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Abstract— In this paper the output regulation of a linear
distributed parameter system with a nonautonomous periodic
exosystem is considered. It is shown that the solvability of the
output regulation problem can be characterized by an infi-
nite-dimensional Sylvester differential equation. Conditions are
given for the existence of a controller solving the regulation
problem along with a method for its construction.

I. INTRODUCTION

Output regulation of distributed parameter systems has
been studied extensively during the last thirty years [15],
[17], [1], [3], [16] and many of the most essential results
of finite-dimensional control theory have been generalized
to infinite-dimensional systems. Even though the theory has
been extended to infinite-dimensional systems, it has been
customary to assume that the reference and disturbance
signals are generated by a finite-dimensional exosystem

v̇ = Sv, v(0) = v0 ∈W. (1)

Recently there has been interest in generalizing the theory
to include more general classes of reference and disturbance
signals [7] and in studying how general signals can a
distributed parameter system regulate [8]. The direction of
this research on more general signal generators has been to
allow the signal generator (1) to be an infinite-dimensional
differential equation and the operator S to be a diagonal [7],
[5] or a block-diagonal [13], [12] generator of a C0-group
on a Hilbert space W .

In this paper we take a different direction in generalizing
the classes of signals to be regulated by considering output
regulation of a linear distributed parameter system together
with a periodic nonautonomous exosystem. By this we mean
that the signals to be regulated and rejected are generated by
an exosystem of form

v̇(t) = S(t)v(t), v(0) = v0,

where S(t) is a periodic function, i.e. there exists T > 0
such that S(t + T ) = S(t) for all t ∈ R. Using this type
of exosystems it is possible, for example, to regulate and
reject all the usual signals generated by a finite-dimensional
time-invariant exosystem but in addition it is possible to con-
sider signals containing periodically modulated frequencies
and signals related to other oscillatory phenomena, such as
parametric resonance.
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The theory presented in this paper generalizes the theory of
output regulation of linear finite-dimensional time-invariant
systems together with time-periodic exosystems presented in
[18] to distributed parameter systems. On the other hand,
the results also generalize the theory of output regulation
of time-invariant distributed parameter systems developed in
[4], [12] to the case of a time-dependent exosystem.

We consider a time-invariant infinite-dimensional system
whose system operator generates an analytic semigroup and
a finite-dimensional periodic signal generator. Our approach
leads to an infinite-dimensional nonautonomous closed-loop
system. To deal with these types of systems we use the theory
of evolution families [2], [14] associated to nonautonomous
Cauchy problems on Banach spaces.

Our main result is that the solvability of the periodic output
regulation problem can be characterized by the properties
of the periodic solution of a certain infinite-dimensional
Sylvester differential equation. This result is a generalization
of the results in the time-invariant case where the solvability
of the output regulation problem can be characterized by the
solvability of a constrained Sylvester equation [5].

One of the most essential tools in the theory are the
infinite-dimensional Sylvester differential equations of form

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) +Be(t) (2)

where Ae(t) and Be(t) are T -periodic operator-valued func-
tions of the closed-loop system and S is a finite-dimensional
operator associated to the signal generator. In order to use
these equations we need results on their solvability. To this
end we show that under suitable assumptions the Syvester
differential equation (2) has a unique periodic solution.

In addition to characterizing the solvability of the periodic
output regulation problem, we also present conditions for
the existence of an observer-based controller solving the
regulation problem and a method for its construction. This
is done by generalizing a controller for time-invariant finite-
dimensional linear systems given in [6] to our case.

The paper is organized as follows. In Section II we intro-
duce notation, recall the definition of a strongly continuous
evolution family and state the basic assumptions on the
system, the exosystem and the controller. In Section III we
formulate the periodic output regulation problem for infinite-
dimensional systems and characterize its solvability using the
properties of certain infinite-dimensional Sylvester differen-
tial equations. In Section IV we construct an observer-based
controller solving the periodic output regulation problem.
Section V contains concluding remarks.



II. NOTATION AND DEFINITIONS

If X and Y are Banach spaces and A : X → Y is a
linear operator, we denote by D(A) and R(A) the domain
and the range of A, respectively. The space of bounded
linear operators from X to Y is denoted by L(X,Y ). If
A : X → X , then σ(A) and ρ(A) denote the spectrum and
the resolvent set of A, respectively. For λ ∈ ρ(A) the
resolvent operator is given by R(λ,A) = (λI −A)−1. The
space of continuous functions f : R → X is denoted by
C(R, X). The space of T -periodic continuous functions is
defined as

CT (R, X) = {f : R→ X | f is continuous,
f(t+ T ) = f(t) ∀t ∈ R} .

Similarly we denote by C1
T (R, X) the space of T -peri-

odic continuously differentiable functions. We denote by
CT (R,L(X,Y )) and CT (R,Ls(X,Y )) the spaces of T -
periodic functions with values in L(X,Y ) which are uni-
formly or strongly continuous, respectively. Analogously
we denote by C1

T (R,L(X,Y )) and C1
T (R,Ls(X,Y )) the

spaces of functions which are continuously differentiable
with respect to the uniform and strong operator topologies
of L(X,Y ), respectively. For an operator-valued function
A(·) ∈ CT (R,Ls(X,Y )) we denote

‖A‖∞ = sup
t∈[0,T ]

‖A(t)‖.

