. To prove Theorem 1 it only remains to verify
that the asymptotic behavior (11) of the regulation error
is equal to zero if and only if the regulation constraint is
satisfied. The next lemma shows that this is true for all ex-
osystems satisfying the nondecay condition in Definition 2.

Lemma 5. Assume the exosystem (3) satisfies the nonde-
cay condition in Definition 2 and let Σ ∈ L(W,Xe). Then

lim
t→∞

(CeΣ +De)TS(t)v0 = 0, ∀v0 ∈W

if and only if CeΣ +De = 0.

Proof. It is clearly sufficient to prove the “only if” part
of the lemma. Let v0 ∈ W . If (CeΣ + De)TS(t)v0 → 0
as t → ∞, then the nondecay condition implies that in
particular for t0 = 0 in (7) we have

0 = (CeΣ +De)TS(0)v0 = (CeΣ +De)v0.

Since v0 ∈W was arbitrary, we must have CeΣ +De = 0.
This concludes the proof. 2



We can now collect the above results to prove Theorem 1.

Proof of Theorem 1. We will first show that (b) im-
plies (a). Assume the regulation constraint (6) is satisfied.
Since Te(t) is strongly stable, we have from Corollary 4
that for all initial states xe0 ∈ Xe and v0 ∈W

lim
t→∞

‖e(t)‖ = lim
t→∞

‖e(t)− (CeΣ +De)v(t)‖ = 0,

since CeΣ +De = 0. Thus the controller solves the output
regulation problem.

It remains to prove that (a) implies (b). Assume that the
controller solves the output regulation problem and that
Σ ∈ L(W,Xe) is a solution of the Sylvester equation (5).
Since the regulation error decays to zero asymptotically
for all initial states of the closed-loop system and the
exosystem, Corollary 4 implies that for all xe0 ∈ Xe and
v0 ∈W we must have

‖(CeΣ +De)TS(t)v0‖

≤ ‖(CeΣ +De)TS(t)v0 − e(t)‖+ ‖e(t)‖ t→∞−→ 0,

and thus limt→∞(CeΣ+De)TS(t)v0 = 0 for every v0 ∈W .
This together with Lemma 5 concludes that the regulation
constraint (6) is satisfied. 2

We close the section by showing that even though the
solution of the Sylvester equation (5) in Theorem 1 may
not be unique, the different solutions still lead to the same
dynamic steady state of the closed-loop system.

Theorem 6. Assume the closed-loop system is strongly
stable and the Sylvester equation (5) has a (possibly
nonunique) solution. Then asymptotic the asymptotic be-
haviour of the state of the closed-loop system is unique.

Proof. Let Σ1v(t) and Σ2v(t) be two dynamic steady
states of the closed-loop system corresponding to two
solutions Σ1,Σ2 ∈ L(W,Xe) of the Sylvester equation (5)
and the initial state v0 ∈ W of the exosystem. For any
v ∈ D(S) we have{

Σ1Sv = AeΣ1v +Bev
Σ2Sv = AeΣ2v +Bev

⇒ (Σ1 − Σ2)Sv = Ae(Σ1 − Σ2)v.

Denote ∆ = Σ1 − Σ2. For any t > 0 and w ∈ D(S)

∆TS(t)w − Te(t)∆w =
[
Te(t− s)∆TS(s)w

]t
s=0

=

∫ t

0

d

ds

(
Te(t− s)∆TS(s)w

)
ds

=

∫ t

0

Te(t− s) (−Ae∆ + ∆S)TS(s)wds = 0

and thus

(Σ1 − Σ2)TS(t)w = Te(t)(Σ1 − Σ2)w

for all t ≥ 0. Since for all t ≥ 0 the operators on both sides
of the equation are in L(W,Xe) and since D(S) is dense
in W , the above identity holds for all w ∈ W . This shows
that the difference Σ1v(t) − Σ2v(t) between the dynamic
steady states satisfies

‖Σ1v(t)− Σ2v(t)‖ = ‖(Σ1 − Σ2)TS(t)v0‖
= ‖Te(t)(Σ1 − Σ2)v0‖ → 0

as t → ∞ since Te(t) is strongly stable. This shows that
the two dynamic steady states are the same and concludes
the proof. 2

5. MINIMALITY OF THE NONDECAY CONDITION

In this section we show that Theorem 1 may fail to be true
only if the exosystem does not satisfy the nondecay condi-
tion in Definition 2. Since we saw in the previous section
that for any stable closed-loop system the regulation error
e(t) behaves asymptotically as

e(t) ∼ (CeΣ +De)v(t),

it is evident that part (b) always implies part (a) in
Theorem 1. The following result shows that part (b) may
fail to follow from part (a) only if the exosystem does not
satisfy the nondecay condition.

Theorem 7. Assume that the controller (G1,G2,K) is such
that Ae generates a strongly stable C0-semigroup on Xe

and that the Sylvester equation

ΣS = AeΣ +Be
has a solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂ D(Ae).
If the controller (G1,G2,K) solves the output regulation
problem and if CeΣ + De 6= 0, then the exosystem does
not satisfy the nondecay condition in Definition 2.

