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On Infinite-Dimensional
Sylvester Equation and
The Internal Model
Principle

L. Paunonen∗, S. Pohjolainen and T. Hämäläinen

Abstract

In this paper we study the decomposing of certain infinite-dimensional
Sylvester equations. This property of the equations is closely related to robust
output regulation of infinite-dimensional systems. When the signal generator
has discrete spectrum and a complete set of orthonormal eigenvectors, some
sufficient conditions for the decomposing of the Sylvester equations are already
known. In this paper we show that these are also necessary conditions. We
also study how these conditions are related to an infinite-dimensional version
of the internal model of finite-dimensional control theory. We show that under
certain assumptions on the spectra of the closed-loop system and the signal
generator the conditions are equivalent to the internal model.

1 Introduction
Recently there has been much work on infinite-dimensional robust regulation theory
[6, 3]. In [8, 3] the finite-dimensional robust controller theory by Huang [5] has been
partly generalized to infinite-dimensional systems. The key idea is that the closed-
loop state xe(t) approaches a dynamic steady state of the form Σv(t) as t → ∞.
Here Σ is the solution of the associated Sylvester equations and v(t) is the state
of the exosystem. The steady state operator Σ can be decomposed into two parts
Π and Γ according to the decomposition of the extended state space to the state
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spaces of the system and the controller. The Sylvester equations can be decomposed
accordingly into

ΠS = AΠ + BKΓ + E (1a)
ΓS = G1Γ + G2(CΠ + DKΓ + F ) (1b)

The regulation error e(t) goes to zero as t →∞ if CΠ + DKΓ + F = 0. To achieve
this, the controller parameters (G1,G2,K) are chosen such that the above equations
decompose into

ΠS = AΠ + BKΓ + E (2a)
ΓS = G1Γ (2b)

0 = CΠ + DKΓ + F (2c)

This also leads naturally to robust regulation if we choose the controller parameters
such that the equations (1) and (2) are equivalent for all suitable perturbations of
operators A, B, C, D, E and F . Then the equation (2c) implies that the regulation
error goes to zero as t → ∞ for all these perturbations and thus the regulation
property is robust.

In this paper we study this equivalence of the Sylvester equations. It is already
shown in [3] that the equations (1) and (2) are equivalent for all suitable operators
if

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S) (3a)
N (G2) = {0} (3b)

In this paper we show that the conditions (3) are also necessary for the equations
(1) and (2) to be equivalent.

This result is related to the Internal Model Principle of control theory, which
states that any feedback controller which stabilizes the closed-loop system also solves
the robust output regulation problem if and only if it contains a a suitably redupli-
cated copy of the dynamics of the signal generator [2]. This is a well-known result
for finite-dimensional systems and has also been studied in the case of distributed
parameter systems with finite- and infinite-dimensional exosystems [1, 6].

In this paper we will also study the conditions (3) in more detail and show
that under certain assumptions they are equivalent to the classical definition of the
internal model in finite-dimensional control theory. This definition uses the Jordan
canonical forms of the system operators of the signal generator and the controller.
However, if the exosystem has discrete spectrum and a complete set of orthonormal
eigenvectors, the definition can be reformulated in such a way that it also makes
sense in the infinite-dimensional case.
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2 Notation and Definitions
If X and Y are Banach spaces and A : X → Y is a linear operator, we denote by
D(A), N (A) and R(A) the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by L(X, Y ). If A : X → X,
then σ(A), σp(A) and ρ(A) denote the spectrum, the point spectrum and the
resolvent set of A, respectively. For λ ∈ ρ(A) the resolvent operator is given by
R(λ,A) = (λI −A)−1.

Let X, Y, U be Banach-spaces and let W be a Hilbert space. We consider a
linear system

ẋ = Ax + Bu + Ev, x(0) = x0 ∈ D(A)
e = Cx + Du + Fv

where we have the state of the system x(t) ∈ X, the regulation error e(t) ∈ Y
and the input u(t) ∈ U for all t ≥ 0. We assume that A : D(A) ⊂ X → X
generates a C0-semigroup on X and the other operators are bounded, B ∈ L(U,X),
C ∈ L(X, Y ), D ∈ L(U, Y ), E ∈ L(W,X) and F ∈ L(W,Y ). In the above system
v(t) ∈ W is the state of the exosystem

v̇ = Sv, v(0) = v0 ∈ D(S),

The system operator S of the exosystem is defined as

Sv =
∞∑

k=−∞
iωk〈v, φk〉φk, D(S) =

{
v ∈ W

∣∣
∞∑

k=−∞
ω2

k|〈v, φk〉|2 < ∞}
,

where the sequence (ωk)k∈Z ⊂ R has no finite accumulation points, ωk 6= ωn for all
k 6= n and {φk}k∈Z is an orthonormal basis of W . We also assume σ(S)∩σ(A) = ∅.
The dynamic feedback controller on a Banach-space Z is of form