In dealing with infinite-dimensional nonautonomous sys-
tems we need the concept of a strongly continuous evolution
family [14, Ch. 5], [2, Sec. VI.9].

Definition 1 (A Strongly Continuous Evolution Family):
A family of bounded operators (U(t, s))t≥s ⊂ L(X) is
called a strongly continuous evolution family if
(a) U(s, s) = I for s ∈ R;
(b) U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s;
(c)

{
(t, s) ∈ R2

∣∣ t ≥ s
}
3 (t, s) 7→ U(t, s) is a strongly

continuous mapping.
A strongly continuous evolution family is called exponen-
tially bounded if there exists constants M ≥ 1 and ω ∈ R
such that

‖U(t, s)‖ ≤Meω(t−s)

for all t ≥ s.
Definition 2 (Parabolic Conditions): We say that a T -

periodic family (A(t))t∈R of linear operators on X satisfies
the parabolic conditions if the following are satisfied for
some µ ∈ R.

(P1) The domain D(A(t)) =: D(A) is independent of t ∈ R
and dense in X .

(P2) We have {λ ∈ C | Reλ ≥ µ } ⊂ ρ(A(t)) for every
t ∈ [0, T ] and there exists a constant M ≥ 1 such that

‖R(λ,A(t))‖ ≤ M

|λ− µ|+ 1
, Reλ ≥ µ, t ∈ [0, T ].

(P3) There exists a constant L ≥ 0 such that for t, s, r ∈ R

‖(A(t)−A(s))R(µ,A(r))‖ ≤ L|t− s|. �

The following lemma states a few useful properties of
evolution families satisfying the parabolic conditions. [14,
Ch. 5.6-8]

Lemma 3: If an operator family (A(t)) satisfies the
parabolic conditions for some µ ∈ R, then there exists a
unique exponentially bounded evolution family U(t, s) such
that R(U(t, s)) ⊂ D(A), ∂

∂tU(t, s)x = A(t)U(t, s)x and
∂
∂sU(t, s)y = −U(t, s)A(s)y for all t > s, x ∈ X and
y ∈ D(A). Furthermore, if f ∈ L1(R, X), the abstract
Cauchy problem

ẋ(t) = A(t)x(t) + f(t), x(0) = x0

has a unique mild solution

x(t) = U(t, 0)x0 +

∫ t

0

U(t− s)f(s)ds

for every x0 ∈ X and t ≥ 0. If f is Hölder continuous, then
x(t) is the unique classical solution of the abstract Cauchy
problem.

Throughout this paper we consider a linear distributed
parameter system

ẋ = Ax+Bu+ ws(t), x(0) = x0 (3a)
y = Cx+Du+ wm(t) (3b)

on a Banach space X . We assume A generates an analytic
semigroup T (t) on X and the rest of the operators are
bounded, B ∈ L(U,X), C ∈ L(X,Y ), D ∈ L(U, Y ) where
U and Y are finite-dimensional spaces. The disturbance
signals ws(t) and wm(t) and the reference signal yref (t)
are generated by a time-periodic exosystem

ẇ = S(t)w, w(0) = w0 (4)

on W = Cq where S(·) ∈ C1
T (R,L(W )). The reference and

disturbance signals are given by

ws(t) = Es(t)w(t), wm(t) = Fm(t)w(t)

yref (t) = Fref (t)w(t),

where Es(·) ∈ C1
T (R,L(W,X)), Fm(·) ∈ C1

T (R,L(W,Y ))
and Fref (·) ∈ C1

T (R,L(W,Y )).
The Floquet-Lyapunov theory [9] states that there exists

a constant matrix S ∈ Cq×q and a T -periodic function
LFL(·) ∈ C1

T (R,L(W )) such that LFL(0) = I , LFL(t) is
invertible for every t ∈ R and if US(t, 0) is the fundamental
matrix of (4), then

US(t, 0) = LFL(t)eSt.

The Lyapunov Reducibility Theorem [10] states that the
change of variables v(t) = LFL(t)−1w(t) transforms the
time-periodic exosystem (4) into

v̇ = Sv, v(0) = v0 (5)

where v0 = LFL(0)−1w0 = w0. We can also assume that S
is in Jordan canonical form, because if this is not the case,
we can write S = TJT−1 and apply a the time-independent
change of variables ṽ = T−1v to obtain a system ˙̃v = Jṽ.



We consider asymptotic regulation and disturbance rejec-
tion and because of this we are not concerned with reference
and disturbance signals which decay asymptotically. We
can therefore assume without loss of generality that the
eigenvalues of the monodromy matrix US(T, 0) of S(·) have
magnitude greater or equal to one. Since US(T, 0) = eST ,
this is equivalent to the following assumption.