Proof. Choose Q = CeΣ +De ∈ L(W,Y ) and let v0 ∈W
be such that (CeΣ + De)v0 6= 0. Then Corollary 4 and
the fact that the controller solves the output regulation
problem imply

‖QTS(t)v0‖ = ‖(CeΣ +De)TS(t)v0‖

≤ ‖(CeΣ +De)TS(t)v0 − e(t)‖+ ‖e(t)‖ t→∞−→ 0,

but QTS(0)v0 = (CeΣ + De)v0 6= 0 by assumption.
This concludes that the exosystem does not satisfy the
nondecay condition. 2

6. THE IMPLICATIONS OF NONDECAY
CONDITIONS

In this section we study the consequences of the nondecay
condition imposed on the exosystem. In particular we
study the uniqueness of the solution of the Sylvester
equation (5). For the main result giving conditions for the
uniqueness of the solution of the Sylvester equation (5) we
need a slightly modified version of the nondecay condition.
The only difference between the condition in the next
theorem compared to nondecay condition in Definition 2
is that now the range space of the “output operator” Q of
the exosystem is assumed to be Xe instead of Y .

Theorem 8. Assume that the closed-loop system is strongly
stable and that the semigroup TS(t) generated by the
operator S is such that for all Q ∈ L(W,Xe) and all
v0 ∈W we have

QTS(t)v0
t→∞−→ 0 ⇒ QTS(t0)v0 = 0 ∀t0 ≥ 0. (13)

Then the Sylvester equation ΣS = AeΣ +Be may have at
most one solution.

Proof. Assume the Sylvester equation has a possibly
nonunique solution. In the proof of Theorem 6 we saw that
if Σ1,Σ2 ∈ L(W,Xe) are two solutions of the equation,
then for any v0 ∈W we have

‖(Σ1 − Σ2)TS(t)v0‖ = ‖Te(t)(Σ1 − Σ2)v0‖ → 0

as t → ∞ due to the strong stability of Te(t). Since the
exosystem satisfies the nondecay condition (13) and since



Σ1 − Σ2 ∈ L(W,Xe), this implies that in particular for
t0 = 0 we obtain

0 = (Σ1 − Σ2)TS(t0)v0 = (Σ1 − Σ2)v0.

Since v0 ∈ W was arbitrary, this concludes that Σ1 = Σ2

and thus the Sylvester equation may have at most one
solution. 2

7. CONDITIONS FOR NONDECAY

In this section we state some necessary and sufficient
conditions for the nondecay condition in Definition 2. The
following theorem shows that if the reference and distur-
bance signals are almost periodic functions (see Arendt
et al. [2001] for the definition), then the exosystem satisfies
the nondecay condition.

Theorem 9. If for all Q ∈ L(W,Y ) and v0 ∈ W the
functions QTS(·)v0 are almost periodic functions, then the
nondecay condition in Definition 2 is satisfied.

Proof. Let Q ∈ L(W,Y ) and v0 ∈ W be such that
QTS(t)v0 → 0 as t → ∞. Since QTS(·)v0 is an almost
periodic function, there exists a sequence (tn)N such that
tn →∞ and ‖QTS(tn + s)v0 −QTS(s)‖ < 1

n for all s ∈ R
and n ∈ N [Arendt et al., 2001, Sec. 4.5]. Therefore for all
t0 ≥ 0 we have

‖QTS(t0)v0‖ ≤ ‖QTS(tn + t0)v0 −QTS(t0)v0‖

+ ‖QTS(tn + t0)v0‖

<
1

n
+ ‖QTS(tn + t0)v0‖ → 0

as n → ∞. This implies QTS(t0)v0 = 0. Since t0 ≥ 0 was
arbitrary, the condition (7) is satisfied. This concludes the
proof. 2

The next theorem states that an exosystem consisting
of an infinite number of finite-dimensional Jordan blocks
satisfies the nondecay condition. Such exosystems have
been studied in Paunonen and Pohjolainen [2010, Sub-
mitted]. An exosystem containing nontrivial Jordan blocks
is capable of generating polynomially increasing reference
and disturbance signals.

Theorem 10. The infinite-dimensional Jordan exosystem
studied in Paunonen and Pohjolainen [2010] satisfies the
nondecay condition in Definition 2.

Proof. Since the spaces Wk = span{φlk}
nk

l=1 are TS(t)-
invariant for all k ∈ Z, we can consider v0 ∈Wk separately
for k ∈ Z. For any Q ∈ L(W,Y ) and for all k ∈ Z and
v0 ∈Wk we have

QTS(t)v0 = eiωkt
nk∑
l=1

〈v0, φlk〉
l∑

j=1

tl−j

(l − j)!
Qφjk (14a)

= eiωkt
nk−1∑
j=0

tj · 1

j!

nk∑
l=j+1

〈v0, φlk〉Qφ
l−j
k (14b)

If QTS(t)v0 → 0, it is easy to see that we must have
nk∑

l=j+1

〈v0, φlk〉Qφ
l−j
k = 0 ∀j ∈ {0, . . . , nk − 1}.