ż = G1z + G2e, z(0) = z0 ∈ D(G1)
u = Kz

where G1 : D(G1) ⊂ Z → Z generates a C0-semigroup on Z, G2 ∈ L(Y, Z) and
K ∈ L(Z, U). The closed-loop system on X × Z with state xe(t) = (x(t), z(t))T is
given by

ẋe = Aexe + Bev, xe(0) =
[
x0

z0

]

e = Cexe + Dev,

where Ce =
[
C DK

]
, De = F ,

Ae =
[

A BK
G2C G1 + G2DK

]
and Be =

[
E
G2F

]
.

For λ ∈ ρ(A) the transfer function of the plant is P (λ) = CR(λ, A)B+D ∈ L(U, Y ).
Since we assumed σ(A)∩σ(S) = ∅, we have that P (s) is well-defined for all s ∈ σ(S).

Throughout this paper we denote by O a list (A, B,C, D,E, F ) of operators
such that A : D(A) ⊂ X → X generates a C0-semigroup with σ(A) ∩ σ(S) = ∅,
B ∈ L(U,X), C ∈ L(X,Y ), D ∈ L(U, Y ), E ∈ L(W,X) and F ∈ L(W,Y ).
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3 Decomposing of the Sylvester Equations
In this section we study the infinite-dimensional Sylvester equations

ΠS = AΠ + BKΓ + E (4a)
ΓS = G1Γ + G2(CΠ + DKΓ + F ) (4b)

and

ΠS = AΠ + BKΓ + E (5a)
ΓS = G1Γ (5b)

0 = CΠ + DKΓ + F, (5c)

for operators O. The operator equations are considered in D(S) and the operators
Π ∈ L(W,X) and Γ ∈ L(W,Z) are assumed to satisfy Π(D(S)) ⊂ D(A) and
Γ(D(S)) ⊂ D(G1).

We are interested in finding necessary and sufficient conditions for the opera-
tors G1 and G2 such that the equations (4) and (5) are equivalent for all operators
O. By this equivalence we mean that if one of the equations (4) and (5) has
a solution (Π, Γ) such that Π ∈ L(W,X), Γ ∈ L(W,Z), Π(D(S)) ⊂ D(A) and
Γ(D(S)) ⊂ D(G1), then it is also a solution to the other equation.

To make this consideration meaningful, we present assumptions under which
the equations (4) have a solution. These assumptions are in no way minimal and
they actually guarantee the existence of a unique bounded solution (Π, Γ).

Lemma 1 ([3, Lem 3]). If O are operators such that Ae generates a strongly
stable C0-semigroup, Beφk ∈ R(iωkI −Ae) for all k ∈ Z and

∑

k∈Z
‖R(iωk, Ae)Beφk‖2 < ∞,

then there exist operators Π ∈ L(W,X) and Γ ∈ L(W,Z) with Π(D(S)) ⊂ D(A),
Γ(D(S)) ⊂ D(G1) such that the equations (4) are satisfied.

It is shown in [3] that (4) and (5) are equivalent for all operators O if the
operators G1 and G2 satisfy

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S) (6a)
N (G2) = {0} (6b)

We will now show that the conditions (6) are also a necessary condition for this
equivalence. The following is the main result of this section.

Theorem 2. The equations (4) and (5) are equivalent for all operators O if and
only if (6) hold.
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We prove this theorem in parts. The following two lemmas prove the ”only
if” -part of the theorem.

Lemma 3. If the equations (4) and (5) are equivalent for all operators O, then
R(sI − G1) ∩R(G2) = {0} for all s ∈ σ(S).

Proof. Let s ∈ σ(S) and v ∈ R(sI −G1)∩R(G2). Then there exist z ∈ D(G1) and
y ∈ Y such that

v = (sI − G1)z = G2y.