Assumption 4: We have Reλ ≥ 0 for all λ ∈ σ(S).
Defining E(t) = Em(t)LFL(t) and

F (t) = Fm(t)LFL(t)− Fref (t)LFL(t)

for all t ∈ [0, T ] we have that E(·) ∈ C1
T (R,L(W,X)) and

F (·) ∈ C1
T (R,L(W,Y )). The system (3) can now be written

in a standard form

ẋ = Ax+Bu+ E(t)v, x(0) = x0 (6a)
e = Cx+Du+ F (t)v (6b)

with the exosystem (5). We consider a T -periodic feedback
controller (G1,G2,K) given by the equations

ż = G1(t)z + G2(t)e, z(0) = z0 (7a)
u = K(t)z (7b)

on a Banach space Z where the operators (G1(t)) satisfy the
parabolic conditions, and we have G2(·) ∈ C1

T (R,L(Y,Z))
and K(·) ∈ C1

T (R,Ls(Z,U)).
The closed-loop system on the Banach space Xe = X×Z

with state xe(t) = (x(t), z(t))T ∈ Xe can be written as

ẋe = Ae(t)xe +Be(t)v, xe(0) = xe0 (8a)
y = Ce(t)xe +De(t)v (8b)

where

Ae(t) =

[
A BK(t)

G2(t)C G1(t) + G2(t)DK(t)

]
,

Be(t) =

[
E(t)

G2(t)F (t)

]
,

Ce(t) =
[
C DK(t)

]
and De(t) = F (t). Since the opera-

tors Ae(t) are of form Ae(t) = A0
e(t)+A1

e(t) where (A0
e(t))

satisfy the parabolic conditions and A1
e(·) ∈ C1

T (R,Ls(Xe)),
it is straight-forward to verify that also the family (Ae(t))
of operators satisfies the parabolic conditions and thus there
exists a strongly continuous evolution family Ue(t, s) associ-
ated to the closed-loop system. For all initial states xe0 ∈ Xe

and v0 ∈W the state of the closed-loop system is given by

xe(t) = Ue(t, 0)xe0 +

∫ t

0

Ue(t, s)Be(s)v(s)ds.

III. MAIN PROBLEM

The Periodic Output Regulation Problem (PORP) is stated
as follows.

Problem 1 (Periodic Output Regulation Problem):
Choose the parameters of a T -periodic controller (G1,G2,K)
in such a way that the following are satisfied:

1) The evolution family Ue(t, s) is exponentially stable,
i.e. there exist constants Me ≥ 1 and ωe > 0 such that
‖Ue(t, s)‖ ≤Mee

−ωe(t−s);

2) For all initial values xe0 ∈ Xe and v0 ∈W the closed-
loop system (8) and the exosystem (5) the regulation
error satisfies

lim
t→∞

e(t) = 0. �

To solve the Periodic Output Regulation Problem we need
to consider the periodic Sylvester differential equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) +Be(t)

on the interval [0, T ]. By a periodic solution of this equation
we mean a function Σ(·) ∈ C1

T (R,L(W,Xe)) such that
R(Σ(t)) ⊂ D(Ae) for all t ∈ [0, T ].

The following theorem is the main result of this paper.
It characterizes the controllers solving the Periodic Output
Regulation Problem in terms of the behaviour of the peri-
odic solution of an infinite-dimensional Sylvester differential
equation.

Theorem 5: Assume the controller (G1,G2,K) stabilizes
the closed-loop system. The periodic Sylvester differential
equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) +Be(t) (9)

has a unique periodic solution Σ∞(·) ∈ C1
T (R,L(W,Xe))

such that R(Σ∞(t)) ⊂ D(Ae) for every t ∈ [0, T ]. The
controller (G1,G2,K) solves the PORP if and only if this
solution satisfies

Ce(t)Σ∞(t) +De(t) = 0

for all t ∈ [0, T ].
The proof of the theorem is divided into parts. We will

first show that under our assumptions the periodic Sylvester
differential equation (9) has a unique periodic solution if the
closed-loop system is stable. This is done in the following
lemma. Subsequently in Lemma 7, we will show that the
behaviour of the regulation error can be described using the
solution of the Sylvester differential equation. After proving
these two lemmas we present the proof of Theorem 5.

Lemma 6: Under the assumptions of Theorem 5 the peri-
odic Sylvester differential equation (9) has a unique periodic
solution

Σ∞(t) =

∫ t

−∞
Ue(t, s)Be(s)e

S(s−t)ds.