However, by (14) this also implies QTS(t0)v0 = 0 for all
t0 ≥ 0. 2

Remark. It should be noted that in the case where all
of the Jordan blocks of the exosystem have dimensions
nk = 1, the exosystem in Paunonen and Pohjolainen [2010]
generates almost periodic functions, and also Theorem 9
could be used to conclude that the exosystem satisfies the
nondecay condition.

The following simple example shows that the nondecay
condition may not be satisfied even if S generates a
strongly continuous group of isometries on a Hilbert space.
In this case the group TS(t) is completely unstable, i.e.,
TS(t)v0 → 0 as t → ∞ if and only if v0 = 0, but for all
F ∈ L(W,C) we have FTS(t)v0 → 0 as t→∞.

Counterexample 11. Let W = L2(a, b) for some a < b
and let S ∈ L(W ) be a multiplication operator defined
by (Sv)(ξ) = iξv(ξ) for all v ∈ W . It is easy to see that
σ(S) = σc(S) = [ia, ib] ⊂ iR and that S is skew-adjoint.
The operator S generates a multiplication group TS(t)
defined by (TS(t)v)(ξ) = eiξtv(ξ) on W , and this group
is isometric since

‖TS(t)v‖2L2 =

∫ b

a

|eiξtv(ξ)|2dξ =

∫ b

a

|v(ξ)|2dξ = ‖v‖2L2

for all v ∈W and t ∈ R.

Let Y = C and Q ∈ L(W,C). By the Riesz Representation
Theorem there exists w ∈W such that

Qv =

∫ b

a

v(ξ)w(ξ)dξ, ∀v ∈W.

For any initial state v0 ∈W we then have

QTS(t)v0 =

∫ b

a

eiξtv0(ξ)w(ξ)dξ → 0

as t → ∞ due to the Riemann-Lebesgue Lemma, since
v0(·)w(·) ∈ L1(a, b). This concludes that this exosystem
does not satisfy the nondecay condition in Definition 2.

In the above example, the nondecay condition failed be-
cause the semigroup TS(t) was weakly stable. The follow-
ing result shows that already a single weakly stable orbit
TS(t)v0 with v0 6= 0 contradicts the nondecay condition.

Theorem 12. If TS(t) satisfies the nondecay condition,
then it has no weakly stable orbits TS(t)v0 with v0 6= 0.

Proof. Assume v0 6= 0 is such that TS(t)v0 is a weakly
stable orbit. Take y ∈ Y such that y 6= 0 and w ∈W ∗ such
that 〈v0, w〉 6= 0, and choose Q = 〈·, w〉y. We now have

QTS(t)v0 = 〈TS(t)v0, w〉y → 0 as t→∞
due to the weak stability of the orbit TS(t)v0. However,
for t0 = 0 we have QTS(t0)v0 = 〈v0, w〉y 6= 0, and
thus the semigroup TS(t) does not satisfy the nondecay
condition (7). This concludes the proof. 2

If W is a Hilbert space and if Y = Cp, then the Riesz
Representation Theorem implies that any output operator
Q ∈ L(W,Y ) is necessarily of the form

Qv = (〈v, w1〉, 〈v, w2〉, . . . , 〈v, wp〉)T , v ∈W
for some {wk}pk=1 ⊂ W . In such a case the nondecay
condition in Definition 2 is therefore equivalent to the
requirement that the semigroup TS(t) satisfies

〈TS(t)v0, w〉
t→∞−→ 0 ⇒ 〈TS(t0)v0, w〉 = 0 ∀t0 ≥ 0.

for all w, v0 ∈W .



8. CONCLUSIONS

In this paper we have studied the theory of output regu-
lation of distributed parameter systems in the case where
the exosystem itself is a very general infinite-dimensional
linear system. In particular we showed that in order to
characterize the solvability of the output regulation prob-
lem it is sufficient to assume that the exosystem does not
produce signals that decay to zero asymptotically.

The results concerning the regulator equations and the
solvability of the Sylvester equations can be readily ex-
tended for unbounded solutions Σ. In Paunonen and Po-
hjolainen [2010, Submitted] the authors of the current
paper demonstrated that allowing the solution of the reg-
ulator equations to be an operator in Σ ∈ L(D(Sm), Xe)
for some m ∈ N0 allows weakening of the conditions for
the solvability of the output regulation problem. It was
also shown that the solutions in this class require that
the considered reference and disturbance signals corre-
spond to initial states v0 ∈ D(Sm) of the exosystem.
For diagonal and block diagonal exosystems this in some
cases directly corresponds to setting minimal requirements
for the smoothness of the considered exogeneous signals,
see Paunonen and Pohjolainen [Submitted].
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