Let A : D(A) ⊂ X → X, B ∈ L(U,X), C ∈ L(X,Y ), D ∈ L(U, Y ) be any operators
such that A generates a C0-semigroup and σ(A) ∩ σ(S) = ∅. In the following we
will choose Π, Γ, E, F such that

ΠS = AΠ + BKΓ + E (7a)
ΓS = G1Γ + G2(CΠ + DKΓ + F ) (7b)

are satisfied. We can then use the equivalence of (4) and (5) to show that v = 0.
We have s = iωk for some k ∈ Z and thus φk ∈ N (sI−S). Define Γ ∈ L(W,Z)

such that
Γw = 〈w, φk〉z ∀w ∈ W.

Since we assumed that z ∈ D(G1), we have R(Γ) ⊂ D(G1).
Choose Π = 0 ∈ L(W,X) and E = −BKΓ ∈ L(W,X). Then we have

R(Π) = {0} ⊂ D(A) and equation (7a) is satisfied with these choices of operators.
Choose F ∈ L(W,Y ) such that for all w ∈ W we have

Fw = 〈w, φk〉y − CΠw −DKΓw ⇔ 〈w, φk〉y = CΠw + DKΓw + Fw

Now we have for all w ∈ D(S)

(ΓS − G1Γ)w = 〈Sw, φk〉z − G1〈w, φk〉z = s〈w, φk〉z − 〈w, φk〉G1z

= 〈w, φk〉(sI − G1)z = 〈w, φk〉G2y = G2(〈w, φk〉y)
= G2(CΠw + DKΓw + Fw) = G2(CΠ + DKΓ + F )w

and thus also equation (7b) is satisfied.
By our assumption the equations (7) now that imply ΓS − G1Γ = 0 and thus

0 = (ΓS − G1Γ)φk = (sI − G1)Γφk = (sI − G1)〈φk, φk〉z = (sI − G1)z = v.

Therefore R(sI − G1) ∩R(G2) = {0}. Since s ∈ σ(S) was arbitrary, this completes
the proof.



“paper˙paunonen”
2008/5/15
page

i

i

i

i

i

i

i

i

Lemma 4. If the equations (4) and (5) are equivalent for all operators O, then
N (G2) = {0}.

Proof. Let y ∈ N (G2). Let A : D(A) ⊂ X → X, B ∈ L(U,X), C ∈ L(X, Y ), D ∈
L(U, Y ) be any operators such that A generates a C0-semigroup and σ(A)∩σ(S) = ∅
and choose

E = 0 ∈ L(W,X) Π = 0 ∈ L(W,X)
Γ = 0 ∈ L(W,Z) F = 〈·, φ〉y ∈ L(W,Y ),

where φ ∈ W such that ‖φ‖ = 1. We now have Π(D(S)) = {0} ⊂ D(A) and
Γ(D(S)) = {0} ⊂ D(G1) and thus the equations

ΠS = AΠ + BKΓ + E (8a)
ΓS = G1Γ + G2(CΠ + DKΓ + F ) (8b)

are well-defined. It is easy to see that (8a) is satisfied since Π = 0, Γ = 0 and
E = 0. Using G2y = 0 we see that for all w ∈ D(S) we have ΓSw = 0 and

(G1Γ + G2(CΠ + DKΓ + F ))w = G2(〈w, φ〉y) = 〈w, φ〉G2y = 0

This implies that also (8b) is satisfied.
By our assumption the equations (8) now imply CΠ+DKΓ+F = 0 and thus

also F = 0 since Π = 0 and Γ = 0. This implies

y = 〈φ, φ〉y = Fφ = 0.

Since y was arbitrary, this concludes that N (G2) = {0}.

The ”if”-part of theorem 2 is shown in [3]. We include the proof for complete-
ness.

Theorem 5 ([3, Thm 7]). If (6) are satisfied, then the equations (4) and (5) are
equivalent for all operators O.

Proof. It is sufficient to show that for all suitable operators (4b) implies (5b) and
(5c). Assume (4b) holds. If we apply both sides of this equation to φk we have

(iωkI − G1)Γφk = G2(CΠ + DKΓ + F )φk

for all k ∈ Z. Now (6a) implies that

G2(CΠ + DKΓ + F )φk = 0

and using (6b) we get (CΠ + DKΓ + F )φk = 0 for all k ∈ Z. Since {φk} is a basis
of W , this implies CΠ + DKΓ + F = 0. Substituting this into (4b) also concludes
that ΓS = G1Γ.
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4 Connection to the Internal Model Principle
In this section we study the conditions