Proof: We will first show that the unique solution
Σ(·) ∈ C1([0, 2T ],L(W,Xe)) of (9) corresponding to the
initial condition Σ(0) = Σ0 ∈ L(W,Xe) is given by

Σe(t) = Ue(t, 0)Σ0e
−St+

∫ t

0

Ue(t, s)Be(s)e
S(s−t)ds (10)

on [0, 2T ] and that R(Σe(t)) ⊂ D(Ae) for every t ∈ (0, T ].
Let λ ∈ σ(S) and let {φk}mk=1 be an orthonormal Jordan

chain associated to this eigenvalue. We will show using
induction that for every k ∈ {1, . . . ,m} the initial value
problem
d

dt
Σe(t)φk + Σe(t)Sφk = Ae(t)Σe(t)φk +Be(t)φk (11a)

Σe(0)φk = Σ0φk (11b)



has a unique classical solution Σe(t)φk ∈ C1([0, 2T ], Xe)

Σe(t)φk = Ue(t, 0)Σ0e
−Stφk

+

∫ t

0

Ue(t, s)Be(s)e
S(s−t)φkds

on [0, 2T ] and that R(Σe(t)) ⊂ D(Ae) for all t ∈ (0, T ].
Since the λ ∈ σ(S) and the associated Jordan chain are
arbitrary and since the Jordan chains of S form a basis of
the space W , the result on W then follows from linearity.
Since we assumed that S is in its Jordan canonical form we
have that for k ∈ {1, . . . ,m} and t ∈ R

eStφk = eλt
k∑
l=1

tk−l

(k − l)!
φl

For k = 1 the initial value problem (11) becomes

d

dt
Σe(t)φ1 = (Ae(t)− λI)Σe(t)φ1 +Be(t)φ1,

Σe(0)φ1 = Σ0φ1.

The evolution family associated to the operators Ae(t)− λI
is given by e−λ(t−s)Ue(t, s) and we thus have from Theorem
5.7.1 in [14] that since Be(·)φ1 ∈ C1

T (R, Xe) this equation
has a unique classical solution Σe(t)φ1 given by

e−λtUe(t, 0)Σ0φ1 +

∫ t

0

e−λ(t−s)U(t, s)Be(s)φ1ds

= Ue(t, 0)Σ0e
−Stφ1 +

∫ t

0

U(t, s)Be(s)e
S(s−t)φ1ds

on [0, 2T ] and that Σe(t)φ1 ∈ D(Ae) for all t ∈ (0, T ].
Thus the claim holds for k = 1. Assume now that for some
k ∈ {1, . . . ,m − 1} the initial value problem (11) has a
unique classical solution Σe(t)φk given by

Ue(t, 0)Σ0e
−Stφk +

∫ t

0

Ue(t, s)Be(s)e
S(s−t)φkds

= e−λtUe(t, 0)Σ0

k∑
l=1

(−t)k−l

(k − l)!
φl

+

∫ t

0

e−λ(t−s)Ue(t, s)Be(s)

k∑
l=1

(s− t)k−l

(k − l)!
φlds.

on [0, 2T ]. Since (S−λI)φk+1 = φk, we have that for k+1
the initial value problem (11) becomes

d

dt
Σe(t)φk+1 = (Ae(t)− λI)Σe(t)φk+1 − Σe(t)φk

+Be(t)φk+1,

Σe(0)φk+1 = Σ0φk+1.

Since Σe(·)φk, Be(·)φk+1 ∈ C1([0, 2T ], Xe) we have from
Theorem 5.7.1 in [14] that this equation has a unique

classical solution given by

Σe(t)φk+1 = e−λtUe(t, 0)Σ0φk+1

+

∫ t

0

e−λ(t−s)Ue(t, s) (−Σe(s)φk +Be(s)φk+1) ds

= e−λtUe(t, 0)Σ0φk+1

−
k∑
l=1

∫ t

0

(−s)k−l

(k − l)!
e−λ(t−s)Ue(t, s)e

−λsUe(s, 0)Σ0φlds

−
k∑
l=1

∫ t

0

e−λ(t−s)Ue(t, s)

×
∫ s

0

(r − s)k−l

(k − l)!
e−λ(s−r)Ue(s, r)Be(r)φldrds

+

∫ t

0

e−λ(t−s)Ue(t, s)Be(s)φk+1ds

= e−λtUe(t, 0)Σ0φk+1

−
k∑
l=1

e−λtUe(t, 0)Σ0φl

∫ t

0

(−s)k−l

(k − l)!
ds

−
k∑
l=1

∫ t

0

e−λ(t−r)Ue(t, r)Be(r)φl

∫ t

r

(r − s)k−l

(k − l)!
dsdr

+

∫ t

0

e−λ(t−s)Ue(t, s)Be(s)φk+1ds

= Ue(t)Σ0e
−λt

k+1∑
l=1

(−t)k+1−l

(k + 1− l)!
φl

+

∫ t

0

Ue(t, r)Be(r)e
−λ(r−t)

k∑
l=1

(r − t)k+1−l

(k + 1− l)!
φldr

= Ue(t, 0)Σ0e
−Stφk+1 +

∫ t

0

Ue(t, r)Be(r)e
S(r−t)φk+1dr

on [0, 2T ] and that Σe(t)φk+1 ∈ D(Ae) for all t ∈ (0, T ].
This shows that the claim holds for k+ 1 and concludes the
proof that the unique solution of the Sylvester differential
equation corresponding to the initial condition Σe(0) = Σ0

is given by (10) on [0, 2T ].

We will now show that Σ∞(t) is a solution of the Sylvester
differential equation on [0, 2T ]. Since

Σ∞(t) = Ue(t, 0)

∫ 0

−∞
Ue(0, s)Be(s)e

Sse−Stds

+

∫ t

0

Ue(t, s)Be(s)e
S(s−t)ds,

it suffices to show that Σ∞(0) =
∫ 0

−∞ Ue(0, s)Be(s)e
Ssds

is in L(W,Xe). Since the closed-loop system is stable, there
exist constants Me ≥ 1 and ωe < 0 such that for all t ≥ s we
have ‖Ue(t, s)‖ ≤ Mee

ωe(t−s). Assumption 4 on the other
hand implies that there exists a constant MS ≥ 0 such that



‖eSs‖ ≤MS for all s ≤ 0. Now

‖
∫ 0

−∞
Ue(0, s)Be(s)e

Ssds‖ ≤
∫ 0

−∞
‖Ue(0, s)Be(s)eSs‖ds

≤MeMS · sup
t≤0
‖Be(t)‖

∫ 0

−∞
e−ωesds =

MeMS · ‖Be‖∞
|ωe|

.

and thus Σ∞(0) ∈ L(W,Xe).
To prove the periodicity of Σ∞(t), let t ∈ R. Then

Σ∞(t+ T ) =

∫ t+T

−∞
Ue(t+ T, s)Be(s)e

S(s−(t+T ))ds

=

∫ t

−∞
Ue(t+ T, s+ T )Be(s+ T )eS(s+T−(t+T ))ds

=

∫ t

−∞
Ue(t, s)Be(s)e

S(s−t)ds = Σ∞(t).

This shows that Σ∞(t) is periodic.
We have now proved that R(Σ∞(t)) ⊂ D(Ae) for

all t ∈ (0, T ] and that Σ∞(t) is the unique solution of
the Sylvester differential equation (9) on [0, 2T ] corre-
sponding to the initial condition Σ∞(0) at t = 0. Since
Σ∞(t) is periodic we have Σ∞(·) ∈ C1

T (R,L(W,Xe)) and
R(Σ∞(t)) ⊂ D(Ae) for all t ∈ R and thus Σ∞(t) is the
unique solution of the periodic Sylvester differential equation
on R satisfying the initial condition Σ∞(0) at t = 0.

It remains to prove that the periodic Sylvester differential
equation (9) has no other periodic solutions. To this end, let
Σ(t) be any periodic solution of the equation corresponding
to an arbitrary initial condition Σ(0) = Σ0 ∈ L(W,Xe), i.e.

Σ(t) = Ue(t, 0)Σ0e
−St +

∫ t

0

Ue(t, s)Be(s)e
S(s−t)ds.

The difference ∆(t) = Σ∞(t)− Σ(t) satisfies

∆(t) =

∫ t

−∞
Ue(t, s)Be(s)e

S(s−t)ds− Ue(t, 0)Σ0e
−St

−
∫ t

0

Ue(t, s)Be(s)e
S(s−t)ds

=

∫ 0

−∞
Ue(t, s)Be(s)e

S(s−t)ds− Ue(t, 0)Σ0e
−St

= Ue(t, 0)

∫ 0

−∞
Ue(0, s)Be(s)e

Sse−Stds

− Ue(t, 0)Σ0e
−St

= Ue(t, 0)Σ∞(0)e−St − Ue(t, 0)Σ0e
−St

= Ue(t, 0)∆(0)e−St.

Thus

‖∆(t)‖ ≤MeMSe
ωet‖∆(0)‖

and the assumption ωe < 0 implies limt→∞∆(t) = 0. Since
Σ(t) is periodic and since limt→∞‖Σ(t) − Σ∞(t)‖ = 0,
we must have Σ(t) ≡ Σ∞(t). This concludes that no other
periodic solution than Σ∞(t) may exist.

The next lemma shows that the solution Σ∞(t) of the pe-
riodic Sylvester differential equation describes the behaviour

of the state of the closed-loop system and the regulation
error. Moreover, the formula for the state xe(t) of the closed-
loop system shows that if the closed-loop system is stable,
the state of the closed-loop system approaches the function
Σ∞(t)v(t), where v(t) is the state of the exosystem. Because
of this, the asymptotic behaviour of Σ∞(t)v(t) can be seen
as a dynamic steady state of the closed-loop system. Lemma
7 is a generalization of the corresponding result for time-
invariant systems [5], [12].

Lemma 7: Assume the Sylvester differential equation (9)
has a unique periodic solution Σ∞(·) ∈ C1

T (R,L(W,Xe))
withR(Σ∞(t)) ⊂ D(Ae) for all t ∈ [0, T ]. For all t ≥ 0 and
for all initial values xe0 ∈ Xe and v0 ∈ W the regulation
error e(t) satisfies

e(t) = Ce(t)Ue(t, 0)(xe0 − Σ∞(0)v0)

+ (Ce(t)Σ∞(t) +De(t)) v(t),

where v(t) = eStv0 is the state of the exosystem. If the
closed-loop system is stable, then the state xe(t) of the
closed-loop system and the regulation error satisfy

lim
t→∞
‖xe(t)− Σ∞(t)v(t)‖ = 0,

lim
t→∞
‖e(t)− (Ce(t)Σ∞(t) +De(t))v(t)‖ = 0.