R(sI − G1) ∩R(G2) = {0} ∀s ∈ σ(S) (9a)
N (G2) = {0} (9b)

We will show that if dimY < ∞ and spectra of the closed-loop system and the
signal generator are disjoint, then these conditions are equivalent to

dimN (sI − G1) = dim Y ∀s ∈ σ(S). (10)

Equation (10) is closely related to the concept of internal model in finite-
dimensional control theory. If dim Y = p, then a controller incorporates an internal
model of the signal generator if the following is satisfied [2]: If s ∈ σ(S) is an
eigenvalue of S such that d(s) is the dimension of the largest Jordan block associated
to s, then s ∈ σ(G1) and G1 has at least p Jordan blocks of dimension ≥ d(s)
associated to s.

If the signal generator has discrete spectrum and a complete set of orthonormal
eigenvectors, then this reduces to the following condition.

dimN (sI − G1) ≥ dim Y ∀s ∈ σ(S)

We can see that even though the definition of the internal model is given using the
Jordan normal form, the previous condition also makes sense if the the controller
is infinite-dimensional.

The following theorem is the main result of this section

Theorem 6. Let σ(S) ∩ σ(Ae) = ∅ and dim Y < ∞. The conditions (9) hold if
and only if (10) holds.

We will prove this theorem by proving a series of lemmas. Since these are also
useful results considered separately, we will prove them using weaker assumptions
whenever possible. We will start by proving the following useful lemma.

Lemma 7. If σ(S) ∩ σp(Ae) = ∅, then the operator (P (s)K)|N (sI−G1) is injective
for all s ∈ σ(S).

Proof. Let s ∈ σ(S) and let z ∈ N (sI − G1) be such that P (s)Kz = 0. Choose
x = R(s,A)BKz ∈ D(A). Now

(sI −Ae)
[
x
z

]
=

[
(sI −A)x−BKz

−G2Cx + (sI − G1)z − G2DKz

]

=
[

BKz −BKz
−G2(CR(s, A)B + D)Kz + (sI − G1)z

]
=

[
0
0

]

Since s ∈ σ(S), we know that s /∈ σp(Ae) and thus sI−Ae is injective. This implies
that z = 0. From this we can conclude that the restriction of P (s)K to N (sI −G1)
is an injection.
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The following lemma states that if (9) are satisfied, then the spaces N (sI−G1)
are isomorphic to Y for all s ∈ σ(S). This concludes that under assumptions of
theorem 6 the conditions (9) imply that (10) holds, but the result is more general
in the sense that it doesn’t require Y to be finite-dimensional.

Lemma 8. If σ(S) ∩ σ(Ae) = ∅ and the conditions (9) are satisfied, then the
operator (P (s)K)|N (sI−G1) is an isomorphism between N (sI − G1) and Y for all
s ∈ σ(S).

Proof. Let s ∈ σ(S). From lemma 7 we see that (P (s)K)|N (sI−G1) is injective and
thus it is sufficient to prove that it is also surjective.

Since σ(S) ∩ σ(Ae) = ∅, we have s ∈ ρ(Ae) and sI − Ae is surjective. Thus
for all z ∈ Z there exist x1 ∈ D(A), z1 ∈ D(G1) such that

[
0
z

]
= (sI −Ae)

[
x1

z1

]
=

[
(sI −A)x1 −BKz1

−G2Cx1 + (sI − G1)z1 − G2DKz1

]

Since σ(S) ∩ σ(A) = ∅, we have s ∈ ρ(A) and we get from the first equation that
x1 = R(s,A)BKz1. Thus

z = −G2CR(s,A)BKz1 +(sI−G1)z1−G2DKz1 = (sI−G1)z1−G2P (s)Kz1. (11)

Let y ∈ Y . Then z = −G2y ∈ R(G2) ⊂ Z and we can choose z1 ∈ D(G1) such that
(11) holds. Now

−G2y = (sI − G1)z1 − G2P (s)Kz1

⇔ −G2y + G2P (s)Kz1︸ ︷︷ ︸
∈R(G2)

= (sI − G1)z1︸ ︷︷ ︸
∈R(sI−G1)

⇔
{ G2y = G2P (s)Kz1

0 = (sI − G1)z1

⇔
{

y = P (s)Kz1

0 = (sI − G1)z1

because R(sI − G1) ∩ R(G2) = {0} and N (G2) = {0}. This means that for every
y ∈ Y there exists z1 ∈ N (sI − G1) such that y = P (s)Kz1 and thus the operator
(P (s)K)|N (sI−G1) is surjective.