Proof: For any initial conditions xe0 ∈ Xe and v0 ∈W
and for any t ≥ 0 the state of the closed-loop system (8) is
given by

xe(t) = Ue(t, 0)xe0 +

∫ t

0

Ue(t, s)Be(s)e
Ssv0ds.

Using the Sylvester differential equation (9) we see that

Ue(t, s)Be(s)e
Ssv0

= Ue(t, s)(Σ̇∞(s) + Σ∞(s)S −Ae(s)Σ∞(s))eSsv0

= Ue(t, s)Σ̇∞(s)eSsv0 + Ue(t, s)Σ∞(s)SeSsv0

− Ue(t, s)Ae(s)Σ∞(s)eSsv0

=
d

ds
Ue(t, s)Σ∞(s)eSsv0.

Using this we see that the state of the closed-loop system
(8) is given by

xe(t) = Ue(t, 0)xe0 +

∫ t

0

Ue(t, s)Be(s)e
Ssv0ds

= Ue(t, 0)xe0 + Σ∞(t)eStv0 − Ue(t, 0)Σ∞(0)v0

= Ue(t, 0)(xe0 − Σ∞(0)v0) + Σ∞(t)v(t).

This further implies that the regulation error is given by

e(t) = Ce(t)xe(t) +Dev(t)

= Ce(t)Ue(t, 0)(xe0 − Σ∞(0)v0)

+ (Ce(t)Σ∞(t) +De(t)) v(t).

If the closed-loop system is stable, there exist constants
Me ≥ 1 and ωe < 0 such that for all t ≥ s we have



‖Ue(t, s)‖ ≤ Mee
ωe(t−s). Using the previous formulas for

xe(t) and e(t) we see that

‖xe(t)− Σ∞(t)v(t)‖ = ‖Ue(t, 0)(xe0 − Σ∞(0)v0)‖

≤Mee
ωet‖xe0 − Σ∞(0)v0‖ −→ 0

and

‖e(t)− (Ce(t)Σ∞(t) +De(t))v(t)‖

= ‖Ce(t)Ue(t, 0)(xe0 − Σ∞(0)v0)‖

≤ Mee
ωet‖Ce‖∞ · ‖xe0 − Σ∞(0)v0‖ −→ 0

as t→∞ since ωe < 0. This concludes the proof.
We can now present the proof of Theorem 5.

Proof of Theorem 5: The unique solvability of the
periodic Sylvester differential equation (9) follows directly
from Lemma 6.

Assume the unique periodic solution Σ∞(t) of (9) satisfies
Ce(t)Σ∞(t) + De(t) = 0 for all t ∈ [0, T ]. Since the
functions are T -periodic, this is satisfied for all t ∈ R. Using
this and Lemma 7 we have that for all initial values xe0 ∈ Xe

and v0 ∈W that

‖e(t)‖ = ‖e(t)− (Ce(t)Σ∞(t) +De(t))v(t)‖ −→ 0

as t→∞ and thus the controller solves the Periodic Output
Regulation Problem.

On the other hand, assume that the controller solves
the Periodic Output Regulation Problem and let v0 ∈ W ,
t0 ∈ [0, T ) and n ∈ N. Let e(t) be the regulation error
originating from the initial conditions 0 ∈ Xe and v0 ∈ W
of the closed-loop system and the exosystem, respectively,
and let t = t0 + nT . We then have using Lemma 7 that

‖(Ce(t0)Σ(t0) +De(t0)) eStv0‖
= ‖(Ce(t)Σ(t) +De(t))e

Stv0‖
≤ ‖(Ce(t)Σ(t) +De(t)) e

Stv0 − e(t)‖+ ‖e(t)‖ −→ 0

as n→∞. Let λ ∈ σ(S) and let {φk}mk=1 be an orthonormal
Jordan chain associated to this eigenvalue. We will show that
(Ce(t0)Σ(t0)+De(t0))φk = 0 for all k ∈ {1, . . . ,m}. Since
the eigenvalue and the associated Jordan chain were arbitrary
and since the generalized eigenvectors of S form a basis of
the space W , this implies that Ce(t0)Σ(t0) + De(t0) = 0.
For k ∈ {1, . . . ,m} and t ∈ R we have

eStφk = eλt
k∑
l=1

tk−l

(k − l)!
φl.

Now

0 = lim
n→∞

‖(Ce(t0)Σ(t0) +De(t0)) eStφ1‖

= ‖(Ce(t0)Σ(t0) +De(t0))φ1‖ · lim
n→∞

eReλ(t0+nT )

and (Ce(t0)Σ(t0) +De(t0))φ1 = 0 since we have Reλ ≥ 0
by Assumption 4. Using this we get

0 = lim
n→∞

‖(Ce(t0)Σ(t0) +De(t0)) eStφ2‖

= ‖(Ce(t0)Σ(t0) +De(t0))φ2‖ · lim
n→∞

eReλ(t0+nT )

and thus (Ce(t0)Σ(t0) +De(t0))φ2 = 0 by Assumption 4.
Continuing this we finally get

0 = lim
n→∞

‖(Ce(t0)Σ(t0) +De(t0)) eStφm‖

= ‖(Ce(t0)Σ(t0) +De(t0))φm‖ · lim
n→∞

eReλ(t0+nT )

which implies (Ce(t0)Σ(t0) +De(t0))φm = 0 by Assump-
tion 4. Since the λ ∈ σ(S) and the associated Jordan chain
were arbitrary, we have that Ce(t0)Σ(t0) + De(t0) = 0.
Since t0 ∈ [0, T ) was arbitrary, this finally shows that
Ce(t)Σ(t) +De(t) = 0 for every t ∈ [0, T ].

We conclude this Section by considering the formula

xe(t) = Ue(t, 0)(xe0 − Σ∞(0)v0) + Σ∞(t)v(t).

for the state of the closed-loop system appearing in the proof
of Lemma 7 in greater detail. The next theorem shows the
converse of Lemma 7, i.e. that if the state of the closed-
loop system can be given in this form, then the operator-
valued function Σ∞(·) appearing in the formula satisfies the
periodic Sylvester differential equation.

Theorem 8: If there exists an operator-valued function
Σ(·) ∈ C1

T (R,L(W,Z)) such that R(Σ(t)) ⊂ D(Ae) for all
t ∈ [0, T ] and the state of the closed-loop system satisfies

xe(t) = Ue(t, 0)(xe0 + Σ(0)v0) + Σ(t)eStv0

for any xe0 ∈ Xe, v0 ∈W and t ≥ 0, then for all t ∈ [0, T ]

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) +Be(t).

Proof: Let xe0 ∈ Xe, v0 ∈ W and t ∈ (0, 2T ).
Differentiating the formula for the state of the closed-loop
system we obtain

ẋe(t) =
d

dt

(
Ue(t, 0)(xe0 + Σ(0)v0) + Σ(t)eStv0

)
= Ae(t)Ue(t, 0)(xe0 + Σ(0)v0) + Σ̇(t)eStv0 + Σ(t)SeStv0.

On the other hand, since xe(t) is the state of the closed-loop
system and since Be(·)v(·) is Hölder continuous on [0, 2T ],
we have that

ẋe(t) = Ae(t)xe(t) +Be(t)v(t)

= Ae(t)Ue(t, 0)(xe0 + Σ(0)v0) +Ae(t)Σ(t)eStv0

+Be(t)e
Stv0

Combining these formulas for ẋe(t) we obtain(
Σ̇(t) + Σ(t)S −Ae(t)Σ(t)−Be(t)

)
eStv0 = 0.

Since v0 ∈ W was arbitrary and since eSt is invertible for
every t ∈ R, this and the periodicity of the functions imply
that for all t ∈ R we have

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) +Be(t).



IV. CONTROLLER DESIGN

In this section we show how to construct an observer-based
controller solving the Periodic Output Regulation Problem.
This construction generalizes the one for finite-dimensional
time-invariant systems presented in [6]. The next theorem is
the main result of the section.

Theorem 9: Assume that the pair (A,B) is exponentially
stabilizable, that there exists a periodic output injection
L(·) ∈ C1

T (R,L(Y,Xe)) such that the system

ẏ =

([
A E(t)

S

]
− L(t)

[
C F (t)

])
y (12)

on X×W is exponentially stable and assume the constrained
Sylvester differential equation

Ẋ(t) +X(t)S = AX(t) +BU(t) + E(t) (13a)
0 = CX(t) +DU(t) + F (t) (13b)

has a periodic solution X(·) ∈ C1
T (R,L(W,X)) and

U(·) ∈ C1
T (R,L(W,U)). Under these assumptions the Pe-

riodic Output Regulation Problem is solved by a controller
(G1,G2,K) with parameters

G1(t) =

[
A E(t)

S

]
+

[
B
0

]
·
[
K1 K2(t)

]
− L(t)

([
C F (t)

]
+DK(t)

)
and G2(t) = L(t) on Z = X ×W where K1 ∈ L(X,U) is
such that A+BK1 generates an exponentially stable semi-
group, K2(t) = U(t)−K1X(t) and K(t) =

[
K1 K2(t)

]
.

Proof: We will first show that the closed-loop system is
exponentially stable. The closed-loop system operator Ae(t)
is equal to A BK1 BK2(t)
L1(t)C A+BK1 − L1(t)C E(t) +BK2(t)− L1(t)F (t)
L2(t)C −L2(t)C S − L2(t)F (t)


where we have denoted

L(t) =

[
L1(t)
L2(t)

]
.