We will now show that if dim Y < ∞, then (10) also imply that the conditions
(9) hold. For this it is sufficient to assume that σ(S) ∩ σp(Ae) = ∅. This is
satisfied, for example, whenever the closed-loop system is strongly stable, because
then σp(Ae) ⊂ C− [4]. The proof is divided into the following two lemmas.

Lemma 9. If σ(S) ∩ σp(Ae) = ∅, dim Y < ∞ and (10) holds, then we have
R(sI − G1) ∩R(G2) = {0} for all s ∈ σ(S).

Proof. Let s ∈ σ(S) and v ∈ R(sI − G1) ∩ R(G2). Then there exist y ∈ Y and
z ∈ D(G1) such that

v = G2y = (sI − G1)z.
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We will first show that there exists z1 ∈ D(G1) such that

v = G2P (s)Kz1 = (sI − G1)z1.

From lemma 7 we get that (P (s)K)|N (sI−G1) is injective and since dimN (sI−G1) =
dimY we have that it is invertible. Because of this we can choose z0 ∈ N (sI − G1)
such that

P (s)Kz0 = y − P (s)Kz ∈ Y ⇔ y = P (s)K(z + z0).

We then have

G2P (s)K(z + z0) = G2y = v = (sI − G1)z = (sI − G1)(z + z0)

and we can choose z1 = z + z0.
Choose x1 = R(s,A)BKz1 ∈ D(A). As in the proof of lemma 7, we see that

(sI −Ae)
[
x1

z1

]
=

[
0

−G2P (s)Kz1 + (sI − G1)z1

]
=

[
0
0

]
.

Since sI −Ae is injective, we have z1 = 0 and thus

v = (sI − G1)z1 = 0.

This concludes that R(sI − G1) ∩R(G2) = {0}.

Lemma 10. If σ(S)∩σp(Ae) = ∅, dim Y < ∞ and (10) holds, then N (G2) = {0}.

Proof. Let y ∈ N (G2) and s ∈ σ(S). From lemma 7 we get that (P (s)K)|N (sI−G1)

is injective and since dimN (sI − G1) = dim Y , it is invertible. This implies that
there exists z1 ∈ N (sI − G1) such that

y = P (s)Kz1

and thus G2P (s)Kz1 = 0. Choose x1 = R(s,A)BKz1 ∈ D(A). As in the proof of
lemma 7, we see that

(sI −Ae)
[
x1

z1

]
=

[
0

−G2P (s)Kz1 + (sI − G1)z1

]
=

[
0
0

]
.

Since s ∈ σ(S) and σ(S)∩σp(Ae) = ∅, we have that sI−Ae is injective and z1 = 0.
This also implies

y = P (s)Kz1 = 0,

and thus N (G2) = {0}.

Finally we will note that if σ(S) ∩ σp(Ae) = ∅, then dim Y is necessarily an
upper bound for the dimensions of N (sI − G1) for all s ∈ σ(S). This is stated in
the next lemma.
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Lemma 11. If σ(S) ∩ σp(Ae) = ∅, then N (sI − G1) ≤ dim Y for all s ∈ σ(S).

Proof. Let s ∈ σ(S). We have from lemma 7 that

(P (s)K)|N (sI−G1) ∈ L(N (sI − G1), Y )

is injective. Using the Rank-Nullity Theorem [7, Thm 4.7.7] we can conclude that

dimN (sI − G1) = dimR (
(P (s)K)|N (sI−G1)

)
+ dimN (

(P (s)K)|N (sI−G1)

)

= dimR (
(P (s)K)|N (sI−G1)

) ≤ dim Y.

5 Conclusions
Necessary and sufficient conditions for decomposing of infinite-dimensional Sylvester
equations have been presented. This property is closely related to robust output
regulation of infinite-dimensional systems. It was also proved that under certain
assumptions these conditions are equivalent to an infinite-dimensional version of
the Internal Model Principle of finite-dimensional control theory.

In this paper we have only considered bounded solutions of the Sylvester
equations. A more general theory of robust regulation may require the dynamic
steady state operator Σ to be unbounded. Because of this, the results presented in
this paper should be extended to allow unbounded operators Π and Γ.

It was also assumed that the signal generator has a simple structure in the
sense that it has pure point spectrum and a complete set of orthonormal eigenvec-
tors. One area of further research is considering more general signal generators.
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