Applying a time-invariant similarity transform

T =

 I 0 0
−I I 0
0 0 I

 , T−1 =

I 0 0
I I 0
0 0 I


we can define Ãe(t) = TAe(t)T

−1. This operator is equal
to A+BK1 BK1 BK2(t)

0 A− L1(t)C E(t)− L1(t)F (t)
0 −L2(t)C S − L2(t)F (t)

 .
Clearly the closed-loop system is stable whenever the system

˙̃xe = Ãe(t)x̃e, x̃e(0) = x̃e0 ∈ Xe

is exponentially stable. Also it is straight-forward to show
that this is the case since K2(·) ∈ C1

T (R,L(W,X)), since
A + BK1 generates an exponentially stable semigroup and
since the system (12) is exponentially stable.

By Theorem 5 it remains to show that the unique periodic
solution of the Sylvester differential equation

Σ̇(t) + Σ(t)S = Ae(t)Σ(t) +Be(t) (14)

satisfies Ce(t)Σ(t) +De(t) = 0 for all t ∈ [0, T ]. Let X(t)
and U(t) be the solution of the equation (13) and denote

Γ(t) =

[
X(t)
I

]
.

Since
U(t) = K1X(t) +K2(t) = K(t)Γ(t),

it is sufficient to show that

Γ̇(t) + Γ(t)S = G1(t)Γ(t)

+ G2(t)(CX(t) +DK(t)Γ(t) + F (t)).

for all t ∈ [0, T ]. If this is the case, then

Σ∞(t) =

[
X(t)
Γ(t)

]
is the unique periodic solution of the Sylvester differential
equation (14) and

Ce(t)Σ∞(t) +De(t) = CX(t) +DK(t)Γ(t) + F (t) = 0

follows from (13b). A direct computation yields

G1(t)Γ(t) =

[
(A+BK1)X(t) + E(t) +BK2(t)

S

]
− L(t)(CX(t) + F (t) +DK(t)Γ(t))

=

[
AX(t) +BK(t)Γ(t) + E(t)

S

]
− L(t)(CX(t) +DK(t)Γ(t) + F (t))

=

[
AX(t) +BU(t) + E(t)

S

]
− L(t)(CX(t) +DK(t)Γ(t) + F (t))

=

[
Ẋ(t) +X(t)S

0 + S

]
− G2(t)(CX(t) +DK(t)Γ(t) + F (t))

= Γ̇(t) + Γ(t)S − G2(t)(CX(t) +DK(t)Γ(t) + F (t)).

This concludes the proof.
We conclude this section with an example illustrating the

choice of the stabilizing output injection L(t) in (12) in a
special case where the original plant is exponentially stable
and we do not have any disturbance signals to reject. In a
more general case for example the results in [11] can be used
to find the function L(·) to stabilize the system (12).

Example 10: Assume that A generates an exponentially
stable analytic semigroup and dimY = 1. Consider a one-
dimensional exosystem ẇ = S(t)w such that Es(t) ≡ 0,
Fm(t) ≡ 0 and Fref (t) ≡ 1. If LFL(·) is the function from
the Lyapunov Reducibility Theorem, the exosystem can be
transformed into the form v̇ = sv, where s ∈ C and we have



E(t) ≡ 0 and F (t) = −Fref (t)LFL(t) = −LFL(t). If we
now choose α > Re s and

L(t) =

[
0

−αLFL(t)−1

]
for all t ∈ R, we have L(·) ∈ C1

T (R,L(C, X × C)) and[
A E(t)

S

]
− L(t)

[
C F (t)

]
=

[
A

αLFL(t)−1C s− αLFL(t)−1LFL(t)

]
=

[
A

αLFL(t)−1C s− α

]
.

Since A generates an exponentially stable semigroup, since
Re(s− α) < 0 and since αLFL(t)−1C ∈ C1

T (R,L(X,C)),
it is straight-forward to verify that the evolution family asso-
ciated to the system (12) is exponentially stable.

V. CONCLUSIONS

In this paper we have considered the infinite-dimensional
Periodic Output Regulation Problem consisting of regulation
and disturbance rejection of a time-invariant distributed pa-
rameter system and a periodic nonautonomous finite-dimen-
sional exosystem. We have characterized the solvability of
this problem using the unique periodic solution of an infinite-
dimensional Sylvester differential equation.

The most important topic for further research is to de-
velope further the results on the solvability of the Sylvester
differential equation. If we can weaken the conditions on the
existence of the unique periodic solution of the Sylvester
differential equation, the theory can be applied to a more
general class of distributed parameter systems.

Another important topic is the stablization of the closed-
loop system. The stabilization of a time-dependent system
is more complicated than the stabilization problem in the
time-invariant case, but this problem has been studied also
in infinite-dimensional spaces [11].
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[1] C. Byrnes, I. Laukó, D. Gilliam, and V. Shubov. Output regulation
problem for linear distributed parameter systems. IEEE Trans. Au-
tomat. Control, 45(12):2236–2252, 2000.

[2] Klaus-Jochen Engel and Rainer Nagel. One-Parameter Semigroups
for Linear Evolution Equations. Springer-Verlag, New York, 2000.

[3] Timo Hämäläinen and Seppo Pohjolainen. A finite-dimensional robust
controller for systems in the CD-algebra. IEEE Trans. Automat.
Control, 45(3):421–431, 2000.
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